INVARIANCE, MINIMAX SEQUENTIAL‘ ESTIMATION, AND
CONTINUOUS TIME PROCESSES

By J. Kigrer!

Cornell University

1. Introduction and summary. The main purpose of this paper is to prove, by
the method of invariance, that in certain sequential decision problems (discrete
and continuous time) there exists a minimax procedure §* among the class of all
sequential decision functions such that 8* observes the process for a constant
length of time. In the course of proving these results a general invariance theorem
will be proved (Sec. 3) under conditions which are easy to verify in many im-
portant examples (Sec. 2). A brief history of the invariance theory will be re-
counted in the next paragraph. The theorem of Sec. 3 is to be viewed only as a
generalization of one due to Peisakoff [1]; the more general setting here (see
Sec. 2; the assumptions of [1] are discussed under Condition 2b) is convenient
for many applications, and some of the conditions of Sec. 2 (and the proofs that
they imply the assumptions) are new; but the method of proof used in Sec. 3 is
only a slight modification of that of [1]. The form of this extension of [1] in Secs.
2 and 3, and the results of Secs. 4 and 5, are new as far as the author knows.

In 1939 Pitman [2] suggested on intuitive grounds the use of best invariant
procedures in certain problems of estimation and testing hypotheses concerning
scale and location parameters. In the same year Wald [3] had the idea that the
theorem of Sec. 3 should be valid for certain nonsequential problems of esti-
mating a location parameter; unfortunately, as Peisakoff points out, there seems
to be a lacuna in Wald’s proof. During the war Hunt and Stein [4] proved the
theorem for certain problems in testing hypotheses in their famous unpublished
paper whose results have been described by Lehmann in [5a], [5b]. Peisakoff’s
previously cited work [1] of 1950 contains a comprehensive and fairly general
development of the theory and includes many topics such as questions of ad-
missibility and consideration of vector-valued risk funections which will not be
considered in the present paper (the latter could be included by using the devise
of taking linear combinations of the components of the risk vector). Girshick
and Savage [6] at about the same time gave a proof of the theorem for the loca-
tion parameter case with squared error or bounded loss function. In their book
[7], Blackwell and Girshick in the discrete case prove the theorem for location
(or scale) parameters. The referee has called the author’s attention to a paper by
H. Kudbo in the Nat. Sci. Report of the Ochanomizu University (1955), in which
certain nonsequential invariant estimation problems are treated by extending
the method of [7]. All of the results mentioned above are nonsequential. Peisakoff
[1] mentions that sequential analysis can be considered in his development,
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574 J. KIEFER

but (see Sec. 4) his considerations would not yield the results of the present paper.

A word should be said about the possible methods of proof. (The notation used
here is that of Sec. 2 but will be familiar to readers of decision theory.) The
method of Hunt and Stein, extended to problems other than testing hypotheses,
is to consider for any decision function & a sequence of decision functions {3,}
defined by

5:lz, A) = [ 5:(gz, gA)u(dg)/u(Gy)

where p is left Haar measure on a group G of transformations leaving the problem
invariant and {G.} is a sequence of subsets of @ of finite u-measure and such
that G, — @ in some suitable sense. If @ were compact, we could take u(@) = 1
and let G1 = G; it would then be clear that & is invariant and that supgrs,(F) <
supyrs(F), yielding the conclusion of the theorem of Sec. 3. If G is not com-
pact, an invariant procedure 8 which is the limit in some sense of the sequence
{6;} must be obtained (this includes proving that, in Lehmann’s terminology, suit-
able conditions imply that any almost invariant procedure is equivalent to an in-
variant one) and sup#rs,(F) = sup#rs(F) must be proved. Peisakoff’s method differs
somewhat from this, in that for each § one considered a family {§,} of procedures
obtained in a natural way from 8, and shows that an average over G, of the supre-
mum risks of the 8, does not exceed that of § as n — « ; there is an obvious rela-
tionship between the two methods. Similarly, in [7] the average of r;(gFo) for
g in @, and some F is compared with that of an optimum invariant procedure
(the latter can thus be seen to be Bayes in the wide sense); the method of [6]
is in part similar. In some problems it is convenient (see Example iii and Remark
7 in Sec. 2) to apply the method of Hunt and Stein to a compact group as indi-
cated above in conjunction with the use of Peisakoff’s method for a group which
is not compact. The possibility of having an unbounded weight function does
not arise in the Hunt-Stein work. Peisakoff handles it by two methods, only one
of which is used in the present paper, namely, to truncate the loss function. The
other method (which also uses a different assumption from Assumption 5) is to
truncate the region of integration in obtaining the risk function. Peisakoff gives
several conditions (usually of symmetry or convexity) which imply Assumption 4
of Sec. 2 or the corresponding assumption for his second method of proof in the
cases treated by him, but does not include Condition 4b or 4¢ of Sec. 2. Blackwell
and Girshick use Condition 4b for a location parameter in the discrete case with
W continuous and not depending on z, using a method of proof wherein it is the
region of integration rather than the loss function which is truncated. (The proof
in [6] is similar, using also the special form of W there.) It is Condition 4c which
is pertinent for many common weight functions used in estimating a scale param-
eter, e.g., any positive power of relative error in the problem of estimating the
standard deviation of a normal d.f.

