IDEMPOTENT MATRICES AND QUADRATIC FORMS IN
THE GENERAL LINEAR HYPOTHESIS

By FRANKLIN A. GRAYBILL AND GEORGE MARSAGLIA

Oklahoma A. and M. College

1. Introduction. The important role that idempotent matrices play in the
general linear hypothesis theory has long been recognized ([1], [2]), but their
usefulness seems not to have been fully exploited. The purpose of this paper is
to state and prove some theorems about idempotent matrices and to point out
how they might be used to advantage in linear hypothesis theory.

2. Notation and Definitions. Throughout this paper an idempotent matrix
will mean a symmetric matrix A such that A4 = A (for the sake of brevity we
will use the word idempotent matrix to indicate a symmetric idempotent matrix
unless specifically stated otherwise). The theorems will not necessarily hold
for nonsymmetric idempotent matrices. The statement: Y is distributed as
Np(u,V), will mean thata (p X 1) random vector ¥ has the p-variate normal dis-
tribution whose mean is the (p X 1) vector, u, and whose covariance matrix is
the positive definite symmetric matrix, V. The statement: u is distributed as x°(n)
will mean that a scalar random variable u has the Chi-square distribution with »
degrees of freedom, and the statement: v is distributed as x’*(n, \) will mean
that the scalar random variable v is distributed as the noncentral Chi-square dis-
tribution with n degrees of freedom and with noncentrality, A. The frequency
function of v is ([3])

1) = E"

-—)\)\i vn+2i—2/2e—(v/2)

< g
! Qrt2if2 (n + 27,') ’ 0=v< e
2
If A = 0, then the noncentral Chi-square distribution degenerates into the cen-
tral Chi-square distribution.

A’ will indicate the transpose of the matrix 4, and 4™ will indicate the in-
verse. I, will indicate the (p X p) identity matrix and ¢ will indicate a null
matrix. Below is a list of well-known theorems which will be needed in the suc-
ceeding sections.

TuroreM A. If A is an (n X n) symmetric matrix of rank p, then a necessary
and sufficient condition that A is idempotent is that each of p of the characteristic
roots of A s equal to unity and the remaining (n — p) characteristic roots are equal
to zero.

TurorEM B. If A s an idempotent matriz, then the rank of A equals the trace
of A.

TuareoreM C. The only nonsingular idempotent matriz is the identity matrix.

TueorEM D. If A is an (n X n) idempotent mairiz of rank p such that p < n
(p = n), then A is a positive semidefinite matriz (positive definite matrix).
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TueoreMm E. If A ¢s an idempotent matriz whose ith diagonal element is equal
to zero, then every element in the 1th row and ith column of A is equal to zero.

TueorEM F. If Y s distributed as N.(u, I,), then v = Y'Y 4s distributed as
x"*(n, \), where A = u’p.

THEOREM G. In Theorem F, the moment generating function of v is

mo(0) = (1 — 20)—n/26—)\+)\(1—20)—1.

TueoreM H. If Y s distributed as N ,(u, I..), then a necessary and sufficient con-

dition that Y'B,Y, Y'B,Y, --- | Y'B,Y be jointly independent is that B;B; = ¢
for all © # j.
TurorEM J. If By, By, -+, By are a set of (n X n) symmetric matrices, then a

necessary and sufficient condition that there exists an orthogonal matrix, P, such
that P'B\P, P'B,P, ---, P'B,P are each diagonal is that B;B; = B;B; for all ¢
and j. .

TuroreM K. Let By, B, , - -+, B,, be a collection of (n X n) symmetric matrices
such that Z'i":l B; = I, . Then any one of the conditions X, , Ko, K; 7s necessary
and sufficient for the remaining two.

K, : Each B; is an idempotent matrix.

K, : B:Bj = ¢ forall 1 # j.

K; : D71 ni = n where n; is the rank of B; .

TuroreM L. If v is distributed as x"*(n, \) and w is distributed as x°(m), and if
v and w are independent, then w = (v/w) - (m/n) is distributed as F'(n, m, \) where
F'(n, m, \) refers to the noncentral F distribution with n degrees of freedom for
numerator and m degrees of freedom for the denominator and noncentrality, \. The

functional form s
(n )nﬂ ui+(n/2)—1
£ )’ 1 ] " +(n+m)/2 *
im0 ! F@Pn—l-%) m, 1+Llu
2 2 m

This reduces to Snedecor’s F' if and only if A = 0.

