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1. Summary. In the first part of this note, we study functions of characteristic
functions which are themselves characteristic functions and discuss also a prop-
erty of analytic characteristic functions. In the second part, an example is con-
structed to answer a question raised by D. Dugué [3].

2. Functions of characteristic functions. Let F(z) be a distribution function,
that is, a never-decreasing function which is continuous to the right and is such
that F(— ) = 0 while F(4 «) = 1. Its Fourier transform

1) 80 = [ & ar@

is called the characteristic function of the distribution F(x). Characteristic func-
tions are very important in probability theory, and in the following discussion
we shall use some of their well-known properties which may be found in books
[1], [5] on the subject. We first derive a theorem which shows how given charac-
teristic functions may be transformed into new characteristic functions.

TaEOREM 1. Let {¢,(t)} be an arbitrary sequence of characteristic functions and
{a,} be a sequence of real numbers. The necessary and sufficient condition that

@) 0 = ; ay (1)

should be a characteristic function for every sequence {¢,(t)} of characteristic func-
tions s that

(3) =0, 2a =1

We first show that the condition is sufficient. Let m (m = 0) be a subscript
such that a. is the first non-vanishing element of the sequence {a,}. We denote

by

ga(t) = [g a, %(t)]/[ﬂfb av:l forn =0,1,2,---.

v=0

If (3) is satisfied, then ¢,(¢) is a linear combination of a finite number of charac-
teristic functions. The coefficients in this linear combination are non-negative
and their sum is one; therefore g,(¢) is also a characteristic function. We see
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then from P. Lévy’s continuity theorem that f(£) = lima,.« g.() is also a charac-
teristic function.

To prove the necessity of the condition, we assume that f(¢) as given by (2)
is a characteristic function for any sequence ¢,(f) of characteristic functions.
Let ¢,(t) = €™; then f(t) = D v a,e’™. This is the Fourier transform of a step
function with jumps a, at the pointsv = 0, 1, 2, - - - . Since f(¢) is by assumption
a characteristic function, this step function must be a discrete probability
distribution; therefore @, = 0, > a, = 1, so that Theorem 1 is established.

An application of some interest is obtained by putting ¢.(f) = n % =
exp [—it(Inn)]and a, = n°/ D 1 n ", where o > 1.It follows then from Theorem 1
that the function f(t) = ¢(¢ + it)/¢(s) is a characteristic function for ¢ > 1.
Here {(s) = D m-1n " is Riemann’s zeta function and s = o + it, with o, t real
and ¢ > 1.

This result was already obtained in a different manner by B. V. Gnedenko
and A. N. Kolmogorov ([7], p. 75) who showed that {(¢ + ¢t)/¢(¢) is the charac-
teristic function of an infinitely divisible distribution.

Next, we let ¢(t) be an arbitrary characteristic function and put ¢,(t) = [#(¢)],
v=20,12 ---.We obtain then

CoroLLARY TO THEOREM 1. Let ¢(t) be a characteristic function and let G(z)
be a function of the complex variable z, which is regular in |2| < R where R > 1.
The function Glo(t)] is also a characteristic function if, and only if, G(z) has a
power-series expansion about the origin with non-negative coefficients and if
G1) = 1.

It is worth while to remark that the class of functions G(z) which have the
property that G[¢(¢)] is a characteristic function whenever ¢(¢) is a characteristic
function includes also functions which are not analytic. An example is the func-
tion G(z) = |z[°. The restriction in the corollary that G(z) should be regular is
therefore somewhat artificial.

Derinirion. A distribution is said to be infinitely divisible if for every positive
integer n its characteristic function is the nth power of some characteristic
function.

By means of the corollary to Theorem 1 we obtain the following result.

THEOREM 2. Let ¢(t) be an arbitrary characteristic function and p a real number

such that p > 1; then

_ p—-1
4) () = P

18 the characteristic function of an infinilely divisible law.
To prove Theorem 2 we let n be a positive integer and consider the function

Here it is understood that G(z) is the principal value of the power on the right-
hand side. Clearly
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oo 2] [ - 5 -]

We expand G(z) according to the binomial theorem and see that

_[p=17" S () +20) - (1+F—1n) 4
G(Z)"[ P ] {1+£§ ) -

This shows that for any positive integer n the conditions of the corollary are
satisfied. The function Glp(t)] = {[p — 1]/[p — ¢(£)]}"/"is therefore a characteris-
tic function for any positive integer n; in other words, ¥(t), as given by (4), is the
characteristic function of an infinitely divisible law.