The overlap of the results of Secs. 4 and 5 of the present paper with previous
publications will now be described. There are now three known methods for
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proving the minimax character of decision functions. Wolfowitz [8] used the
Bayes method for a great variety of weight functions for the case of sequential
estimation of a normal distribution with unknown mean (see also [9]). Hodges
and Lehmann [10] used their Cramér-Rao inequality method for a particular
weight function in the case of the normal distribution with unknown mean and
gamma distribution with unknown scale (as well as in some other cases not
pertinent here) to obtain a slightly weaker minimax result (see the discussion in
Sec. 6.1 of [12]) than that obtainable by the Bayes method. The Bayes method
was used in the sequential case by Kiefer [11] in the case of a rectangular dis-
tribution with unknown scale or exponential distribution with unknown location,
for a particular weight function. This method was used by Dvoretzky, Kiefer
and Wolfowitz in [12] for discrete and continuous time sequential problems in-
volving the Wiener, gamma, Poisson, and negative binomial processes, for par-
ticular classes of weight functions. The disadvantage of using the Cramér-Rao
method is in the limitation of its applicability in weight function and in regularity
conditions which must be satisfied, as well as in the weaker result it yields.
The Bayes method has the disadvantage that, when a least favorable a priori
distribution does not exist, computations become unpleasant in proving the
existence (if there is one) of a constant-time minimax procedure unless an ap-
propriate sequence of a priori distributions can be chosen in such a way that the
a posteriori expected loss at each stage does not depend on the observations
(this is also true in problems where we are restricted to a fixed experimentation
time or size, but it is less of a complication there); thus, the weight functions
considered in [12] for the gamma distribution were only those relative to which
such sequences could be easily guessed, while the proof in [11] is made messy by
the author’s inability to guess such a sequence, and even in [8] the computations
become more involved in the case where an unsymmetric weight function is
treated. (If, e.g., § is isomorphic to @, the sequence of a priori distributions ob-
tained by truncating u to G, in the previous paragraph would often be convenient
for proving the minimax character by the Bayes method if it were not for the
complication just noted.) The third method, that of invariance, has the obvious
shortcoming of yielding little unless the group G is large enough and/or there
exists a simple sequence of sufficient statistics; however, when it applies to the
extent that it does in the examples of Secs. 4 and 5, it reduces the minimax prob-
lem to a trivial problem of minimization.

Several other sequential problems treated in Section 4 seem never to have
been treated previously by any method or for any weight function; some of these
involve both an unknown scale and unknown location parameter. A multivariate
example is also treated in Sec. 4. In example xv of Sec. 4 will be found some
remarks which indicate when the method used there can or cannot be applied
successfully.

In Sec. 5, in addition to treating continuous time sequential problems in a
manner similar to that of Sec. 4, we consider another type of problem where the
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group G acts on the #tme parameter of the process rather than on the values of
the sample function.

2. Assumptions, conditions, examples, and counterexamples. We use the set-up
and notation of a fixed sample-size decision problem (the inclusion of the se-
quential case will be described in Secs. 4 and 5). A random variable X takes on
values in X, which we may think of as being the underlying sample space with
Borel field B . The family § (possible states of nature) is a class of probability
measures on (X, Bx). We write Pr{ } and Er{ } to mean “probability of”” and
“expected value of” when X has probability measure F. The decision spade D
has a Borel field B, associated with it. The weight function W we take to be
extended real (possibly + ) and nonnegative (this could be generalized) on
T X X X D, jointly measurable in its last two arguments. D is the class of deci-
sion functions 6 from ¥ X B into the unit interval which are available to the
statistician (not necessarily all possible §); each such § is measurable in its first
argument and a probability measure in its second one. For fixed F and 6, a prob-
ability measure mr; on ¥ X D is defined by its values on rectangles being given
by mrs(@ X R) = Er{xe(X)3(X, R)} where x, is the characteristic function
of Q. The risk function of § is given by rs(F) = [W(F, x, s)mp s(dz, ds). We
define 75 = supp.57s(F).

Let G be a group of transformations on § X ¥ X D which operates component-
wise; i.e., each g ¢ G can be written ¢ = (g1, g2, gs) where g, g2, gs are trans-
formations on §, X, D, respectively, and where ¢g(F, z, d) = (g:F, go, gsd) for all
F, z, d. For simplicity of notation we shall write gF, gz, gd in place of g,, gsx, gsd;
this will never be ambiguous. G will be a group (not necessarily the largest) which
leaves the problem invariant; i.e., for each g ¢ G, the probability measure of
gX is gF when that of X is F, and W(gF, gz, gd) = W(F, z, d) for all F, z, d.
Of course, it is necessary to impose some measurability restrictions on @: the
elements of G should be measurable transformations on ¥ X D (thus, ¢X is a
andom variable); moreover, we assume G to be a measurable group; i.e., there
s a o-ring S (closed under differencing and countable intersection but not neces-
rarily containing @) and a measure u on (G, S) such that g ¢ G, 4 ¢ S implies
id ¢ S and u(gd) = wu(4) and such that the transformation ¢ of G X G onto
stself defined by #(g, ) = (g, gh) is S X S measurable. The reader is referred to
g13] for a detailed discussion. We mention here the fundamental existence and
uniqueness theorem, which states that every locally compact Hausdorff group
has such a u (left Haar measure) on (G, S) where S = Borel sets of G, such that
ip is finite on compacta, positive on non-empty open sets, unique to within multi-
[plicative constant, and regular. We also impose on W a measurability restriction
which will make such integrals as

fas fH _/;) W' (F , @, gr)d(g 'z, dr)u(dg)F (dx)

meaningful in Sec. 3, where u(H) < » and we define W* = max(W, b) for each
positive number b. We also define 75 to be the risk function of 6§ when W is the
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weight function, and 7 = supr3(F). We note that assumptions of measurability
and invariance are unaltered when W is replaced by W’. (It is worth noting that
any nondecreasing sequence of measurable invariant functions W* for which
W* < b and limy,.. W** = W could be used in place of the W* throughout this
paper. Thus, in some sequential problems where W is a sum of experimental
cost and loss due to incorrect decisions, it may be more convenient to use a W*°
reflecting separate truncation of these two components than to use W’ which
truncates their sum.)

A decision function § is said to be invariant if 6(gx, gA) = 8(z, A) for all g € G,
z ¢ X, A ¢ Bp . We denote the class of all invariant decision functions in © by D, .

Let § = UgJs where 8 ranges over some index set and the Jg are equivalence
classes of § under the equivalence F; ~ F, if F; = gF, for some ¢ ¢ G. Similarly,
let ¥ = U.K, where the K, are equivalence classes under z; ~ x, if 2; = ga, for
some ¢ ¢ (. The number of elements in each Jg (or K,) need not be the same, nor
need there be the same number of J; as K, , etc. We hereafter denote by Fs a
fixed member of Jg .

ReMARK 1. If 6 € Dy, clearly rd is constant on each Jg.

We now list our five assumptions and examples of conditions which imply
them.

AssuMPTION 1. For each & in DO there is a funclion v; from % into G such that,
writing vs(x) = g, and gz ‘= = x* (we shall hereafternot display theallowed dependence
on 8), we havex* = 7* ¢ K, if 2, & ¢ K, , and such that for each g in G the function
8, defined by

(2.1) 8(z, A) = 8(ga*, gg='A)

is in D. (We shall sometimes write z, for the constant value of z*, z ¢ K, .)

