THE MEAN AND VARIANCE OF THE MAXIMUM OF THE
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INDEPENDENT NORMAL VARIATES
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1. Introduction. In planning the storage capacity of a reservoir it is desirable
to avoid in so far as is practicable both the loss of water that occurs if the res-
ervoir overflows and the harm that is done if the reservoir is empty when water
is needed. Hurst [1] on the basis of data from a long series of annual totals of
river discharges has discussed the relation between the capacity, the inflow and
its variability, and the draft from a reservoir. In the present paper the theoreti-
cal analysis of the problem as studied by Anis and Lloyd is carried further.

If, for a period of n years, the annual increment of inflow minus draft is repre-
sented by the variable X; (z = 1, ---, n) and the partial sums of these incre-
ments by S, = ZLI X:(r=1,---,n), then the maximum U, over the n-year
period of these S, is the maximum accumulated storage when there is no deficit,
their minimum L, gives the maximum accumulated deficit when there is no
storage, and their range R, = U, — L, gives the capacity necessary to avoid
the two difficulties mentioned above. Anis and Lloyd [3] have studied the dis-
tribution of U, and R, for the idealized case in which the X, are taken as in-
dependent standard normal variables and have shown that, for any n = 2, the
expected value of the maximum is (27)?> si's™™® and hence that the
asymptotic value of the mean range, which is twice that of the maximum,
agrees with the value 2[(2/7)n]"? obtained by Feller [2]. Furthermore Anis [4]
has shown the second moment about the origin of the maximum to be

n—1 8—1
nt 1 LSS i —

2 27 §=2 t=1

and has obtained [5] a recurrence relation for computing moments of higher
order by means of which. he has tabulated the values of the first four moments
forn =23, ---,15.

However, from both the engineering and the statistical point of view it is
sometimes desirable to separate the effect of inflow and draft, since the latter
may be controlled in such a way that the former is the decisive random vari-
able. In his paper Hurst considered the effect that would have been obtained
by a rule of release which made the annual draft equal to the mean annual in-
flow for the n-year period, X, = (1/n)2 im X:, so that the accumulation
after r years became the adjusted partial sum S; = Y i X; — 7X, . For these
adjusted partial sums Hurst and Feller both obtained [(r/2)n]"* for the asymp-
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ADJUSTED PARTIAL SUMS 707

totic mean range." Statistically the study of these adjusted partial sums is ad-
vantageous because, since they are distributed about zero provided merely the
individual X; are distributed about a common though not necessarily zero
mean, there is now no loss of generality in taking that common mean to be
zero.

In this paper we obtain, for the case in which the X; are independent normal
variates with a common mean and unit variance, the distribution of the maxi-
mum of the adjusted partial sums and find, for any n = 2, the first and second
moments about the origin to be

i = 24/ 28 o

oy 1 =1 /&R s(2s — n) }
pln) = 5{ B & Ve =

with the asymptotic values 3[(x/2)n]"* and (n/2) — n'* respectively. Since
the distribution of the minimum of the adjusted partial sums is, as in the case
of the unadjusted sums, that of minus the maximum, the mean range is twice
the mean of the maximum so that our asymptotic value is seen to agree with
that obtained by Feller and Hurst.

2. Distribution of the maximum of the adjusted partial sums. In addition to
the notation already introduced in Section 1, we shall use throughout ¢(z) to
denote the probability dens1ty function of a standard normal variate, i.e.,
#(x) = (2r)™"* exp (—2%/2). In this connection it should be noted that in ac-
cordance with the remarks above, our results will be valid if the annual incre-
ments are independent and normally distributed about a common mean with
unit Varlance since reduction to the standard normal variates X; will not affect
the S; .

