SUMS OF INDEPENDENT TRUNCATED RANDOM VARIABLES1

By J. M. Shapiro

The Ohio State University

1. Summary and introduction. Let (x_{nk}) , $(k = 1, 2, \dots, k_n; n = 1, 2, \dots)$ be a double sequence of infinitesimal (i.e. $\lim_{n\to\infty} \max_{1\leq k\leq k_n} P\{|x_{nk}| > \epsilon\} = 0$ for every $\epsilon > 0$) random variables such that for each $n, x_{n1}, \dots, x_{nk_n}$ are independent. Let $S_n = x_{n1} + \dots + x_{nk_n}$ and let $F_n(x)$ be the distribution function of S_n . For any a > 0 let the random variables x_{nk}^a be defined by

$$x_{nk}^{a} = \begin{cases} x_{nk}, & \text{if } -a < x_{nk} \leq a, \\ 0, & \text{otherwise,} \end{cases}$$

and let $F_n^a(x)$ be the distribution function of $S_n^a = x_{n1}^a + \cdots + x_{nk_n}^a$. In the next section certain necessary and sufficient conditions are given for $F_n^a(x)$ to converge $(n \to \infty)$ to a limiting distribution and in particular it is shown that if $F_n^a(x)$ converges to F(x), then F(x) has finite moments of all orders. In Sec. 3 it is shown that if $F_n^a(x)$ converges to F(x), then for each positive integer k the kth moment of $F_n^a(x)$ approaches the kth moment of F(x) as $n \to \infty$.

We shall call the random variables (x_{nk}) a truncated system if there exists a b > 0 independent of k and n such that $P\{|x_{nk}| > b\} = 0$. We note that if we start with a truncated system we can choose a > 0 such that $x_{nk}^a = x_{nk}$.

2. Conditions for convergence. Since the random variables (x_{nk}) are infinitesimal and independent within each row, it is clear that the random variables (x_{nk}^a) are also. From a well-known theorem of Khintchine, (c.f. [1]), it follows that for the weak convergence of $F_n(x)$ (or $F_n^a(x)$) to a limiting distribution F(x), F(x) must be infinitely divisible.

Let F(x) be any infinitely divisible distribution function and let $\varphi(t)$ be its characteristic function. According to the formulas of Levy and Khintchine [1] for the representation of the characteristic function of an infinitely divisible distribution we have

$$\log \varphi(t) = i\gamma t + \int_{-\infty}^{\infty} \left(e^{iut} - 1 - \frac{iut}{1+u^2} \right) \frac{1+u^2}{u^2} dG(u)$$

$$= i\gamma(\tau)t - b^2 t^2 / 2 + \int_{-\infty}^{\tau} (e^{iut} - 1) dM(u)$$

$$+ \int_{\tau}^{\infty} (e^{iut} - 1) dN(u) + \int_{-\tau}^{0} (e^{iut} - 1 - iut) dM(u)$$

$$+ \int_{\tau}^{\tau} (e^{iut} - 1 - iut) dN(u),$$

Received September 28, 1956.

¹ Presented to the American Mathematical Society on February 26, 1955 and December 29, 1955.

754

where G(u) is bounded nondecreasing function $(G(-\infty) = 0), \gamma$ a real constant,

$$M(u) = \int_{-\infty}^{u} \frac{1+z^{2}}{z^{2}} dG(z) \quad \text{for} \quad u < 0,$$

$$(2.2) \quad N(u) = -\int_{u}^{\infty} \frac{1+z^{2}}{z^{2}} dG(z) \quad \text{for} \quad u > 0,$$

$$b^{2} = G(+0) - G(-0) \quad \text{and} \quad \gamma(\tau)$$

$$= \gamma + \int_{|u| < \tau} u \, dG(u) - \int_{|u| \ge \tau} \frac{1}{u} \, dG(u),$$

and where τ and $-\tau$ are continuity points of N(u) and M(u) respectively.

Let $F_{nk}(x)$ and $F_{nk}^a(x)$ be the distribution functions of x_{nk} and x_{nk}^a respectively. From the definition of x_{nk}^a we note

(2.3)
$$F_{nk}^{a}(x) = \begin{cases} 0, & \text{for } x \leq -a, \\ F_{nk}(x) - F_{nk}(-a), & \text{for } -a \leq x < 0, \\ F_{nk}(x) + 1 - F_{nk}(a), & \text{for } 0 \leq x \leq a, \\ 1, & \text{for } x \geq a. \end{cases}$$

The following theorem (c.f. [1], p. 124) will be needed.