It may help the reader to see what §, looks like in a simple example. Suppose
¥ = D = G = R' (additive group of reals), so that there is one K, and we take
2. = 0 and g,u = z + w. If é is a nonrandomized estimator, which we may think
of as being a function ¢ from ¥ into D, the corresponding 8, (g a real number) is
the function ¢, defined by ¢,(x) = z + t(g) — g¢.

REMARK 2. The measurability portion of Assumption 1 is usually trivial. One
must take care to ascertain that ®© is large enough to satisfy the remainder of
the assumption. For example, if © were taken to be tests of some specified size
v (or £ v) in a problem of testing hypotheses, §, might have size <v (or > «)
and would not be in . This situation is easily handled as noted in Condition
2a below. Counterexample B at the end of this section considers another case
where Assumption 1 may be violated.

AssumpTioN 2. For every & in D, hin G, d in D, and z,

(2.2) gmhd = gz d.
RemARk 3. Since hx ¢ K, if z ¢ K., (2.1) and (2.2) imply
8o(h, RA) = 8(gx*, ggrahA) = 8(ga*, ggz'A) = 8,(z, A),
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so that 6, ¢ O; for every g. We thus also note, putting ¢ = identity in (2.1) and
g = g-' in the definition of invariant decision function, that a necessary and
sufficient condition for § & D; is that § ¢ D and 8(z, A) = 8(z*, ¢-'A).

ConprrioN 2a. (Testing hypotheses.) Let w be a non-empty proper subset of
& and suppose G leaves both w and also § — w invariant. Let D consist of two
elements dy, dq, and suppose W(F, z, d;) = cif Few, W(F, z,d) = 1if
F e — w, and W = 0 otherwise. If G is such that gX has probability measure
gF when X has F, then G leaves the problem invariant, where @ acts trivially®
on D (i.e. gd; = d;). Hence, Assumption 2 is automatically satisfied. Let © be
the class of all tests. It is easy to see that as we let ¢ vary from 0 to « the class
of minimax procedures (assuming they exist) for the above problem will yield
procedures which maximize the minimum power on § — « among all tests of
size y (or = v) for 0 < v < 1. An analogous result holds for problems of testing
with general invariant W. In particular, the problem of finding a most stringent
test of size v falls within our framework (see e.g., [4]; [5] for discussion). (Our
use of the term ‘‘size o’ does not entail similarity.)

The above condition can obviously be generalized to include %-decision prob-
lems where § = D _5_; w; and @ leaves each w; invariant. (The problem might be
to find a procedure which maximizes the minimum probability of making a
correct decision. In some examples such as ranking problems, G may also permute
the w; )

Convprrion 2b. For each «, K, is a homogeneous space G/M, , M, being the
subgroup of G which leaves z, fixed (see, e.g., [14]), where M, acts trivially on
D. (A particular important instance of this condition, hereafter denoted Assump-
tion 2b’, is that where ¥ = ¥ X Z, Y being a homogeneous space G/M where M
is the subgroup of G leaving some element z, of ¥ fixed, M acts trivially on D,
and G acts trivially on Z. In this case we can writegz = ¢(y, 2) = (gy, 2), and we
can identify the index « with values 2 ¢ Z since @ is transitive on ¥ and trivial
on Z. Some examples where this condition is satisfied will be considered at the
and of this section.) To see that Condition 2b implies that (2.2) is satisfied, we
note that z ¢ K, implies that ¢ = gi, h takes z into 2., so that gg, leaves z. fixed
and is thus some element m, of M, . Hence, gd = gz 'm.d = ¢-'d, whichis (2.2).

ReEMARK 4. Peisakoff assumes, in the notation of Condition 2b’, that Y is
isomorphic to G and that § consists of the possible probability measures of gX
for ¢ ¢ G when X has a given probability measure F, (thus, we may think of G@
as being the “parameter space,” too). This special case of Condition 2b’ we here-
after refer to as Condition 2bp (see also Example iv below.) Note that in Condi-
tion 2b(2b"), M .(M) need not be normal in @, so K.(Y) need not be a subgroup
of @. Of course, @ might be either “larger” or “smaller” than &, which will be
partly reflected by the Jj.

ReEMARK 5. It is convenient at this point to discuss the question of whether
or not it is necessary to consider, as we have, randomized decision functions.

2 Throughout this paper we shall say that G acts trivially on D or a factor of D if the
appropriate component of every g in @ is the identity transformation.
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We discuss this without consideration of questions of atomicity, our interest
here being in the relationship of G and § to randomization. Suppose, for ex-
ample, that the following condition were satisfied:

ConprrioN NR. G is transitive on .

Let @ be defined by & = o when X ¢ K, . Define X* by X* = z*if X = 2.
It will usually be a trivial measurability verification to see that @ and X* are
random variables. If Assumptions 1 and 2 and Condition NR are satisfied,
6 ¢ Dy implies (see Remark 1) that r; is constant and (Fy being any fixed member
of &) equal to

rs(Fo) = E’FOEFO{f W(F,, X, $)8(X, ds) | a}

= By, Er, { f W (Fo, X, gx )3(X*, ds) | a}
D
_Z__ EFO inf EFO{W(FO’ X) ng) I a}x

where the invariance of § has been used in passing from the second expression to
the third. Thus, whether or not the infimum in the last expression is attained,
there clearly exists a function s* of @ into D such that, if 6* is the nonrandomized
decision function defined by 6*(z, g., s*(a)) = 1 when z ¢ K, (we can think of
6* as a function from ¥ into D which takes on the value g.s*(a) when z ¢ K,),
then rs(Fo) = rs(Fy), provided only that there are no measurability difficulties
in defining the function s*. We shall not go into the last provision, remarking only
that mild semi-continuity restrictions on W would suffice and that one could
even avoid any measurability considerations by defining risk as an outer integral
for “nonmeasurable decision functions.” In order to show that, for minimax con-
siderations, one can do as well with the nonrandomized members of D; as with
all of Dy, it remains to show that §* ¢ D; ; this follows at once upon noting that
6* satisfies the condition given in the last sentence of Remark 3.

In [1] and [7], the authors restrict their consideration to nonrandomized deci-
sion functions; we note that Condition NR is satisfied in [1] and [7]. In general,
one can not dispense with randomization, as can be seen from many examples
where G is not transitive on §. For example, in estimating the mean 6 of a bi-
nomial distribution (0 < 8 < 1) with W(6, z,d) = |8 — d|° with0 < p < 1,
the only minimax procedures are randomized (see [10]); G consists of two ele-
ments here. In many discrete problems of. testing hypotheses randomization will
also be necessary.