We shall also use P,.(u) and p,(u) to denote respectively the distribution
function and the density function of the maximum over r, U, , of the adjusted
partlal sums S; . Since by definition S, is zero, we consider the n — 1 sums
S, (r =1, ,n — 1) and let their maximum be V, so that U, = Max [V, 0].
Then P,.(u) Pr{U',, < u} = 0foru < 0 and P,(w) = Pr{V, < u} foru = 0,
so that P.(u) has a saltus at » = 0 and p,(u) is not defined there. For u < 0,
Pa(u) = 0 and for u > 0, p,(u) = dP.(u)/du.

For any n = 2 ,

(1) P.(u) = f (n) f (2m) ™" exp (—1ix'x) de, (w = 0),

1=1

! However, the values of the range of these adjusted partial sums observed by Hurst
appeared to be more nearly proportional to n-73. For this reason the authors of this paper
thought the exact formula for the mean range of these adjusted partial sums as a function
of n would be of interest.
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where the region of integration K is defined by

K: > Xi—rXa<u r=1---,m—=1)
7=l
and x is the n-dimensional vector of the observations Xy, ---, X, . We intro-
duce the transformation
(2) X = By,
where B is the n X n matrix given by
1 00 1
-1 10 1
B = 0 -1 1 1
0 00 -1

It is easy to see that the Jacobian J, of the transformation (2) is given by the
recurrence relation

Jn=1+Jn—1

and hence that J, = n. Now x'x = yB’'By = y’C y where C is the n X n ma-
trix given by

2 -1 0 0

.............................

0 0 0 o --- 0

Hence x'x = yCy = ny2 + YAY, where A is the (n — 1) X (n — 1) matrix
obtained from C by omitting the last column and the last row and Y is the
(n — 1)-dimensional vector y;, ¥z, * ** , Y1 . Reverting to (1) and (2), we see
that ¥, = X., % = S, (r = 1, ---, n — 1) and hence P,(u) can be put in the
form

@ Pw=vi[ a-1[ @ ep(—3van Tl an.

S

It is worth noting here that the integrand‘in (3) is, except for a constant factor,
precisely the integrand in expression (6.1) in Anis and Lloyd [3]. Using the value
obtained there for that integral, we deduce immediately that

@ P.(0) = ;L

Differentiating (3) by using the rule for differentiation of multiple integrals
when the integrand does not contain the variable with respect to which we



ADJUSTED PARTIAL SUMS 709

differentiate but the limits of integration do, which is justifiable since our in-
tegrand is a well behaved function, we obtain immediately

) n—2
(5 Pa(u) = VV/2mn Z% () hn—ss(u) (n 2 2),
where h,(u) is the integral defined by Anis and Lloyd [3];i. e.,for s > 1
ha(w)
= fo (s) - fo d(u — y)o(yr — ¥2) +++ dWomr — Yo)d(ys) dy1 - -+ dys
and

ho(uw) = ¢(w).

Since the probability density functions for the maximums of the unadjusted
partial sums are expressible (Anis and Lloyd [3]) as a linear combination of these
integrals h(u), it is now possible to express p,(u) in terms of those probability
density functions. However, it proves more convenient to obtain the moments
of the distribution (5) directly from the properties of the integrals h,(u).

3. Properties of the integrals h,(u).
LEMMa 1.

) hi(0) = (2m) (s + 1) (s 2 0).

This was proved by Anis and Lloyd [3], since h,(0) = (27)"'**?"4¢, in their
notation, and is repeated here merely for completeness.
Lemma 2.

8) ho() =0 (s = 0).
To prove this we note that, by virtue of its definition (6) as an integral, A,(u)
is non-negative for all values of «. Hence the probability density functions p,(u)
are from (5) the sum of non-negative terms A (u)h,—.(u) for all n and s. Since
pa( ) is zero, no one of these terms and so no k(u) can differ from zero at
infinity.
Lemma 3. Fors = 1

@ ) = [ ol — Phoil) dy,
(10) ho(u) = /0 i o(u — Yyhe(y) dy — whs(w)

= ‘/ow ¢(’u, b y)h;_l(y) dy + hs—l(o)d)(u)y
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(11) he (u) = fo o — PY’hr(y) dy — 2uhe(u) — (@ + 1ha(u)

= fo i o(u — Yyhea(y) dy — uhe(w)

I

[0 = h2a) dy + ha(09' @) + 00,

To prove this lemma we note that the reduction formula (9) for h.(u) itself
follows immediately from the definition (6) of h,(x). The reduction formulae
(10) and (11) for the derivatives then follow by differentiation of (9) with some
rearranging and integration by parts.