THEOREM 1. In order that the distribution functions of the sums $S_1 = x_{n1} + \cdots + x_{nk_n}$ of independent infinitesimal, random variables converge to the distribution function F(x), it is necessary and sufficient that:

(1) At continuity points of M(u) and N(u)

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} F_{nk}(x) = M(x), \text{ for } x < 0,$$

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} (F_{nk}(x) - 1) = N(x), \text{ for } x > 0;$$

(2)
$$\lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \sum_{k=1}^{k_n} \left\{ \int_{|x| < \epsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \epsilon} x dF_{nk}(x) \right)^2 \right\} = \lim_{\epsilon \to 0} \lim_{n \to \infty} \sum_{k=1}^{k_n} \left\{ \int_{|x| < \epsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \epsilon} x dF_{nk}(x) \right)^2 \right\} = b^2;$$

(3)
$$\lim_{n\to\infty}\sum_{k=1}^{k_n}\int_{|x|<\tau}x\ dF_{nk}(x)=\gamma(\tau),$$

where M(u), N(u), b^2 , and $\gamma(\tau)$ are given by (2.1) and (2.2).

Now using the notation of (2.1) we have the following theorem.

THEOREM 2. If for some a > 0 $F_n^a(x)$ converges to F(x), then the function G(u) is nonincreasing for u > a and for u < -a.

Proof. Since $F_n^a(x)$ converges to F(x), according to Theorem 1 we know that at continuity points of M(u) and N(u)

(2.4)
$$\lim_{n\to\infty} \sum_{k=1}^{k_n} F_{nk}^a(x) = M(x) \text{ for } x < 0 \text{ and}$$

$$\lim_{n\to\infty} \sum_{k=1}^{k_n} (F_{nk}^a(x) - 1) = N(x) \text{ for } x > 0.$$

Thus from (2.3) and (2.4) since M(u) and N(u) are nondecreasing functions, we see that M(u) = 0 for u < -a and N(u) = 0 for u > a. Using (2.2) the conclusion of the theorem follows.

Now given F(x) infinitely divisible define (using the notation of (2.1) and (2.2)) for any a > 0, $\pm a$ continuity points of G(u),

(2.5)
$$G^{a}(u) = \begin{cases} 0, & \text{for } u \leq -a, \\ G(u) - G(-a), & \text{for } -a \leq u \leq a, \\ G(a) - G(-a), & \text{for } u \geq a, \end{cases}$$
$$\gamma^{a} = \gamma - \int_{|u| > a} \frac{1}{u} dG(u),$$

and let $F^a(x)$ be the (infinitely divisible) distribution given by (2.1) using the function $G^a(u)$ and the constant γ^a . We note that $F^a(x)$ is also given by (2.1) using the function $M^a(u)$ and $N^a(u)$ defined by

(2.6)
$$M^{a}(u) = \begin{cases} 0, & \text{for } -\infty < u < -a, \\ M(u) - M(-a), & \text{for } -a \le u < 0, \end{cases}$$
$$N^{a}(u) = \begin{cases} 0, & \text{for } a < u < \infty, \\ N(u) - N(a), & \text{for } 0 < u \le a, \end{cases}$$

(with b^2 unchanged) and

$$\gamma^a(a) = \begin{cases} \gamma(\tau) & \text{for } \tau \leq a, \\ \gamma(\partial) & \text{for } \tau > a. \end{cases}$$

(With this notation we have the following theorem.

THEOREM 3. If $F_n(x)$ converges to F(x), then for any a > 0 ($\pm a$ continuity points of G(u)) $F_n^a(x)$ converges to $F^a(x)$. In particular, if G(u) is nonincreasing outside of the interval [-a, a] then $F_n^a(x)$ converges to F(x).