We note that a §* formed from an s* which achieves the infimum (w.p.1 under
Fy) above is obviously a uniformly minimum risk decision function among mem-
bers of 9y : thus, if Condition NR is satisfied in addition to Assumptions 1 to 5,
this gives a prescription for explicitly writing down a minimax procedure. A
similar remark applies to e-minimax procedures if the infimum is not attained.

AssumpTION 3. For each b there is a subset Ty, of § with Ty D {Fs}, and a family



580 J. KIEFER

Sy of probability measures on Ty which includes each measure giving probability
one to a single element of Ty , such that

(2.3) inf sup r3(¢) = sup inf r3(¥),

6eDy te Sy £e8y 6Dy

where r3(£) is the expected value of ry with respect to the probability measure £ on .

REMARrk 6. Whenever {Fg} is finite (e.g., if G is transitive on w and § — w
or on each w; in the case of Condition 2a or is transitive on § in 2b; see also
Example vi below), if also © (or merely 9;) is convex, (2.3) is trivial. In many
other cases it may suffice to let S, be a family of totally atomic (discrete) meas-
ures, so that no measurability difficulty arises in defining r3(¢) (see, e.g., [15],
[16]). If one tries to verify (2.3) using an S, containing more general measures
with respect to some Borel field on §, one must also make sure that conditions
implying the existence of the integral 75(£) are satisfied for these £.

It is not clear how essential Assumption 3 is to the validity of the theorem
of Sec. 3; it will be seen there that it is used because (3.3) can not in general be
verified if integration with respect to £ is replaced by a supremum over I', there
(Counterexamples A to D at the end of this section show that none of our other
four assumptions can be entirely dispensed with). The reason for not necessarily
putting Ty, = {Fs} is that (2.3) may sometimes be more obvious for a larger
Ty than for {Fg}.

AssumpTioN 4. We assume that
(24) lim inf 73 = inf ;.

bso 5§Dy 6edDy

(By monotone convergence, the right side of (2.4) is equal to the left with the
operations of limit and infimum interchanged.)

Conprtion 4a. If W is bounded, (2.4) is trivial. This condition will usually be
satisfied in problems of testing hypotheses and interval estimation.

Conprrion 4b. The following set of conditions is not the most general possible
of this type, but covers many important cases such as the examples of this section
and Sec. 4 for many commonly employed unbounded W. We assume that G is a
topological group satisfying Condition 2bp, that D = G, and (writing § as G)
that W(g, (y, 2), d) does not depend on y and may hence be written W(g™'d, 2).
We also assume for each z the existence of an increasing sequence {U3} of com-
pact sets whose limit is G and such that every compact subset of G is in some
U; , that W(h, 2) is bounded in % in each U7 and tends to c uniformly in & for A
g Ui as r — o, and such that, for each rand r; , the set U;,(G — U%) (group
multiplication) is disjoint from U7, for all sufficiently largen. We also assume regu-
larity conditions on W of the type mentioned in the discussion of Condition NR
and that there exist (as there will if (¥, Bx) is Euclidean with the Borel sets or a
countable product of such spaces) conditional probability measureson Y given the
Z-coordinate of X. Let Fy denote the probability measure of X, and let o denote
the probability measure of the Z-codrdinate of X, when the element g of § is the
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identity; and let Fo(4 | z) denote a version of the conditional probability measure
on Y, evaluated at the set A C Y, given that the Z-coordinate of X is z. Our final
assumption of Condition 4b is that the compact and sequentially compact subsets
of G coincide (this is clearly removable if the next phrase is appropriately re-
stated) and that, for each go ¢ G, g; — go implies lim inf W(yg; , 2) = W(ygo, 2)
w.p.1 under F,.

The above condition is not as complicated as it may first seem: for example,
if G is the additive group R™ and W is for each z bounded on bounded sets and
w at «, we can take U; to be the sphere of radius r centered at the origin.

We now verify that Condition 4b implies Assumption 4. If Condition 4b is
satisfied, so is Condition NR, and we can restrict ourselves to nonrandomized
members of ©; in computing either side of (2.4). According to Remark 3 and the
discussion of Condition 2b’, these are functions from ¥ onto D of the form t'(y, 2) =
yt(z) where ¢ is an arbitrary measurable function from Z into D. We hereafter
label nonrandomized members of D; by ¢ in place of 8. Since r;(F) = r;(F,) for
8 £ Dr, we have

7= [ [ Wi, 8 @y | Pz,
z vy
the same equation holding with no superscript b. Thus, if we show that

lim inf [ W(yt,2)Fo(dy|2) = inf / W(yt,2)Fo (dy | 2)
b>wo teY VY ¢ Y

for each fixed 2, (2.4) will follow from monotone convergence. Thus, we may

neglect a set of Fo-measure 0 and delete the z, and it will then suffice to prove that,

if W is a nonnegative function on G, satisfying the conditions assumed above for

each z in a set of Fo-measure one, and @ is a fixed probability measure on ¥ = @,

and if ¢ > 0 and

0.5 ¢ <inf [ WaQ @),
t Y
then there is a B such that b6 > B implies
f W (yt)Q (dy) > ¢(1 — ¢ for all te@.
Y

We hereafter denote integration with respect to @ (over y) by E, . First let U,
be a compact subset of ¥ with Q(Uo) > 1 — ¢, and let Vi, = {y | W(y) =< b}.
Thus, the closure of V, is compact. By our assumption, there is a compact set
U,, of {U,} such that y ¢ Uy and t ¢ U,, imply yt £ V, . Hence, t ¢ U,, and b > ¢
imply that EqW’(yt) > q(1 — ¢), and it remains to show that ¢ ¢ U, andb > B’
for some B’ imply the same result. Let #, ¢ U,, be chosen so that EqW’(yt;) <
b=! + infi. o, EW(yt) and let {t,, , 5 = 1, 2, --- } be a subsequence of {}
with limit ¢’ (say). Then, for each r, since U,U,, (group multiplication) is compact,



582 J. KIEFER

lim inf EqW’(yt) = lim EoW'(yts) = lim inf f W (y5)Q (dy)
b>o0 2 U,

b teUp >0

—timint [ Wes)Q@) 2 [ WaQ ).
Letting r — o, the last member must tend to a value = ¢, completing the proof
that Condition 4b implies (2.4).