Lemma 4. Fors = 1

(12) 1O = [ W) dy 4
(13)  R(0) = fo " Y hea(®) dy = ho(Ohs(0) + [0 " ha()ha(v) dy,
(19 KO = [ yh@hes) dy = k0 = [ sho@)ias) dy

= MR + [ " he)h () dy.

These results follow immediately on putting ¥ = 0 in the reduction formulae
of Lemma 3.

4. Moments of the distribution of the maximum of the adjusted partial sums.
In this paragraph for simplicity of notation we shall omit the limits of integra-
tion which will be from zero to infinity throughout and write h, only wherever
we mean this function to be evaluated at zero. Furthermore we shall consider
the distribution

Prsalt) = V/Iw T D) 2 h(w)hs) (n 2 0.
For this distribution we write the rth moment about the origin
pe(n + 2) = f U Para(u) du (rz0)
in the form
(15) W+ 2) = VI T D 3 Lnlo)
where
(16) Lni(s) = f W hs(U)hn—s() du (0=s=n).

For I, ,0(s) we obtain on applying reduction formula (9)
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Lo = [ husha(w) du = [ o) [ @ — Dl dy du (52 1)
and, reversing the order of integration and using (9) again,

Lo(s) = f he—1(y) f ¢(u — Yhao(u) dudy

= [ hes@haess®) dy = Tnols — 1 1=s=n).
Hence, using (12) and (7),
La(®) = Tnol®) = [ h)haly) dy

(17)
= Rppr = @m)(n + 2)7 0 =s=n,n=0).

Substituting this result into (15) and noting (4), we obtain

n+1__1
n+2

for the zero order moment, as is to be expected when one recalls that P,(u) is
zero for u < 0 and has a saltus at v = 0.

For I,.(s) we proceed in the same manner but after reversing the order of
integration we apply the first of the two reduction formulae (10) for the deriva-
tive to obtain

(18) Ia(8) — Ina(s — 1) = Ja(s — 1) (1=s=n),

poln + 2) =

— P42(0)

where
748) = [ b i) du 0sssn.

Similarly we obtain a difference equation for J.(s) by applying the reduction
formula (9) to hs(u) in the integrand of J,(s), reversing the order of integra-
tion, applying the second form of formula (10) to An_,(x), and simplifying the
result by using (12). The resulting difference equation is

Jn(8) — Juls — 1) = —hh,., 1=s=n)

which when summed over s gives
2
Jn(t) = Jn(O) - Z hohns (1 =t=s n).
8=l
By Lemma 4 J(0) = I,1(0) — hoha S0 we may write

(19) J,.(S) = n,l(O) - vz-’-o hohns (0 =

IA
@

lIA
&
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Returning to (18) we substitute (19) for J,(s) and sum this difference equation
for I,,1(s) over s from 1 to ¢, reversing the order of summation to obtain

t—1
(20) Lia® = ¢+ DLa0) = 2 ¢ = dhbey (1St =)
We note that this expression is also valid for ¢ = 0 if we write the range of

summation for » from 0 to ¢. Since I, 1(s) = I.i(n — s) by definition (16), we
have upon putting ¢ = n in this extended form of (20)

In,l(O) = (n + I)In,l(o) - g (n - v)hvhn-—v-

But
th By = Z (n — V)hyhoy = nZh,, Py — th P,
v=0 v==0 v=0
hence
Z (n - v)hvhn—v = 7"7, Z v n—v
v=0 2 =0
and
(21) nl(O) =z Z h hn—v

21}—

Substituting (21) into the extended form of (20) and summing over ¢, we have
after reversing the order of summation

;::01,.,1(0
=(n+1)(n+2)2":hh _z":(n—v)(n—-v+1)hh

v Ton—y v 'Yn—v
4: v=0 »=0 2

(n = 0).