Proof. Since $F_n(x)$ converges to F(x), parts (1), (2), and (3) of Theorem 1 hold. We note that continuity points of M(u) and N(u) coincide with those of G(u) so that -a and a are continuity points of M(u) and N(u) respectively. From (2.3) and (2.6) it follows that at continuity points of $M^a(u)$ and $N^a(u)$

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} F_{nk}^a(x) = M^a(x) \quad \text{and} \quad \lim_{n \to \infty} \sum_{k=1}^{k_n} (F_{nk}^a(x) - 1) = N^a(x),$$

for x < 0 and x > 0 respectively. Also it is clear that part (2) of Theorem 1

holds with $F_{nk}(x)$ replaced by $F_{nk}^a(x)$ and that

$$\lim_{n\to\infty}\sum_{k=1}^{k_n}\int_{|x|<\tau}x\ dF_{nk}^a(x)\ =\ \gamma^a(\tau).$$

Thus from the sufficiency of Theorem 1 we see that $\lim_{n\to\infty} F_n^a(x) = F^a(x)$ (at continuity points of $F^a(x)$). We note that if G(u) is nonincreasing outside of [-a, a] then $F^a(x) = F(x)$. This proves Theorem 3.

Combining Theorems 2 and 3 we can state the following theorem.

THEOREM 4. If $F_n(x)$ converges to F(x) and if $\pm a$ are continuity points of G(u), then a necessary and sufficient condition for $F_n^a(x)$ to converge to F(x) is that $G(u) = G(+\infty)$ for $u \ge a$ and $G(u) = G(-\infty) = 0$ for $u \le -a$.

Theorem 5. If $F_n^a(x)$ converges to F(x), then F(x) has finite moments of all orders.

Proof. By Theorem 2 we know that G(u) is nonincreasing outside of the interval [-a, a]. In particular it follows that $\int_{-\infty}^{\infty} x^n dG(x) < \infty$ for all n. By the result of [2] it follows that F(x) has finite moments of all orders.

We remark that if the system (x_{nk}) is a truncated system we have the following analogues of Theorems 2 and 5.

THEOREM 2a. If $F_n(x)$ converges to F(x), then the function G(u) is nonincreasing for u > a and for u < -a.

Theorem 5a. If $F_n(x)$ converges to F(x), then F(x) has finite moments of all orders.

3. Convergence of moments. In the remainder of this paper we shall assume that (x_{nk}) is a truncated system. If this is not the case, the following results apply to the system (x_{nk}^a) previously discussed.

In view of Theorem 5a it is natural to consider the question of the convergence of moments of the distribution function $F_n(x)$ of the random variable S_n to the moments of F(x). The principle result of this section is contained in the following theorem.

THEOREM 6. If (x_{nk}) is a truncated system, and if $F_n(x)$ converges to F(x), then

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}x^k\ dF_n(x)\ =\ \int_{-\infty}^{\infty}x^k\ dF(x),$$

for every positive integer k.

The author first proved this theorem in the special case where F(x) was the Poisson distribution (see *Bull. Amer. Math. Soc.*, Vol. 61, Abstract No. 435) and where k = 2. This more general form was obtained at a later date (*Bull. Amer. Math. Soc.*, Vol. 62, Abstract No. 264).

The proof of Theorem 6 requires several lemmas which we state and prove below.

Using the same notation as in section 2, according to the result of [2] we know that

$$\int_{-\infty}^{\infty} x^{2k} dF(x) < \infty \Leftrightarrow \int_{-\infty}^{\infty} x^{2k} dG(x) < \infty,$$

and assuming F(x) has finite moments of all orders that,

(3.1)
$$\chi_1 = \gamma + \int_{-\infty}^{\infty} u \, dG(u) \text{ and } \chi_r = \int_{-\infty}^{\infty} (u^{r-2} + u^r) \, dG(u),$$

where χ_r is the rth semi-invariant of F(x). In particular letting μ be the mean and σ^2 the variance of F(x), we see

(3.2)
$$\mu = \gamma + \int_{-\infty}^{\infty} u \, dG(u) \quad \text{and} \quad \sigma^2 = G(+\infty) + \int_{-\infty}^{\infty} u^2 \, dG(u).$$

LEMMA 1. Under the hypothesis of Theorem 6, $\lim_{n\to\infty} \sigma^2(S_n) = \sigma^2$, where $\sigma^2(S_n)$ is the variance of S_n and σ^2 is the variance of F(x).

