‘SUMS OF INDEPENDENT TRUNCATED RANDOM VARIABLES!

By J. M. SuaPriro

The Ohio State University

1. Summary and introduction. Let (zu), (k = 1,2, -+ , ka;n = 1,2, )
be a double sequence of infinitesimal (i.e. limp.o maxi<i<i, P{|zw] > € = 0
for every ¢ > 0) random variables such that for each n, 2,1, -+ - , T, are inde-
pendent.. Let S, = xu + -+ + Zu, and let F,(z) be the distribution function
of 8, . For any a > 0 let the random variables x5 be defined by

(T, i —a < zm =< q,

a

Tnk = .
0, otherwise,

and let F7 (z) be the distribution function of S = 271 + -+ + Za:, . In the next
section certain necessary and sufficient conditions are given for F;, (x) to converge
(n — =) to a limiting distribution and in particular it is shown that if F7(z)
converges to F(z), then F(z) has finite moments of all orders. In Sec. 3 it is shown
that if F7(x) converges to F(x), then for each positive integer & the kth moment
of F5(x) approaches the kth moment of F(z) asn — .

We shall call the random variables (z.:) a truncated system if there exists a
b > 0 independent of k and n such that P{|z.] > b} = 0. We note that if we
start with a truncated system we can choose a > 0 such that za; = T .

2. Conditions for convergence. Since the random variables (z.r) are infini-
tesimal and independent within each row, it is clear that the random variables
(2%%) are also. From a well-known theorem of Khintchine, (c.f. [1]), it follows
that for the weak convergence of F,(x) (or Fi(zx)) to a limiting distribution
F(x), F(x) must be infinitely divisible.

Let F(x) be any infinitely divisible distribution function and let ¢(¢) be its
characteristic function. According to the formulas of Levy and Khintchine [1]
for the representation of the characteristic function of an infinitely divisible
distribution we have
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where G'(u) is bounded nondecreasing function (G(— «) = 0), v a real constant,

u 2
M@ =[ Hz;z dGG) for u <0,

142
0z VOO =- [ 152460 o w>o,

b = G(+0) — G(—=0) and ~(r)
= — 1
=5+ IulcudG(u) fmgrudG(u)’

and where r and — 7 are continuity points of N(u) and M (u) respectively.
Let Foi(zx) and F5.(z) be the distribution functions of x.: and x5 respectively.
From the definition of z;; we note

0, forx £ —a,
. Fou(x) — Fu(—a), for —a £ z <0,

(2.3) Foi(z) =
Fu(x) + 1 — Fy(a), for0 =z < q,

1, forxz = a.

The following theorem (c.f. [1], p. 124) will be needed.

TaroreM 1. In order that the distribulion functions of the sums S =
T + 0+ Tar, of independent infinitesimal, random variables converge to the
distribution function F(x), it is necessary and sufficient that:

(1) At continuz'ty points of M (u) and N (u)
lim Z Fu(z) = M(z), for z <0,

n->0 k=1

lim E (Fo(x) — 1) = N(zx), for z > 0;

n->w k=1

® tim I ;{ [ — ([ zaru@) }
lim Liﬂ k}_jl{ fl o T AFa(a) — ( [I e ank(x)>2}
®1m > [ adra@ =0,

n->w k=1

where M(u), N(u), b, and v(7) are given by (2.1) and (2.2).

Now using the notation of (2.1) we have the following theorem.

THEOREM 2. If for some a > 0 F5(x) converges to F(x), then the function G(u)
18 nonincreasing for u > a and for u < —a.