In this last expression we note that the coefficient of hh,—, is

g+ D +2) m—vh—-—v+1) ov0+1)
4 2 2

=@w+Dn—-v+1) (0=v=n)

so that, using Lemma 1, we may write

3 La) = 33 s+ Dl — 5+ Dhh
8=0 8=0

n+41

4—1— S s —s42)7 (n = 0).

T s=1

Substituting this into (15) we obtain
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’ 1 n -+ 2 & _1/2 —1/2
(22) m +2) =5 o ;s (n+2—s) (n = 0)

for the first moment of the maximum and, hence, twice this value for the mean
range of the adjusted partial sums.

For I,,,5(s) the method is similar though more tedious. Applying (9) to A,(u)
in the integrand of I, (s), reversing the order of integration, and applying the
first form of (11) to the inner integral we have

(23) Iis(s) = Ing(s — 1) + Ka(s — 1) + 2La(s — 1)
+ Iao(s—1) (1 =s=n),

where

Enls) = [ hChl-u(u) du,
(0 = s =n).
Lo = [ uh b ) du

We obtain, in the same way as was done for J,.(s) [but using the second and

third forms of (11)] difference equations for L,(s) and K,(s) respectively
Ln(s) — La(s — 1) = Ku(s — 1), )
) = Lo = 1) = Koa = 1), Gsesm
K.(s) — Ku(s — 1) = hushs — hohn_s

Using Lemma 4 to evaluate L.(0) and K.(0), we find the solutions of these
equations to be, for 0 < s < n,

La(s) = (s + DII,,2(0) — I.0(0)] + Z_: (s = V)[hn—s by — hyhn_y),

Kn(s) = n,Z(O) - In.O(O) + ZO [hn—v h1,1 - hv h:r.—v]-

Substituting these expressions into (23) we have after summing over s and
rearranging

L.o(t) = (t 4 1)°1,2(0) — t(t + 1)1,,0(0)
- + Z (¢ = 0)haskl — k] (0=t <)

=0

Since I,,2(s) = In2(n — 8), we now evaluate I,2(0) as before obtaining

_n+1 1 & r_ ’
In.Z(O) = m In.O(O) + m z; V[n— ho ho hn—v],

after we have observed that, as for I,:(0), the summations involved satisfy
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certain identities, in particular

E (n - v)z[hn—v h:) — hy h;—v] = —n Z v[hn_u h; - hv h;_,,].
=0

=0

Substituting the expression for I,2(0) into (24) and summing over ¢, we have

3 Lty = X DEED 1 ) + 13 [+ D20+ 30

t=0

+ =0 —v+1)@n -2+ D] [hashy — hyho_,]

=@ DO 10 + 130+ DE -0+ D@ - whe

By (13) hy, = I,_;14(0) so that, using (7), (17) and (21), we may write

zo In,2(s)
1 [(n + D(n + 3) 1 e s@2s —n—2)
TBLV2rin+2°8 T @ S ANV + 2 — 9B — 0

provided we interpret the summation as zero when n = 0. Hence from (15)
the second moment of the maximum is

] @zo

W+ 2) =§

(25) S
.l:(n+1)(n+3)+\/n+2"“’"1 s2s —n— 2) ] =0
n+ 2 2r SV + 2 — 9B — ® =
A table of values of u1, us and ¢ for samples of size 10, 20, - - - , 150, was com-

puted from formulae (22) and (25), (see Table 1).