In a similar manner we derive from the corollary to Theorem 1 a theorem
which is due to Bruno de Finetti [4].

THEOREM OF DE FINETTI. If ¢(t) is an arbitrary characteristic function, and if
p is a positive real number, then Y(t) = exp {plp(t) — 11} is the characteristic
Sfunction of an infinitely divisible law.

The function G(z) = ¢** satisfies the assumptions of the corollary, so that
we see immediately that ¢(¢) is a characteristic function for any p > 0. It follows
then from its functional form that it must be the characteristic function of an
infinitely divisible law.

3. A remark concerning analytic characteristic functions. A characteristic
function is said to be an analytic characteristic function if it is an analytic func-
tion which coincides in some neighborhood of the origin with a characteristic
function.

In an earlier paper [6] the following result was obtained:

TurOREM 4 of [6]. Let ¢(1) be the characteristic function of an infinitely divisible
low and assume that ¢(t) is an analytic characteristic function. Then ¢(t) has no
zeros inside its sirip of convergence.

In the following we show that this statement cannot be improved. This is
done by constructing an analytic characteristic function of an infinitely divisible
law which has zeros on the boundary of its strip of convergence.

Let a > 0, b > 0 be two real numbers and put w = a + ¢b; the function

_ (1 = at/w)(1 — dit/w)
is then a characteristic function. This.is seen immediately if we write ¢(¢) =
p+ (1 — p)(A — dt/a)™*, where p = a’/(a’® + b*). We define

(68) m =9 f (1 — cos bx) iz
0 for z < 0
(6b) M(z) = »
—2f e (1 — cos )t dt for z > 0.

The function M (z) is real and non-decreasing in (— «, 0) and in (0, o). More-
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over, M(— =) = M(4 ) = 0; and the integral [ «’ dM (u) is finite over every
finite interval. According to P. Lévy’s representation theorem ([5] p. 180), the
function

_ . ® itr _ _ 1t$
€ Y(t) = mit + f_ ) <e 1 s x2> dM (x)
is the logarithm of the characteristic function of an infinitely divisible law. We
write

R it _ dx
[ — itx _ 1 _ 7 > -ax _ haind
®) . Ke T a)¢ (1 — cos bx) ~
and obtain ¢(t) = mix + 2I(¢).
It is easily seen that it is permissible to differentiate /(t) under the integral
sign. A simple computation gives

o) = 2 i/a T/w /W

IT—dtla T—d/w 1—a/m

Considering 7(0) = 0, we see that ¥(t) = log ¢(¢), where ¢(¢) is given by (5).

We finally remark that it is possible to use Theorem 2 to construct character-
istic functions of infinitely divisible laws which have zeros arbitrarily close to
the boundary of the strip of convergence. As an example we mention ¥() =
(p — 1)/[p — ¢@)], where ¢(t) = (1 — it/a)”". The function ¥(¢) then has
the zero f{, = —ia, and the boundary of its region of convergence is the line
Im (¢) = —a(p — 1)/p. By selecting p large enough, the distance between
the boundary and ¢ can be made arbitrarily small.

4. A question raised by D. Dugué. In this section we are concerned with certain
factorizations of non-infinitely divisible laws. The uniform (rectangular) distribu-
tion has the characteristic function (sin ¢)/¢; it is not infinitely divisible, since
it has real zeros. It is well known that it has the factor sin (t/n)/(¢/n) for every
positive integer n. The uniform distribution is therefore an example of a law
which is not infinitely divisible but has an enumerable infinity of different factors.
These factors, with characteristic function sin (¢/n)/({/n), depend on a discrete
parameter n.

In a recent paper [3], D. Dugué raised the question of whether there exists a
law which is not infinitely divisible but has a non-enumerable set of factors
depending on a continuous parameter. As an example for such a distribution
Dugué uses the Laplace distribution. This example is, however, invalid, since
the Laplace distribution is infinitely divisible. The purpose of this section is to
answer Dugué’s question in the affirmative by giving an example of a probability
law with the desired properties. This example will be a rational characteristic
function; for its construction we use the following lemma.
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LemMA 1. Let

©) o(t) =

-00-00 -5

wherev = a + b, w = a+ 18, and a > 0,0 > 0, « > 0, 8 > 0. The function
o(t) 1s a characteristic function if, and only if, one of the following two, mutually
exclusive, conditions holds:

i) 8 = VF=(at o) 2 V3 +a)
(i) B8 # VB — (a + ) and simultaneously 8° = (a + «)* + b*/2.