ConpITION 4c. For brevity we state this for the case where §, %, D are as in
Condition 4b with G = additive group R', but it is easily generalized to versions
for other groups. Writing the group operation as addition, we again assume W
to be of the form W(d — g, 2), but now assume for each z that W(y, z) < L, < «
ify < e, that W(y, 2) — c.as y — — «, and that, for y = e, , W(y, 2) is finite
and nondecreasing and — as y — . We also assume as before that, for each
real ¢, {; — timplies lim inf W(y + #;,2) = W(y + ¢, 2) w.p. 1 under F, . Finally,
we assume that there exists at least one member & of D; for which r,, < .

As in the consideration of Condition 4b, by neglecting a set of Fo-measure
zero, we can reduce the problem to proving that inf, E;W’(y + t) —
inf, EqW(y + t) where W(y) —casy — —o, W(y) < L < fory < e, W(y)
is nondecreasing for y = ¢ and — o asy —, {; — ¢ implies lim inf W(¢; + y) =
W(t + y) w.p.1 under @, and inf, EqW(y + t) = q < ». Clearly, for some B,
and Ty, b > Byand t > T, imply EJW’(y + ¢) > ¢. Also, letting £, be any value
for which EqW (y + t) <, since Wy + t) < L + W(y + &) for t < t, and
all y, we obtain EqW(y + t) — ¢ as ¢ & — « by bounded convergence. Thus,
q = c. Obviously, for e > 0, > L and t < Ta(e) imply EqW'(y + 1) > ¢ —
e= ¢ — e To summarize then, it remains to prove that

limb_,minfrzgtgﬁ EQWb(y + t) g q,

where T'; and T’ are finite. This case is treated in the same way the case ¢ ¢ U,,
was treated in Condition 4b. Thus, Condition 4c implies (2.4).

The form of our next assumption is Peisakoff’s; he calls it ‘“weak boundedness.”
As usual, we denote (4 — B) U (B — A) by AAB.

AssuMPTION 5. There exists a sequence {G.} of measurable subsets of G with
0 < u(G.) <« and such that, for each g in G,

(25) llm,,,_,w ,U,(QG,,,AG,,)/,U.(G”) = 0.

ConprTIoN 5a. If G is compact Hausdorff, we can take G, = G and Assumption
5 is satisfied. ,

ConprTiON 5b. Peisakoff [1] also gives the following examples of groups satis-
fying Assumption 5:

(1) G = additive group of R™ (take G, to be the cube of side n, centered at 0).

(2) G = real affine group; here an element of G is a pair (b, ¢) with b positive
and c real and (b, ¢) (b, ¢/) = (bb/, b’ + ¢), and du = dbdc/b’; in [1], (2.5) is
verified directly if @, is taken to be the set where | ¢/b | < ¢”* ande™ < b < .
A less computational verification can be obtained using Condition 5d below.
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Peisakoff attempts to show that the full linear group GL(n) also satisfies (2.5),
but his proof seems to be incorrect (see also Counterexample D cited below).

ConpiTION 5¢. (7 satisfies Assumption 5 if it is the direct product of two groups
satisfying Assumption 5. We omit the obvious proof.

Condition 5¢ can be used, for example, if @ is a direct product of real affine
groups. Another example (see Example iv below) is that where G is the direct
product of the multiplicative group of positive numbers (scale group) and the
orthogonal group O(n) on R". In connection with this last example, note that the
two factors which generate the group, considered as subgroups of @, of course
commute; it is instructive to contrast this or the proof of Condition 5d below
with the difficulty one encounters if one tries to verify Assumption 5 for GL(n)
by representing an element of the group as (for example) QP or Q,DQ, where
@1, @ are orthogonal, D is diagonal, and P is positive definite. We next prove
that G satisfies (2.5) if a slight strengthening of (2.5) is satisfied for a normal
subgroup and factor group of G. This can be used in examples such as that of
Condition 5b(2), Example vi, ete.

ConprTioN 5d. Suppose a locally compact G has a closed normal subgroup
G with factor group G® = G/G™; that for ; = 1, 2 there is an increasing
sequence {Q%’} of sets whose union is G*” and such that QS has compact closure
and any compact subset of G is in some Q% ; that there is a sequence {GS}
of measurable subsets of G such that G has compact closure; and that m > n
and g9 £ QY imply @G n GP) > (1 — e (G) for some sequence
{e,} with lim, e, = 0, where u‘” is a left Haar measure on G”. Under these
conditions we shall show that G satisfies Assumption 5. Let »(m) > m be such
that 77'g% 7 £ Qthy if ¢ £ QY and 7 & G (the set of all such g7 is con-
tained in a compact set). We shall show that G, = G2 G L., satisfies Assumption
5. For let ¢ > 0 and let ¢ = ¢g®¢® be an arbitrary element of G. Choose n so
that ¢ ¢ Q¥ and (1 — &)(1 — e&w) = 1 — e Since (see Sec. 63 of [13] and
the references cited there) w(E) = [ u®(+E]n Gu®(dr), and since
(g (T gPED)G oy 0 GV = 7P rG 0, if 9P GP contains the identity
and = the empty set otherwise (where r ¢ @®), we have, for m > n,

@) (2 (1 (2) (1)
1(gGm 0 Gr) = u(g®g® GGty 0 GG O)
W ~1 @) IRC)
= f P g G0 0 Gion)u® (dr)
gD e nafd

; (1 - 6n)(l - ev(n))#fl)(Gl('%Zn))p'(Z)(Géizn?)) ; (1 - é),U.(Gm),

proving our assertion. (It is easy to extend Condition 5d to more factors.)
Exampres. We list briefly a few examples (of estimation except for Example
vi) to illustrate some of the concepts of this section. In each case W will be
assumed to satisfy appropriate conditions which will be obvious, and the possible
choices of D will be evident if not stated.
(i) (Location parameter) ¥ = R" and, e denoting the n-vector (1, ---, 1),
X = (X1, -+, X.) has c.df. Fo(x — 0¢) for some 0 ¢ R' (identified with ),
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the form of Fy being known. Here Condition 2bp is satisfied with ¥ = R' = space
of X;and Z = R*™ = spaceof X, — Xy, -+, X, — X;.