Proof. Since Fy(x) converges to F(x), according to Theorem 1 we know that
at continuity points of M (u) and N (u)
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lim Z For(z) = M(z) for = <0 and

n-»>0 k=1

24)
lim Z (Faw(x) — 1) = N(z) for z > 0.

n->o00 k=1
Thus from (2.3) and (2.4) since M(u) and N(u) are nondecreasing functions,
we see that M(u) = 0 for v < —a and N(u) = 0 for v > a. Using (2.2) the
conclusion of the theorem follows.
Now given F(z) infinitely divisible define (using the notation of (2.1) and (2.2))
for any a > 0, £a continuity points of G(u),

0, foru £ —a,
(2.5) G(uw) =<Gu) — G(—a), for —a = u £ a,
|G(a) — G(—a), foru =.a,
Y= = L a6,
lul>a U

and let F*(x) be the (infinitely divisible) distribution given by (2.1) using the
function G"(u) and the constant v*. We note that F*(z) is also given by (2.1)
using the function M*(u) and N*(u) defined by

(0, for —0 < u < —a,

M) =
26 w iM(u) — M(—a), for —a = u <0,
29 N _{0, fora < u < =,
v _iN(W—N(a), for0 < u = a,

(with b* unchanged) and

o _ y(r) for 7 = a,
7@ =160 for r>a

(With this notation we have the following theorem.

TuaeoreM 3. If F.(z) converges to F(x), then for any a > 0 (Za continuity
points of G(u)) Fan(x) converges to F*(x). In particular, if G(u) is nonincreasing
outside of the interval [— a, a] then F5 (x) converges to F(z).

Proof. Since F,(x) converges to F(x), parts (1), (2), and (3) of Theorem 1
hold. We note that continuity points of M (u) and N(u) coincide with those of
G(u) so that —a and a are continuity points of M (u) and N(u) respectively.
From (2.3) and (2.6) it follows that at continuity points of M*(u) and N*(u)

lim EF,,k(x) M*(z) and lim Z (Farlz) — 1) = N%(2),

n->oo k=1 n->00 k=1

for + < 0 and = > O respectively. Also it is clear that part (2) of Theorem 1
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holds with Fy(r) replaced by Fy.(z) and that

kn

lim Zf z dFo(z) = v*(7).
n->0 k=1"Y|z|<7

Thus from the sufficiency of Theorem 1 we see that lim,.. Fy(zx) = F*(z) (at

continuity points of F*(x)). We note that if G(u) is nonincreasing outside of

[—a, a] then F*(z) = F(z). This proves Theorem 3.

Combining Theorems 2 and 3 we can state the following theorem.

THEOREM 4. If F,(x) converges to F(x) and if J=a are continuity points of G(u),
then a necessary and sufficient condition for Fy(x) to converge to F(x) is that G(u) =
G(+ o) foru =z aand Glu) = G(— =) = 0 foru £ —a.

TuroreM 5. If F,(x) converges to F(x), then F(x) has finite moments of all
orders.

Proof. By Theorem 2 we know that G(u) is nonincreasing outside of the inter-
val [—a, a]. In particular it follows that [Z, 2" dG(z) < « for all n. By the
result of [2] it follows that F(x) has finite moments of all orders.

We remark that if the system (x.:) is a truncated system we have the following
analogues of Theorems 2 and 5.

TureoreM 2a. If F,(x) converges to F(x), then the function G(u) is nonincreasing
for w > a and for u < —a.

THEOREM 5a. If F.(x) converges to F(x), then F(x) has finite moments of all
orders.

3. Convergence of moments. In the remainder of this paper we shall assume
that (z.r) isa truncated system. If this isnot the case, the following results apply
to the system (x7x) previously discussed.

In view of Theorem 5a it is natural to consider the question of the convergence
of moments of the distribution function F,(x) of the random variable S, to the
moments of F(x). The principle result of this section is contained in the following
theorem.

THEOREM 6. If (z.) 7s a truncated system, and if F,(x) converges to F(x), then

lim f_ : & dFu(z) = [_ : & dF (@),

for every positive integer k.

The author first proved this theorem in the special case where F(z) was the
Poisson distribution (see Bull. Amer. Math. Soc., Vol. 61, Abstract No. 435)
and where k¥ = 2. This more general form was obtained at a later date (Bull.
Amer. Math. Soc., Vol. 62, Abstract No. 264).

The proof of Theorem 6 requires several lemmas which we state and prove
below.