Proof. Since $F_n(x)$ converges to F(x) by Theorem 1, page 112 of [1], we have $G_n(x) \equiv \sum_{k=1}^{k_n} \int_{-\infty}^x u^2/(1+u^2) dF_{nk}(u+\alpha_1) \to G(x)$ as $n \to \infty$ at all continuity points of G(u) and also $G_n(+\infty) \to G(+\infty)$, where $\alpha_{nk} = \int_{|x| < \tau} x dF_{nk}(x)$, $(\tau > 0)$ an arbitrary positive constant). (Remark. By hypothesis $P\{|x_{nk}| > a\} = 0$ for some a > 0. We may and do take $\tau > a$ so that $\alpha_{nk} = \mu_{nk} = \text{mean of } x_{nk}$. Hence in the remainder of the proof we assume $\alpha_{nk} = \mu_{nk}$.) Now since $x^2/(1+x^2) = x^2 - [x^4/(1+x^2)]$, we see

(3.3)
$$G_n(+\infty) = \sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^2 dF_{nk}(x + \mu_{nk}) - \sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^4 / (1 + x^2) dF_{nk}(x + \mu_{nk}) \to G(+\infty) \text{ as } n \to \infty.$$

Also,

(3.4)
$$\int_{-\infty}^{\infty} x^2 dG_n(x) = \int_{-\infty}^{\infty} x^2 d\sum_{k=1}^{k_n} \int_{-\infty}^{x} \frac{u^2}{1+u^2} dF_{nk}(u+\mu_{nk})$$
$$= \sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^4/(1+x^2) dF_{nk}(u+\mu_{nk}).$$

By Theorem 2a, G(x) is nonincreasing outside of some interval. Now since the random variables are infinitesimal it follows that $\lim_{n\to\infty} \max_{1\le k\le k_n} |\alpha_{nk}| = 0$. Thus since $P\{|x_{nk}| > a\} = 0$ for some a > 0, we know that there exists an A > 0 such that G(x) and $G_n(x)$ are nonincreasing for x < -A and x > A $(n = 1, 2, \dots)$. Therefore by Helly's convergence theorem

$$(3.5) \qquad \int_{-\infty}^{\infty} x^k \ dG_n(x) = \int_{-A}^{A} x^k \ dG_n(x) \to \int_{-A}^{A} x^k \ dG(x) = \int_{-\infty}^{\infty} x^k \ dG(x)$$

as $n \to \infty$. Letting k = 2 and using (3.3) and (3.4) we see

$$\lim_{n\to\infty}\sum_{k=1}^{k_n}\int_{-\infty}^{\infty}x^2\ dF_{nk}(x+\alpha_{nk})\ =\ G(+\infty)\ +\ \int_{-\infty}^{\infty}x^2\ dG(x).$$

Now x_{n1} , x_{n2} , \cdots , x_{nk_n} are for each n independent random variables and since $\alpha_{nk} = \mu_{nk}$, by virtue of (3.2) we see $\lim_{n\to\infty} \sigma^2(S_n) = \sigma^2$. This proves Lemma 1.

Having obtained this result we can now prove that the means μ_n of $F_n(x)$ approach the mean μ of F(x).

LEMMA 2. Under the hypothesis of Theorem 6,

$$\mu_n = \int_{-\infty}^{\infty} x \ dF_n(x) \to \int_{-\infty}^{\infty} x \ dF(x) = \mu \quad \text{as} \quad n \to \infty$$

(i.e., Theorem 6 holds for k = 1.)

Proof. For the proof of this lemma we appeal to Theorem 2 of [1], page 100. Since the random variables (x_{nk}) are infinitesimal and since $\max_{1 \le k \le k_n} |\mu_{nk}| = \max_{1 \le k \le k_n} |\alpha_{nk}| \to 0$ as $n \to \infty$ we see that the random variables $(x_{nk} - \mu_{nk})$ are also infinitesimal. This together with Lemma 1 shows that the hypothesis of Theorem 2, page 100 of [1] is satisfied and hence we may conclude in particular that

$$\mu_n = \sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x \ dF_{nk}(x) \to \gamma' \quad \text{as} \quad n \to \infty,$$

where γ' is the constant associated with Kolmogorov's formula for the characteristic function of the infinitely divisible distribution F(x). But the constant of Kolmogorov's formula is the mean of the distribution (i.e. $\gamma' = \mu$). This proves Lemma 2.