3. Theory. Let an observation vector, Y, be distributed as N,(XB, o21,),
where X is an (n X p) (p < n) matrix with known elements and rank p, 8 is a
(p X 1) vector of unknown parameters, and ¢” is an unknown scalar. Y is often
assumed to have this structure in models which are referred to as multiple re-
gression models and in linear models used in the theory of experimental designs.
In these models it is often desired to test hypotheses about elements of the vector
8. The technique often employed to devise test functions is the technique of
analysis of variance. The procedure is to partition the total sum of squares Y'Y
of the observation vector, ¥, into quadratic forms such that

k
(1) Y'Y = D Y'A; Y
=1
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and use Cochran’s theorem ([5]) to ascertain the independence and distribution
of the quantities Y’A;Y. This process is quite well known and will not be ex-
plained here except to say that to use Cochran’s theorem it is necessary to be
able to judge the rank of the matrices 4, . It has been pointed out ([2]) that in
certain cases, finding the rank of the matrices 4, and using Cochran’s theorem
is equivalent to showing that 4;4; = ¢ for all ¢ # j, or to showing that each 4,
is an idempotent matrix. In many cases it is easier to show that a matrix is idem-
potent than it is to find the rank of the matrix. Therefore, we will prove some
theorems which are new, and which enable us to determine the distribution of
the quadratic forms in equations similar to (1) without having to find the rank
of the 4;.

The first theorem which we shall prove is an algebraic theorem about sym-
metric matrices which is useful in developing theorems concerning the distribu-
tion of quadratic forms.

TarEoREM 1. Let Ay, As, -+, An be a collection of n X n symmetric matrices
where the rank of A;is p:, and let A = Y_7—y A; where the rank of A is p. Consider
the four conditions:

Cy. Each A; is an idempotent matriz.

Cz . AIA] = gofor all © # ]

C; . A is an idempotent matrix.

Ci. p = D1 pi; tee., the rank of the sum of the A equals the sum of the ranks

of the A; .
The following are true:

(a) Any two of the three conditions Cy, Cy, Cy tmply all four of the conditions

01,02,03,04.

(b) Conditions C; and Cy tmply Ci and Cs .

Proof. We will first prove (a). To do this we will show that any two of the con-
ditions C; , C,, C; imply the remaining one in the set C, , C,, C; , and then show
that the three conditions C,, C;, and C; imply C,. We might point out that if
A = I then this is essentially the theorem which Craig and Hotelling proved
(121, [4D).

Suppose C; and C; are given. Since A is given to be idempotent of rank p, there
exists an orthogonal transformation P such that

P'AP = <I” ‘0).
¢ @

Thus we have

I © n
PAP = < ! >= Y. P'AP.
o @ =1
Since 4 is idempotent, P’A4,P is also idempotent, and by Theorems D and E,
the last (n — p) diagonal elements of each P’4,P must be zero. This is true
since by Theorem D the diagonal elements of an idempotent matrix are non-
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negative and since any one of the last (n — p) diagonal elements when summed
over the m matrices is zero, each of the last (n — p) diagonal elements must be
zero. Then by Theorem E the last (n — p) rows and (n — p) columns of each
P’A P must be zero. Thus we can write

B
PAP = < f)
e ¢

Extracting the (p X p) matrix in the upper left-hand corner of
P'AP = ) 7, P'AP

we have I, = Y 7. B;, where the B; are idempotent of rank p,. Theorem K
implies that B;B; = ¢ for 7 ## j; therefore A;A; = ¢ if 7 # 7, and the proof is
complete that C; and C; imply C, .

Now suppose C; and C, are given. We have

m 2 m m
Ad = (T 4:) =D AT+ T Aid; = D Ai = A,
\2=1 =1 T#£] =1

Thus we have shown that the sum is idempotent and C; is satisfied.

Now suppose C, and C; are given. By Theorem J there exists an orthogonal
matrix P such that P’A,P, P'A,P, --- , P'’A,P are each diagonal (since 4;4; =
A;A; = ¢), and since the sum of diagonal matrices is a diagonal matrix it also
follows that P’AP is diagonal. By C, it follows that P’A,PP'A ;P = ¢ for all
7 # 7.

It follows, therefore, that P’A;P is idempotent, and hence A, is idempotent
for all 7, and the proof is complete.