Using the same notation as in section 2, according to the result of [2] we know
that

0

/ ¥ dF(z) < « @f 2 dG(z) < o,
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and assuming F(x) has finite moments of all orders that,
(3.1) x1 =7+ f wdG(u) and x = f W™+ ) dG(w),

where x, is the rth semi-invariant of F(zx). In particular letting x be the mean
and o° the variance of F(z), we see

(3.2) p=v+ [:udG(u) and o = Q(+x) + f_: u? dQ(u).

LemMa 1. Under the hypothesis of Theorem 6, lim, .« ¢°(S,) = o, where o (S,)
is the variance of S, and o® is the variance of F ().

Proof. Since F.(x) converges to F(z) by Theorem 1, page 112 of [1], we have
Gu(z) = D2 [P /(1 4+ ) dF(u + a1) — G(x) as n — o at all con-
tinuity points of G(x) and also G,(+ ©) — G(4 ), where am, = [z <r 2 dF (),
(7 > 0 an arbitrary positive constant). (Remark. By hypothesis P{|z..| > a} = 0
for some @ > 0. We may and do take 7 > a so that an = un = mean of 2 .
Hence in the remainder of the proof we assume a. = pu.) Now since
/1 + 2% = 2° — [2'/(Q + 20)], we see

kn 0
Gult =) = 2 [ o dFule + wad)
k=1 v—o0

(33) e
._Ic}:lf_ x4/(1+x2) dF”k(x+”nk)""’G(-|—oo) as n— o
Also,
© © n z u2
(3 4) [w z? dGn(z) = j;w xz d k;l [w m ank('U« + #nk)

kn )
= 3 [ 4 ) dFalu + ).
k=l Yy—o0

By Theorem 2a, G(z) is nonincreasing outside of some interval. Now since the
random variables are infinitesimal it follows that lim,.. maXi<i<k, loem| = O.
Thus since P{|z.| > a} = 0 for some @ > 0, we know that there exists an
A > 0 such that G(z) and G.(x) are nonincreasing forz < — 4 and z > A
(n=1,2,--:). Therefore by Helly’s convergence theorem

A ‘

0 A 0
k _ k k = k
65 [ 6@ = [ #da.w [ +a6@ = [ & 6@
asn — o, Letting ¥ = 2 and using (3.3) and (3.4) we see

kn o0 0
tim > [ & dFuiz + o) = G+) + [_a* d6().

n->o0 k=1

NOW Zn1, Tnz, *** , Tnk, are for each n independent random variables and since
Qnt = pnk , By virtue of (3.2) we see limn.,e 7 (8,) = o This proves Lemma, 1.
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Having obtained this result we can now prove that the means u, of F.(z)
approach the mean u of F(x).
LemMma 2. Under the hypothesis of Theorem 6,

un=f xdF,,(x)—»f 2dF(z) = p as n—

(z.e., Theorem 6 holds for k = 1.)

Proof. For the proof of this lemma we appeal to Theorem 2 of [1], page 100.
Since the random variables (z.) are infinitesimal and since maxi<i<k, |un| =
MaXi<k<k, || — 0 a8 n — o we see that the random variables (zne — k)
are also infinitesimal. This together with Lemma 1 shows that the hypothesis
of Theorem 2, page 100 of [1] is satisfied and hence we may conclude in par-
ticular that

kn ©
ﬂn=2f zdFu(z) >y as n— o,
k=1 Y—o0

where 4’ is the constant associated with Kolmogorov’s formula for the charac-
teristic function of the infinitely divisible distribution F(z). But the constant of
Kolmogorov’s formula is the mean of the distribution (i.e. ¥/ = w). This proves
Lemma 2.