(") (Scale parameter) Let R*" be the subset of R” where no coordinate is
zero. For simplicity we assume R” — R*" has probability zero according to every
element of §, so that we can take ¥ = R*". Here § is identified with the positive
realsand X = (Xi, -+, X,) has c.d.f. Fo(z/6) for some § > 0. Letting X; = log
| X, t: = sgnX;,t = (1, -+, t,) and 8 = log 6, this problem can be trans-
formed to that considered in Example 1 with the trivial and inessential modifi-
cation that the sample space is R X T where T, the space of 2" possible values
of ¢, is acted on trivially by G. (The case where R* — R*" has positive probability
is handled similarly by considering ¥ to be the union of subspaces ¥; (0 <7 < n),
where X; = -+ = X, = 0 and X,y # 0in ¥;. A similar remark applies in
other examples.)

(i1) (Scale and location parameters). Let R**" be the subset of R™ where no
two coordinates are equal and n = 2 (see also Example-v). All elements of § will
give probability one to R**" ) which we take to be ¥. § will be identified with
G = real affine group, and X = (Xy, ---, X,) has d.f. Fo((x — 61¢)/6,) for
some 6, > 0 and real 6; . Condition 2bp is satisfied if we take ¥ to be the space
of (X1, |X1 — X,|) and Z to be the space of sgn (X; — X;) and (X; — X,)/
]XI—X2],3§7,§n

In the above examples, if F; and W have additional symmetry properties, a
larger group might leave the problem invariant. Qur next two examples illustrate
this possibility.

(iii) Consider the setup of Example i with D = R', Fo(z) symmetric about 0,
and W a symmetric function of § — d satisfying Assumption 4. As in Example i,
the group G = additive group of reals leaves the problem invariant; but so
does the larger group G* = direct product of G and G® where G consists of
the identity element and an element which takes z, 6, and d into their negatives.
We cannot apply Condition 2b here with G = G* since @® does not act trivially
on D. However, we can apply Condition 2b (or even 2bp) with G = G and then
make a trivial application of the Hunt and Stein method in order to assert that,
if 6*(z, A) = [8(z, A) + 8(—z, —A)], then 73« =< 7; ; thus, we can conclude that
the conclusion of the theorem of Section 3 holds with @ = G*. Note that we
cannot conclude that there will be a G*-invariant minimax (or e-minimax) non-
randomized procedure, since Assumption 2 is violated for G*; indeed, without
some monotonicity restriction on the density of Fo and on W (which would yield
this result) this conclusion is false, as can be seen from consideration of the
weight function W = 0if 2 < |6 — d| < 3 and W = 1 otherwise when Fy(x)
is normal with mean 0 and variance 1.

The advantage of obtaining the conclusion of the theorem of Section 3 for
G = G* instead of merely G = G in examples of the above variety is, of course,
that there are fewer G*-invariant procedures than G-invariant procedures
among which we must search for a minimax procedure. Although we would
therefore usually like to take (G as large as possible, the above example illustrates
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that the apparent reduction obtained in using G* in place of a smaller G may
in some cases only be illusory, since we may lose the reduction to nonrandomized
procedures in passing from G™ to G*. However, the example might suggest that
the method of Hunt and Stein, used ab initio, would result in a simpler treatment.
Counter-example C below shows, though, that the use of that method also could
not avoid the verification of something like Assumption 2 for the non-compact
factor of G. In the following remark we summarize the general result obtained
by using the Hunt and Stein method as in Example iii.

REMARK 7. If G* is the direct product of G and G® where G® is compact
Hausdorff and where the conclusion of the theorem of Sec. 3 s valid for G = G,
then that conclusion is valid for G = G*.

(iv) ¥ is R*" = R"-origin of R", while § is the set of c.d.f.’s Fo(z / ) for
9 > 0 where under 8 = 1 the X; are independent and normal with mean 0 and
variance 1. D is the set of positive reals and, e.g., W is a function of d/6. We
can take G to be the group cited as the second example under Condition 5c.
Here ¥ = G/ O(n — 1) (we can think of O(n — 1) as leaving the point (1, 0,
-+, 0) fixed) and O(n — 1) (in fact, O(n)) acts trivially on D. Thus, Condi-
tion 2b’ is satisfied. Since Condition NR is also satisfied, our search for a
minimax procedure is reduced to considering nonrandomized estimators of the
form ¢ 2, X where the constant ¢ is chosen to minimize the risk.

Note that Condition 2bp cannot be satisfied for the G used in the above
example. If we had treated the example as a case of Example i’ so as to use
Condition 2bp, we would have ended up searching through a much larger class
of procedures unless we invoke some further principle such as that of sufficiency
(in a manner similar to that of Sec. 4). We remark that Peisakoff indicated
another method which could be used in some examples such as this one when
one wants to use Condition 2bp: Let @ be a random variable independent of
X and uniformly distributed on the component 0" (n) of the identity of O(n),
and apply Condition 2bp to the G considered above on the sample space
R*" X 0%(n) of X’ = (X, Q). The disadvantage of using this technique, where
it is possible to do so, is that in some examples further considerations may be
required to reduce the class of invariant procedures to that which would have
been obtained if Condition 2b’ had been used directly. Note that the technique
used here is really related to that of Remark 7, which would give the desired
result more directly here, but which would still be inferior to the direct use of
Condition 2b’ which does not require the technique of Remark 7 in the present
example. '

(v) % and @ are as in Example iii, but with n = 1. D = R', the object being
to estimate 6; . The weight function is, e.g., a function of (d — 6:) / 6, , which we
hereafter take to be the argument of W. There is one K, , and if we try to verify
Condition 2b’ we run into trouble. For example, take z, = 0 so that M is the
multiplicative group of reals (not normal in G) and ¥ = G/M; M does not act
trivially on D, so Condition 2b’ is not satisfied. If we consider this example as
a case of Example i (fie., let G be the smaller group used there), we obtain
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for D; the class C of procedures 6 for which é(z, A + z) = §(0, A). If the con-
clusion of the theorem of Sec. 3 were valid for @ = affine group, we could restrict
ourselves to those members of C for which §(z, A) = &(az, ad) for all a > 0;
putting 2 = 0, this means 6(0, A) = §(0, aA) for all @ > 0; taking A to be the
interval (—1, 1), this means (0, 0) = 1; noting the equation defining C, this
means that there is only one invariant procedure §* under the affine group, the
nonrandomized estimator ¢(z) = z. One would like to conclude that this estimator
is minimax. If lim inf, o W(t + X) = W(X) w.p.1 when (6;, 6;) = (0, 1), an
application of Fatou’s lemma to the equation

r5(61, 62) = f f W<u + %)Fo(du)a(o, dr)if 6 ¢ C

yields the fact that lim infy,,,, 75(61, 6) = rs(= constant) for & ¢ C, and the
conclusion that 6* is minimax is justified. However, Counterexample C below
shows that without some such additional assumption as the one made here on
W, this conclusion is false: 6* need not be minimax and we can only conclude
that there is a § ¢ C' which is minimax (or e-minimax).