Proor. We denote by
— 1 °° — itz -
1@ =5 [ s a

and obtain by a simple computation

2 2
¢ — b

Ce_“{l—[ 5 ]cosbx—ggiisinbx} if z > 0;
(10) f(z) = ¢ ¢

0 otherwise.

Here
d=a+q,
(108) ¢=(a+of +6=2d+¢,
wwb?

The function f(z) is real and [Z, f(x) dz = 1. Therefore we conclude that the
function ¢(¢) is a characteristic function if, and only if, the trigonometric poly-
nomial

(11) M@=1—F;#

:| cos bx — @sin bz
¢

is nonnegative.

We assume first that ¢ = b° or, copsidering (10a), that g = b* — (¢ + )%
Then h(z) = 1 — 2d/b sin bz and h(z) = 0 if, and only if, 2d/b < 1. It is seen
by simple algebra that this is equivalent to condition (i). We suppose next that
¢’ # b’ and determine by elementary considerations the smallest value of h(z),
which is

| — Y 1

min hz) =1 — - . ,
—w <zt c cos bz
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where —7/2b < 2 < + w/2b and tan bay, = 2bd/(¢’ — b%). The function
h(z) is therefore non-negative if, and only if, 1 = | — b%|/(c cos bay). This
condition leads easily to (ii), so that the lemma is established.

We use this lemma, together with the theorem quoted at the beginning of
Section 3, to construct a characteristic function with the desired properties.

Let a, o1, @z, B1, B2, b be arbitrary positive numbers such that a; > oy and
also

(12) B> mx|F - G+a)s @tal+d]  G=12.

We define v = @ + b, wy = oy + 161, and wy, = a, + 98: . The functions
(142 (1 +2
Wj w;
(1--90-5)
a v b

are then characteristic functions, since they satisfy condition (ii) of the pre-

ceding lemma. Therefore
<1+; <1+")(1+ (1+i_i
Wy

(-D)6-T6-5

is also a characteristic function. It is also known that

oo =[(+ D0+ DB

is a characteristic function; we conclude then that this is also true for ¢(f) =
$u(t)s(?); 1.e.,
(1 + ?‘—) (1 + 3_‘—)
W

R

The function ¢(¢) is an analytic characteristic function which has the strip
az > I(t) > —a as its strip of convergence. Its zeros 1w, and 7w, are located
inside this strip, so that ¢(t) cannot be the function of an infinitely divisible law.
Similarly, ¢s(t) is not infinitely divisible, since its strip of convergence is the half
plane I(¢) > —a in which it has four zeros. We have, therefore, an example of a
law ¢(¢), which is not infinitely divisible and which has, nevertheless, a non-
enumerable infinity of not infinitely divisible factors ¢s(¢). These factors depend
on a continuous parameter 3, , which is subject only to the restriction (12).

¢i(t) = (G=12)

(13) () = $1()ge(t) =

(14) $(t) =



CHARACTERISTIC FUNCTIONS 723

REFERENCES

[1] H. CramER, Mathematical Methods of Statistics, Princeton University Press, Princeton,
N. J., 1946.

[2] H. CraMER, “On the factorization of certain probability distributions,” Ark. Mat.,
Vol. 1 (1949), pp. 61-65.

[3] D. Ducus, ‘‘Sur certains exemples de décompositions en arithmétique des lois de prob-
abilité,” Ann. Inst. H. Poincaré, Vol. 12 (1951), pp. 159-169.

[4) B. pe FINETTI, ‘‘Le funzioni caratteristiche di legge instantanea,”’ Rend. Accad. Linces,
Ser. 6, Vol. 12 (1930), pp. 278-282.

[5] P. Lvy, Théorie de I’Addition des Variables Aléatoires, Gauthier-Villars & Cie, Paris,
1937.

[6] E. Lukacs anp O. Sz4sz, “Analytic characteristic functions,” Pacific J. Math., Vol. 2
(1952), pp. 615-625.

[7] B. V. GnEDpENEO AND A. N. KoLmoGgorov, Limit Distributions for Sums of Independent
Random Variables (trans. by K. L. Chung), Addison Wesley Publishing Co.,
Cambridge, Mass., 1954.