Lemma 3. Under the hypothesis of Theorem 6

kn L)
Zf 2 dFu(x + par) — xrm — 0 88 1 — o,
'—00

k=1

r=2,3, -, where x,y = rth semi-invariant of S, .
Proof. We note that

kn )
Zf 2 dFu(® + par) — x> = 0 for r=2,3

k=1
and
kn 0
Z/ xank(x) - Xr@q) = 0.
k=1 V-0
Let

”’5‘1‘) = j: (x - ﬂn)r an(x)

and let p$% = [Zo 2" dF (x4 wm). Now since (z,;) is a truncated system, and

since maxXi<k<k, | nk | — 0 a8 n — © we see

max
1<kskn

= max
1<k<kn

A
f xr ank(x + ﬂnk)

—A

[ xr ank(x + ﬂnk)

for some A > 0. Now given 0 < ¢ < 1 we see

max
k

A €
[ & dF (@ + par) | < max f |z|" dFar(z + par)
A —€
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+mkaxf |z|" dFu(x + par) < € + A" max P{|z — pu| = ¢
k

esizl=4

and since (T.x — unx) are infinitesimal we see

(3.6) lim max f & dFui(x + par)

n»0 1<k<kn

=0’7‘=2,3,...

Also we see (for r = 2)
kn

ZIM(” =kZ)

[ z ank(x + Mnk)

kn A kn A
<>, f | 2 | dF (4 pu) < A2 [ 2* dFar(z + par)
k=1 v—4 k=1 A
= A"%*8,) > A % asn — ©

by Lemma 1. Hence

(3.7) E | o

is bounded in n for r = 2, 3 - - - . Let x,(Z) denote the rth semi-invariant of the
random variable Z and let u,’) denote the rth central moment of Z. For » > 3
we note

(3.8) x(2) = w + f0, - w?),

where f is a polynomial in p{™, - - , 12 each term of which is at least degree
2 (c.f. [1], page 66). Thus x,(zum) = w8 FWGD, - uD). Now if X and ¥
are independent random variables we note ([1], page 64) x,( X + Y) = x.(X) +
x-(Y). Hence since S, = Zn + -+ + Zu, is the sum of independent random
variables we see

(3.9) Xr(Sn) = Xr(n) = Z ﬂ(f) + {Zf( (T_l) s ", Ilf;zk) }-

The general term of the expression in braces may be written as T =
¢ 2oim JTi21 uls? where ¢ is a constant, 2 < s; < r, p = 2 and where s; = s;
does not imply ¢z = j. But

|T| £ ¢ maxy|pS | maxy | pl? | -« maxg | ps?™ | 2o | uad? |

Thus by (3.6) and (3.7) we see that T — 0 as n — . Since the number of terms
in f depends only on r this shows that the quantity in braces in (3.9) approaches
zero as n — o, This proves the Lemma.

Proof of Theorem 6. We note

S [P 2 APz + wm) = [Zo (@ 4+ 27)dGa(2),
where G.(z) = D&% [Z [W/(1 + ©*)] dFu(u + pm) as defined in Lemma 1.
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Now by (3.5)
tim [" o du@) = [ 2 a0k =0,1,2, -
and therefore for r = 2,
lim f_ : @7 + &) dG.(2) = f_ : @ + &) d6(z).

But [Z. (' 4 ") dG(z) is by (3.1) the rth semi-invariant of the infinitely
divisible distribution F(x). Thus (for r > 1)

kn L)
(3.10) lim Y, f 2 dF i (x + par) = x» = rth semi-invariant of F(z).

n->0 k=1
Using (3.10) and Lemma 3 we obtain
(3.11) limgs,, Xr() = Xr ,

that is the rth semi-invariant of F,(x) approaches the rth semi-invariant of
F(x) asn — . Let u® = [2_ (x — p)*dF(z). By Lemmas 1 and 2 we have

2) @ 3) 3 4) 2)\2

o > n [ B8y 0. Now xa = p , X5 = we 3 xa = p® — 3(®),

Xamy = wo) 3(u?)* and in general as indicated in (3.8) x» = u®
—1 2. . . —1 2

+ ("™, -+, u®), wheref is a polynomial and xrm = uy” + fluyy >, -+ -, u$).

Using (3.11) and an induction argument we see lim,.. ui” = ™, (r = 2) and
this together with Lemma 2 completes the proof of Theorem 6.
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