Lemma 3. Under the hypothesis of Theorem 6

$$\sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^r dF_{nk}(x + \mu_{nk}) - \chi_{r(n)} \to 0 \quad \text{as} \quad n \to \infty,$$

 $r=2, 3, \cdots, where \chi_{r(n)}=rth semi-invariant of S_n$.

Proof. We note that

$$\sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^r dF_{nk}(x + \mu_{nk}) - \chi_{r(n)} = 0 \quad \text{for} \quad r = 2, 3$$

and

$$\sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x \ dF_{nk}(x) - \chi_{r(1)} = 0.$$

Let

$$\mu_n^{(r)} = \int_{-\infty}^{\infty} (x - \mu_n)^r dF_n(x)$$

and let $\mu_{nk}^{(r)} = \int_{-\infty}^{\infty} x^r dF_{nk}(x + \mu_{nk})$. Now since (x_{nk}) is a truncated system, and since $\max_{1 \le k \le k_n} |\mu_{nk}| \to 0$ as $n \to \infty$ we see

$$\max_{1 \leq k \leq k_n} \left| \int_{-\infty}^{\infty} x^r dF_{nk}(x + \mu_{nk}) \right| = \max_{1 \leq k \leq k_n} \left| \int_{-A}^{A} x^r dF_{nk}(x + \mu_{nk}) \right|$$

for some A > 0. Now given $0 < \epsilon < 1$ we see

$$\max_{k} \left| \int_{-A}^{A} x^{r} dF_{nk}(x + \mu_{nk}) \right| \leq \max_{k} \int_{-\epsilon}^{\epsilon} |x|^{r} dF_{nk}(x + \mu_{nk})$$

$$+ \max_{k} \int_{\epsilon < |x| \le A} |x|^r dF_{nk}(x + \mu_{nk}) \le \epsilon^r + A^r \max_{k} P\{|x - \mu_{nk}| \ge \epsilon\}$$

and since $(x_{nk} - \mu_{nk})$ are infinitesimal we see

(3.6)
$$\lim_{n\to\infty} \max_{1\leq k\leq k^n} \left| \int_{-\infty}^{\infty} x^r dF_{nk}(x+\mu_{nk}) \right| = 0, r=2,3,\cdots.$$

Also we see (for $r \ge 2$)

$$\sum_{k=1}^{k_n} | \mu_{nk}^{(r)} | = \sum_{k=1}^{k_n} \left| \int_{-\infty}^{\infty} x^r dF_{nk}(x + \mu_{nk}) \right|$$

$$\leq \sum_{k=1}^{k_n} \int_{-A}^{A} | x^r | dF_{nk}(x + \mu_{nk}) \leq A^{r-2} \sum_{k=1}^{k_n} \int_{-A}^{A} x^2 dF_{nk}(x + \mu_{nk})$$

$$= A^{r-2} \sigma^2(S_n) \to A^{r-2} \sigma^2 \text{ as } n \to \infty$$

by Lemma 1. Hence

(3.7)
$$\sum_{k=1}^{k_n} | \mu_{nk}^{(r)} |$$

is bounded in n for $r=2, 3 \cdots$. Let $\chi_r(Z)$ denote the rth semi-invariant of the random variable Z and let $\mu_z^{(r)}$ denote the rth central moment of Z. For r>3 we note

(3.8)
$$\chi_r(Z) = \mu_z^{(r)} + f(\mu_z^{(r-1)}, \cdots, \mu_z^{(2)}),$$

where f is a polynomial in $\mu_z^{(r-1)}$, \cdots , $\mu_z^{(2)}$ each term of which is at least degree 2 (c.f. [1], page 66). Thus $\chi_r(x_{nk}) = \mu_{nk}^{(r)} + f(\mu_{nk}^{(r-1)}, \cdots, \mu_{nk}^{(2)})$. Now if X and Y are independent random variables we note ([1], page 64) $\chi_r(X + Y) = \chi_r(X) + \chi_r(Y)$. Hence since $S_n = x_{n1} + \cdots + x_{nk_n}$ is the sum of independent random variables we see