We will now show that C,, Cy, and C; imply C,. If the three conditions
Ci, Cy, and C; are true, then this implies that there exists an orthogonal matrix
P such that the following are true:

P’AP = ({: :); P’A P are each diagonal matrices with p; (the rank of 4,)
ones on the diagonal and (n — p,) zeros on the diagonal. Thus since

m I ¢
ZPmP=<” )
i=1

¢ ¢

it is quite clear that the total number of ones on the diagonal of P’A,P (i = 1, 2,
-, m) is equal to p and the result follows.
We will now prove (b). Since 4 is given as idempotent, there exists an orthog-

onal matrix P such that P’AP = <{p” :) Applying this transformation to the
A, gives PPA;P = M, and M, has rank p; . Partition M; such that

B: C:
]‘/[v; =
C; D,
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where B; is a p X p symmetric matrix. Since Z:‘"=1 M; = <I: :) we have

> % B = I,. Clearly the rank of B; must be less than or equal to the rank
of M, . Therefore, let the rank of B; equal p; — k; where k; = 0. But the rank
of the sum of matrices is less than or equal to the sum of the ranks, hence

E?=1 (p: — ko) = p.
This gives —» 71 k; = 0,50 k; = 0 fors = 1, 2, --- , m, and the rank of B;

is equal to p; . Applying Theorem K to the equation Y, B; = I, it follows that
B; is idempotent (+ = 1, 2, --- , m) and B;B; = ¢ for all 7« # j. By Theorem
J we know that there exists an orthogonal matrix @ such that @’B,Q is diagonal
fori = 1,2, ---,m. Let Q'B,Q = E; where E;is a p X p diagonal matrix with
p; diagonal elements equal to unity and the remaining diagonal elements equal
to zero. Also, it follows that > r—; E; = I,, so there is exactly one matrix in the
set By, By, -+, E,, whose tth diagonal element (for any ¢t = 1, 2, - -+, p) is
equal to unity. All the remaining £, have the ¢tth diagonal element equal to zero.
Since Q is orthogonal we know that

R = Q ¢
nXn @ In—p

is also orthogonal. Using this transformation on the equation

- I, ¢
Z Mi B < p >
=1 ¢ ¢

E; F:
R'M;R =
F; G

and the rank of R’M R equals the rank of E; . But then (F;, G;) = T«(E,, F;)
where T, is an (n — p) X p matrix and G; = T.E.T: . Let t; be the first row of
T, . Then the first diagonal element of G is t,E#; which is a sum of squares of
some of the elements of ¢; and the first row of F; is ¢t,E; which is a vector con-
taining those same elements of ¢; and zeros. Hencez G: = pimplies that LBt =
0 and t,E; = ¢. The first row of G, is LET: = o. Applying this argument to
each row of T; we have F; = ¢ and G; = .

Hence
E;
R'M:R = < “’)
o o

and R'-M;RR'M,R = ¢ (for all 7 # j) and R'M.R is idempotent. Hence, 4,
is idempotent and A;4; = ¢ (for all 7 # j), and the proof is complete.

It has been pointed out (Craig, [2]) that if Y is distributed as N.(g, I), then a
necessary and sufficient condition that Y’AY be distributed as x*(p) is that A
be an idempotent matrix of rank p. We will generalize this result into

gives
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TueorREM 2. If Y s distributed as N,(u, I), then a necessary and sufficient con-
dition that Y'AY is distributed as x'*(k, ) (where A = 1u'Au) is that A be an idem-
potent matrix of rank k.

Proof. We will first prove sufficiency. Let P be an orthogonal matrix such that

P'AP = ({; :) ,and let Z = P'Y. Then Z = <gl> is distributed as N,(a, I)
2

a . .
where o = (al = P’y and where oy and Z; are each k X 1 vectors. Z; is dis-
2

tributed as Ni(a:, I). Also Y'AY = Z'P'APZ = Z1Z, . Thus by Theorem F,
Y'AY = Z1Z, is distributed as x”*(k, \) where A = 3aia; . This proves suffi-
ciency if we can show that ajoy = w'Au. To do this let P = (P,P;) where P,
has dimension n X k, then

! ! P; ! ! Ik So Pll”
W (PiP)P AP | |p = (WP, u'Pe) ,
P, e ¢ \Pau

! ’
= wW'PiPip = o104

wAu = WPP'APP'y

Il

To prove necessity, we will assume that Y’AY is distributed as x(k, \) and
show that this implies that A is an idempotent matrix of rank k. We know that
there exists an orthogonal matrix C such that C’AC = D where D is a diagonal
matrix where the number of non-zero diagonal elements, d;; , equals the rank of
A. Let Z = C'Y, then Y'AY = Z'C'ACZ = Z'DZ = Y i1 dizi . Since Z is
distributed as N,.(C’u, I), we know by Theorem F that z; is distributed as
x"*(1, \;) where \; = [E(2;)]’/2. Since the z; are independent the moment gener-
ating function of Do dii2k is

n

—1/2 —\; (1—2d: )1
H (1 . 2t d.i:,j) 1/ e NN (1—2d g ; t) .
=1

Also, since the hypothesis states that Y’AY is distributed as x”*(k, \) (where
A = 1u'Au) the moment generating function of Y’AY is (1 — 2¢) %0207
Since Y’AY = 2 d.zi, the moment generating functions are equal, and we get