(vi) The univariate general linear hypothesis (GLH) is discussed in detail in
many places. If v is the parameter on which the power function of the usual
F-test of specified size € depends, it is easily proved (see, e.g., [5a]) that this test
is uniformly most powerful invariant of size e of the GLH v = 0 (against y > 0).
There are several ways to apply the theorem of the next section to conclude,
e.g., that this test is most stringent of size e (first proved by Hunt and Stein).
One is to consider for fixed v, > 0 the problem of testing vy = 0 againsty = 7o,
to note that G is transitive on w and on § — w in this case so that Assumption
3 is satisfied (as are the other assumptions), and thus to conclude that the above
test is most stringent of size ¢; since this is true for every yo > 0, it follows that
the test is most stringent for the original GLH. Another method (better than the
above in other problems where such a property uniform in 4, may not hold) is to
verify Assumption 3 directly for GLH; we can do this easily by applying the
theory of [15] to the present case. Alternatively, (2.3) can be verified by consider-
ing, on the right side of (2.3), a £ assigning probability one to the set consisting
of one point in w and one point at which the power function of the F-test differs
most from the envelope power function.

CounTEREXAMPLES. We now list briefly four counterexamples to the conclusion
of the theorem of Sec. 3, only the third of which is new, in order to indicate that
Assumptions 1, 2, 4, and 5 cannot be entirely dispensed with.

(A) In [6] and also in [7] are given examples which show that the conclusion
of the theorem of Sec. 3 is false if (in terms of the present treatment) Assumption
4 is violated. We note here also that if, in the notation of p. 313 of [7], the weight
function is altered to f(s) = 1 if s is an integer and f(s) = max (s, 0) otherwise,
then there exist invariant procedures with finite risk (=1), but the conclusion
of the theorem is still false; thus, we see that if in Condition 4¢ the condition that
Wy, 2) — ¢, as y — — © and — monotonically as y — c were dropped while
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maintaining the condition that a 8, & ©; with finite risk exists, Assumption 4
would not be implied.

(B) As Peisakoff has pointed out, the invariance theory applies to the general
sequential case only if we restrict D to consist of procedures which take at least
a first observation with probability one. In Section 4 we shall discuss this in
more detail (there are cases where this restriction of ® is not necessary); for the
moment, we give an example to demonstrate that the conclusion of the theorem
of the next section would not generally be true without such a restriction. Sup-
pose we are limited to taking a single observation or else no observation on a
random variable whose distribution depends only on a location parameter 6
which we desire to estimate (see Example (i)), the loss from estimating 8 incor-
rectly being bounded by 1 and the cost of experimentation being 2 or 0 de-
pending on whether or not we take an observation. Any minimax procedure in
® must clearly take no observation with probability =% (a similar remark
applying for e-minimax procedures); however, the only invariant procedures
take a first observation with probability one (see Sec. 4 for further discussion).
The difficulty here is that Assumption 1 is violated, since g, must depend on
the observation and thus, for a § which requires no observations, the §, of (2.1)
would require no observations but would depend on the observation, and would
thus not be a legitimate decision function.

(C) As an example which shows that Assumption 2 cannot be entirely dis-
pensed with, consider the setup of Example v with Fo(z) = 0if 2 < 0 and =1
ifz = 0,and let W = 1if d = 8 and =0 otherwise. This is essentially a game
where one player says “don’t you name the real number I name’ and then
names a real number, while the only affine-invariant procedure for the other
player is, on hearing the number, to name the same number. The procedure
o* of Example v is in fact uniformly worst and is clearly not minimax, while
there exist many minimax procedures in the class C. This example can be made
into one where all members of § have densities with respect to a fixed o-finite
measure by restricting X, D, and G to the rationals (of course, this changes pu,
and Condition 5b(2) is no longer applicable), and can be made more proba-
bilistic by letting F, assign probability % to each of the values —1, 0, 1; but the
phenomenon persists. See Example v for an example of a condition which elimi-
nates the phenomenon encountered in Counterexample C.

(D) Stein [17] has announced an example in testing hypotheses where all our
assumptions except Assumption 5 are satisfied and where the conclusion of the
theorem is false. This example shows that the real projective group and GL(2)
do not satisfy Assumption 5.

3. Proof of invariance theorem. We now use a modification of the method of
proof used in [1] under Condition 2bp and Assumptions 4 and 5, in order to
prove the following theorem (see also Remark 7 of Sec. 2):

TueorREM. If G leaves the problem invariant and if Assumptions 1 to 5 are satis-
fied, then for any 6 € D and € > 0 there is a §' & Dy such that 7y < € + 5. In
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particular, if §* is minimax among procedures in Dy, then it is minimax among
procedures in D.

Proor. Our first step is to prove (3.5) below. Denote right invariant measure
on G by u;ie., u (E) = uw(E). Fix b and 8 ¢ D and let {G,} be a sequence
satisfying Assumption 5, and define

3.0) Hrulg) = [ W0, 2, g™, dn).

Then, for y ¢ G,

J

3.2) = lim

n-»>00

< lim 2bu(vGa AG,)/u(Gy) = 0,

n-»>00

lim

n-»>00

. (H F,z(g_l) - H p.z(vg—l)]u_l(dg)/ u(G)

‘ [HF ,z(h) - HF,:('Yh)]/‘(dh)/ﬂ(Gn)

by Assumption 5. Using (3.2) with y = ¢, and bounded convergence, we obtain,
for any fixed £ £ Sy,

li - 1y —
33) W% [ wan) [F@o [ g™ = Hraoog™ ) /u@) = 0.
b n
It will simplify notation if we define the operation L by

6o L=lmint [ san [P [ i@ [
Using (3.3), a change of variables, and (2.1), we obtain
LW'(F, z, g~')d(ge, dr) = LW'(F, z, g9~ )3(lgzg "1, dr)
(3.5) = LW(F, z, u)d(gz*, duggs u)
= LW'F, z, u)s,(x, du).