(3.9)
$$\chi_r(S_n) = \chi_{r(n)} = \sum_{k=1}^{k_n} \mu_{nk}^{(r)} + \left\{ \sum_{k=1}^{k_n} f(\mu_{nk}^{(r-1)}, \dots, \mu_{nk}^{(2)}) \right\}.$$

The general term of the expression in braces may be written as $T = c \sum_{k=1}^{k_n} \prod_{i=1}^{p} \mu_{nk}^{(s_i)}$ where c is a constant, $2 \le s_i < r$, $p \ge 2$ and where $s_i = s_j$ does not imply i = j. But

$$|T| \le c \max_{k} |\mu_{nk}^{(s_1)}| \max_{k} |\mu_{nk}^{(s_2)}| \cdots \max_{k} |\mu_{nk}^{(s_{p-1})}| \sum_{k=1}^{k_n} |\mu_{nk}^{(s_p)}|.$$

Thus by (3.6) and (3.7) we see that $T \to 0$ as $n \to \infty$. Since the number of terms in f depends only on r this shows that the quantity in braces in (3.9) approaches zero as $n \to \infty$. This proves the Lemma.

Proof of Theorem 6. We note

$$\sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^r dF_{nk}(x + \mu_{nk}) = \int_{-\infty}^{\infty} (x^{r-2} + x^r) dG_n(x),$$

where $G_n(x) = \sum_{k=1}^{k_n} \int_{-\infty}^x [u^2/(1+u^2)] dF_{nk}(u+\mu_{nk})$ as defined in Lemma 1.

Now by (3.5)

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}x^k\ dG_n(x)\ =\ \int_{-\infty}^{\infty}x^k\ dG(x)\ k\ =\ 0,\ 1,\ 2,\ \cdots$$

and therefore for $r \geq 2$,

$$\lim_{n\to\infty} \int_{-\infty}^{\infty} (x^{r-2} + x^r) \ dG_n(x) = \int_{-\infty}^{\infty} (x^{r-2} + x^r) \ dG(x).$$

But $\int_{-\infty}^{\infty} (x^{r-2} + x^r) dG(x)$ is by (3.1) the rth semi-invariant of the infinitely divisible distribution F(x). Thus (for r > 1)

(3.10)
$$\lim_{n\to\infty}\sum_{k=1}^{k_n}\int_{-\infty}^{\infty}x^r\ dF_{nk}(x+\mu_{nk})=\chi_r\equiv r\text{th semi-invariant of }F(x).$$

Using (3.10) and Lemma 3 we obtain

$$\lim_{n\to\infty}\chi_{r(n)} = \chi_r,$$

that is the rth semi-invariant of $F_n(x)$ approaches the rth semi-invariant of F(x) as $n \to \infty$. Let $\mu^{(k)} = \int_{-\infty}^{\infty} (x - \mu)^k dF(x)$. By Lemmas 1 and 2 we have $\mu_n \to \mu$, $\mu_n^{(2)} \to \mu^{(2)}$ as $n \to \infty$. Now $\chi_3 = \mu^{(3)}$, $\chi_{3(n)} = \mu_n^{(3)}$; $\chi_4 = \mu^{(4)} - 3(\mu^{(2)})^2$, $\chi_{4(n)} = \mu_n^{(4)} - 3(\mu_n^{(2)})^2$ and in general as indicated in (3.8) $\chi_r = \mu^{(r)} + f(\mu^{(r-1)}, \dots, \mu^{(2)})$, where f is a polynomial and $\chi_{r(n)} = \mu_n^{(r)} + f(\mu_n^{(r-1)}, \dots, \mu_n^{(2)})$. Using (3.11) and an induction argument we see $\lim_{n\to\infty} \mu_n^{(r)} = \mu^{(r)}$, $(r \ge 2)$ and this together with Lemma 2 completes the proof of Theorem 6.

REFERENCES

- [1] B. V. GNEDENKO AND A. N. KOLMOGOROV, Limit Distributions for Sums of Independent Random Variables, translation by K. L. Chung, Addison-Wesley, 1954.
- [2] J. M. Shapiro, "A condition for existence of moments of infinitely divisible distributions," Canadian J. Math., Vol. 8 (1956), pp. 69-71.