(2) (I _ 2t)-—k/2e»)\+)\(1—2t)‘1 _ InI (1 — 9t d“)—-ll2e~)\i+)\i(l—zdiit)*‘.
i=1

It is clear that there exists a neighborhood of zero for ¢ such that the quan-
tities on the left- and right-hand sides of Eq. (2) exist and have derivatives of
all orders. '

If any of the d;; were neither 0 nor 1, the right-hand side of this identity would
be an analytic function of ¢ with different singularities than the left-hand side.
By this same argument it follows that exactly k of the d;; are one and the others
vanish. It also follows that A = D_ A;.

Thus we have shown that if Y’AY is distributed as x”*(k, \), then k of the d;
are equal to unity, and n — k of the d;; are equal to zero. But the d;; are the
characteristic roots of 4, and hence A4 is an idempotent matrix of rank k and the
theorem is established.
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It might be pointed out that A = 0, and x’*(k, \) degenerates to x°(k) if and
only if Ap = .

Using Theorem 1 and Theorem 2 of this section and Theorem H of the pre-
ceding section, we can state the following Theorems:

TaEOREM 3. If Y 4s distributed as N,(u, I) and of Y'AY = Z'ﬁ:l Y'A,Y where
the rank of A equals p and the rank of A, equals p;, then

(1) any two of the three conditions C;, Cy, C; are necessary and sufficient for

all the remaining conditions Cy, - -+, Ep
(2) any two of the three conditions Dy, D2, D; are necessary and sufficient for
all the remaining conditions, Cy, -+, Ky .

(3) any two conditions C; and Dj 1 5 j are necessary and sufficient for all the
remaining conditions;

(4) E, and C; are necessary and sufficient for all the remaining conditions;

(5) E; and Dj; are necessary and sufficient for all the remaining conditions.

Ci: Y'A,Y is distributed as x"*(p., \i) where \; = (u'A.u)/2 for ¢ = 1, 2,

ek

Ce: Y'A,Y and Y'A;Y are independent for all © # j.

Cs: Y'AY is distributed as x”(p, \) where N = (u'Au)/2.

D, : Each A, is an idempotent matriz.

Do: A:A; = ¢ forall 1 5 j.

D; : A is an idempotent matriz.

B 21120:1 P: = D.

THEOREM 4. In Theorems 2 and 3 if Y is distributed as N.u(u, ¢°I) then all the
results follow except each quadratic form and each \ and \; must be divided by o”.

Cochran’s theorem states: ¢f Y is distributed as N.(p, I), and if

V'Y =2 5 VAY

(where the rank of A;1sn.), then a necessary and sufficient condition that Y'AY (i =
1,2, -+, k) are independently distributed respectively as x’(n)(i = 1,2, --+ , k)
is that Y_s-1n; = n. Madow extended this to (Madow, 1940): f Y is distributed
as No(u, I) and if Y'Y = Y 5y Y'A,Y (where the rank of A; is n;), then a neces-
sary and sufficient condition that Y'A,Y (¢ = 1, 2, -+ | k) are independently dis-
tributed as x'*(n: , N;) 1s that Zla?:l n, = n.

We will now extend these theorems.

TaEOREM 5. If Y is distributed as No(u, V) where V is an n X n positive defi-
nite symmetric matriz, and if Y'BY = ZLI Y’'B;Y where the rank of B; is p;
and the rank of B is p, then any one of the siz conditions, C,, C;, C; , Cs, Cs, G,
is necessary and sufficient that the Y'B,Y be independently distributed as x'*(pi , \i)
where \; = Fu'A .

Cy : BV be idempotent and ELl Di = P.

C; : BV and each B,V be idempotent.

C;s : BV be idempotent and B;VB; = ¢ for all © # j.

Cy : Y'BY be distributed as x*(p, \) and p = 3 s pi. (A = 3u'Ap).