6. Asymptotic values for the first and second moments. Feller [2] has con-
sidered the asymptotic distribution of the adjusted range for large n and found
the asymptotic value of the mean adjusted range to be [(x/2)n]"%. That this is
in agreement with our result can be seen by approximating to the sum in our
formula (22)

1 KR -
pi(n) = 3 ,‘/% > s — s)

8=l

by the integral

n—1
f sm — )™V gs.
1
On making the substitution n6 = s, this integral becomes

1-1/n
fl 0721 — 6)™** g8,

In
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which approaches B(3, ) = 7 as n becomes large. Thus the asymptotic value
for the mean of the maximum of the adjusted partial sums is

(26) pa(n) ~ 4/ 2 = 062670

and the asymptotic mean range is [(r/2)n]"? as obtained by Hurst and Feller.

Similarly we obtain the asymptotic value of the second moment of the maxi-
mum from our formula (25)

/()_1[n2—1+ n "t 8(2s — n) :I
B LT T 2r S E V- 986 — if
by approximating to the double sum by the double integral

n—1 828 — n)
I'= f t=1 \/(n — (s — B? dt ds.

Integrating first with respect to ¢ by means of the substitution ¢ = (sz)™, we
have
=l (25 — n)(s— 2)

=1
I=%), Vo-se-n%~=

—1[ s—1 n—s 3 n 2n :ld
/‘/n-s /‘/s-l Vo—96—-D " sVn-96-1D]*

Applying the substitution s = 7n sin®0 4 cos’d to the first three terms and the
substitution s = 2n[n + 1 + (n — 1)sin 6] to the last term of this integrand,

TABLE 1
Values of u1(n), uz(n), o. and the asymptotic approximations for
pi(n) and o,

Exact values Asymptotic approximation

n

ul(n) g(n) on B ~ 06267 nt/2 | o, ~ 0.3276 n1/2

10 1.3948 3.019 1.0358 1.9817 1.0359
20 2.2178 7.068 1.4660 2.8025 1.4649
30 2.8483 11.336 1.7952 3.4323 1.7942
40 3.3796 15.718 2.0726 3.9633 2.0717
50 3.8477 20.173 2.3170 4.4311 2.3162
60 4.2707 24.680 2.5378 4.8541 2.5373
70 4.6597 29.226 2.7409 5.2430 2.7406
80 5.0218 33.803 2.9298 5.6050 2.9298
90 5.3619 38.405 3.1072 5.9450 3.1076
100 5.6835 43.028 3.2749 6.2666 3.2757
110 5.9894 47.667 3.4342 6.5724 3.4356
120 6.2817 52.322 3.5863 6.8647 3.5883
130 6.5620 56.989 3.7321 7.1450 3.7349
140 6.8318 61.667 3.8721 7.4147 3.8758
150 7.0920 66.351 4.0067 7.6749 4.0118
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we obtain

I = —24sin™ (1 -2 )
n—1

" 2 ) 1
+ 8‘\/’7& sin [1 - m:l - 8'\/;1, Sin <'I_I,—:—i>,

which approaches —12x + 4w+/n for large n. Thus the asymptotic value for
the second moment about the origin is

pa(n) Ng - Vn

and, using the asymptotic value obtained for ui(n) in (26), we find the asymp-
totic value of the variance of the maximum of the adjusted partial sums is

7 o~ (% - g) n = 0.1073n.

Comparing this asymptotic value with that obtained by Anis [4] for the
variance of the maximum of the unadjusted sums which was [1 — (2/7)ln =
0.3634n, we see that Feller’s comment on the greater stability of the adjusted
partial sums is well borne out by our results.

In Table 1 we note that:

1) the series for u;(n) converges very slowly so that the asymptotic ap-
proximation (26) should not be used for values of » within the range
of this table,

2) the series for uz(n) converges even more slowly, but

3) the asymptotic approximation (27) gives very good values for o, even
within the range of the table because the errors in the approximations
to u1(n) and ps(n) are in the same direction and largely cancel.
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