Cs : Y'BY be distributed as x"*(p, \) and B,V be idempotent (where X = 3u'Bu).
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Cs : Y'BY be distributed as x"*(p, \) and B,VB; = ¢ for i  j (where A =
31/ Bp).
Proof. Since V is positive definite, there exists a non-singular matrix > such
that P'VP = [,. Let Z = P'Y; then Z is distributed as N,('u, 1,). Also
Y'BY = Z'P7'BP"'Z, Y'B,Y = Z'P7'B/P""'Z, and

Z'(PT'BP"™Z =Y i, Z/(P'B:PNZ.

lfwelet A = P7'BP''and A; = P7'B,P"™" then wehave Z/AZ = Y iy Z'AZ,
and the results follow immediately from Theorem 3 if we can show that: A being
idempotent is equivalent to BV being idempotent; 4A; being idempotent is
equivalent to B;V" being idempotent; B;VB; = ¢ for 7 2 j is equivalent to
AA; = 0 for 7 5 j. To show these we proceed as follows: If 4 is idempotent
then this means (X 7'BP")(PT'BP"™") = P7'BP'™". Performing left multiplica-
tion by I’ and right multiplication by P’ gives BP"'P™'B = B. But P"7'P™" =
V, hence BVB = B or (BV)(BV) = BV. Thus A being idempotent implies
that BV is idempotent. Starting with (BV)(BV) = BV we will arrive at A4 =
A. Hence A being idempotent is equivalent to BV being idempotent. A similar
procedure will work when applied to B,;V. To show that B,VB; = ¢ for ¢ # j
is equivalent to 4,4 ; = ¢ for ¢ & j, proceed as follows: If B,VB; = ¢ for ¢ 5 j,
then ¢ = P'BL"7'P'VPPT'B,P™t = AJA; = A;A;. The reverse pro-
cedure also follows, and hence the theorem is established.

(In this theorem, 41V and the 4,V need not be symmetric. Also it should be
remembered that AV being idempotent is equivalent to V4 being idempotent
and similarly for 4,V).

We also noted that putting £ = 1 we get the

COROLLARY .1. If Y 7s distributed as N.(u, V) where V is a positive definite
matriz, then a necessary and sufficient condition that Y'AY be distributed as x"*(p, )
where p is the rank of A and where N = ' Ay is that AV be idempotent (not neces-
sartly symmetric).

4. Illustrations. Consider the lincar hypothesis model } = X3 + ¢ defined
in See. 3. If we partition the X’ matrix and 8 vector such that

X =(X),Xs) and 8 = \3)

where X is of order n X p1 and « is a p; X 1 vector, then we can write }” =
X+ eas Y = XNa + Xy + e.
To test the hvpothesis Hy @ @ = ¢, we can form the ratio

_ G n—p
(4.1) u 0 o
where u is distributed as Snedecor’s F with p; and n» — p degrees of freedom. The
quantities ¢r and @ can be derived (Ilempthorne, 1952) by the following process:
@ is the minimum value of ¢’e with respect to the parameters in the model }” =
X8+ ¢ = Xia + Xov + e



686 FRANKLIN A. GRAYBILL AND GEORGE MARSAGLIA

Q1 = @ — Q> when @, is the minimum value of ¢’e with respect to the model
Y = Xyy + e (the model restricted by Hy). By a straightforward application of
a minimization procedure we see that

Q =Y{I - XS'X)Y = Y'AY and Q = Y'(I — X,S,'X5)Y = YV'BY

where S = X'X, S, = X2X,, I — XS7'X’ = 4, and I — X,S8,"'X3 = B. To
find the distribution of Q/¢* and Q;/¢° the method sometimes employed (Kemp-
thorne, 1952) is quite a complex procedure of finding the ranks of the correspond-
ing matrices 4 and B and applying Cochran’s theorem. An alternative method
using theorems on idempotent matrices to obtain the distribution of u when H,
is true and when H; : @ 5 ¢ is true is as follows:

Obviously A and B are each idempotent. Since

(4.2) X'(I - XS'X) =,

it is clear that X3(7 — XS7'X") = pand X1(/ — XS'X") =¢.Let C = B — 4;
then by using 4.2,

I

C=(I- X,8'X:) — T - X8'X)

is clearly idempotent and AC = ¢. Hence by Theorem 3 we have
1. Q/¢" = (Y'AY)/d* is distributed as x*(n — p, Aa).
2. Q/d" = (Y'CY)/s" is distributed as x"*(p: , A¢).
3. @ and @, are independent.
4.0 = 1/26" (BX'AXB) = 1/2" [8X'(I — XS'X)XB] = 0, so Q/s" is
distributed as x*(n — p).
5. N = [1/20")] [BX'{(I — X28:'Xs) — (I — XS7'X')} X8]
[1/(26")] [/ (X1 X1 — X1X287'X:X1)al,
and since X1X; — X1X,87 X2 X, is positive definite, Q;/s” has the central
Chi-square distribution if and only if « = ¢; i.e., if and only if I, is true.
Hence by Theorem M, w = (@/Q)-[(n — p)/pi] is distributed as
I (p1, n — p, A¢) and reduces to the central F (Snedecor’s F) if and only if H, is
true.

I
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