Let 6 ¢ . Using the fact (Assumption 3) that S, includes every measure
giving probability one to a single element of T, O {Fjs} and that gX has proba-
bility measure gF when X has measure F, we have for any fixed § ¢ D,

5 = sup sup f F(dz) f WO(F, z, r)é(, dr)
FeF b X D

= sup sup sup [ £(dF) f F(dz) f W (gF, gz, r)s(gz, dr)
b tEe8pgeq@ YTy % D

(3.6)
= sup sup lim inf | RGN (cH) e

b eS8y, mn->oo Gy

| g [ Py [ WF, gz, oz, dr),
T, x D
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where the inequality follows from the fact that an average is no greater than a
supremum. Using Fubini’s theorem (u"'(dg) on G and £(dF)F(dz) on T, X %
are both finite) and the invariance of W (i.e., W(¢F, gz, r) = W'(F, z, g 'r)),
we see that the last member of (3.6) is equal to the supremum with respect to
b and £ of the first member of (3.5). On the other hand, again using Fubini’s
theorem, the supremum with respect to b and £ of the last member of (3.5) is
equal to

(37)  sup sup lim inf | _ u7(dg)r$,(¢)/u(Ga) 2 sup sup inf r3(8),

b te8p mnow a1 b (eS8 8eDy
the inequality following from the fact that an average is no less than an infimum
and that §, € D; for g ¢ G (see Remark 3). Using first Assumption 3 and the
fact that sup;.s,r3(§) = 75 if 6 £ ©;, and then using Assumption 4, we see that
the right side of (3.7) is equal to
(3.8) sup inf 73 = inf 7.

b 8Dy 6edDy

Thus, for each 6 ¢ D, the first member of (3.6) is no less than the last member
of (3.8), proving the theorem.

The above theorem does not, of course, treat the question of whether or not
a minimax procedure exists, i.e., whether inf;.o7; is attained. Conditions for this
may be found, e.g., in [15] and [16]; the same conditions will usually apply for
both © and 9;, so that the conclusion of our theorem can be strengthened by
the additional remark that a minimax procedure exists in D; if one exists
in ©. Various conditions for the attainment of inf,; 75 are also given in [1] and
[4] (see [5a]). Of course, for suitably simple W one can often write down an ex-
plicit formula for a minimax invariant procedure in the manner discussed under
Condition NR of Sec. 2; for example, by now this formula is well known in the
case studied in [6].

It is of interest to note an observation of Peisakoff to the effect that his proof
(under Condition 2bp) will go through in many cases where the elements of
are not all the distributions gF, for g € G, but only a suitably large subset of
these: e.g., in Example i of Sec. 2, the restriction § = 0 might be imposed. This
extension can also be carried out under our assumptions in certain cases where
the restricted class of elements g for which gFs ¢ § is not compact.

4. The sequential case. Our setup in this section is that of Secs. 2 and 3 with
certain interpretations. For simplicity our description is specialized to handle
the examples stated at the end of this section, although a more general setup is
obvious. The space ¥ is a product space ¥; X ¥, X - - with denumerably many
factors or a trivial modification of such a space as in Example ii or iv of Sec. 2,
and we write a point of ¥ as x = (x;, %2, - -+ ) and the random variable X as
(X1, X2, --- ). In the examples we treat, the ¥; will be copies of the same
Euclidean space and the X, will be independent and identically distributed
according to each F ¢ §. The group G will act componentwise on ¥, so we may
write gz = (g1, gx2, - - - ). The space D will be a product space D; X E where
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the ‘““terminal decision space’ D, has the role the space D had in fixed sample-
size problems and Bp = Bp, X By where (Bp, , D1) is the Borel sets on a subset
of a Euclidean space and By contains at least the countable subsets of E. The
‘“‘experimental decision space’” E consists of all ordered k-tuples of (not neces-

sarily distinct) positive integers fork = 0, 1,2, - - - , as well as infinite sequences
of positive integers; we represent an element of £ by ex = (a1, a2, -- -, ax),
such a k-tuple representing an experiment carried out in k stages, the ¢th of
which consisted of a; ‘“‘observations,” namely, on X,, 41, -+, X, , where we
write s(e) for the sum of the integers in e and s, = s((a1, - - - , ax)); eo represents
the taking of no observations, and we write e, = (a;, @z, --- ) for an e where

experimentation never ceases. The group G acts trivially on F, so that we may
write gd = ¢(di, e) = (gd1, e) in the sequel. The weight function W can depend
on F, dy , and e; for simplicity of exposition, in this section the weight func-
tion W will be a sum of two non-negative parts:

(4:1) W(F7 z, (dl ) 6)) = WI(F; dl) + W2(e)y

although the more general form W(F, d;, €) can be treated in similar fashion.
Thus, W, takes the place of the W of the fixed sample-size case and must satisfy
the invariance condition Wy(gF, gdi) = Wi(F, dy) for all F, d; and g. The cost
of experimentation Wy(e;) we assume to be non-negative and finite if k¥ < o
and infinite if k = o (the cases where W2(e;,) is permitted to be infinite fork < «
in some treatments of decision theory to reflect upper limits on sampling will be
covered by restricting D as indicated in Remark 8 below), and we assume the
existence of a finite number ¢ and a real nondecreasing function % tending to
infinity with its non-negative argument and such that, for all k. < « and e,

WZ((al y Ty Ok y 1)) - W2((a1 y Ty ak)) < q,
(4.2) Wa(e) > h(s(e),
Wal(ar, -+, @k, 1)) = Wa(ar, -+, a));

in other words, the cost of taking one additional observation at any stage is
bounded, for any finite number M only finitely many different e’s cost less than
M, and additional observations always have non-negative cost. One often imposes
on W, practical restrictions such as Wy((a: + a2)) = W((a1, as)), but this is
inessential for our considerations. Typical specializations of W, often encountered
in practice are Wy((a1, -+, &) = D1 Wa((a:)) or = Wy((Z_%a;)) the latter
case with W,((t)) = ct being especially important.

Denote by B, the Borel field of members of B; which are cylinder sets with
base in ¥; X -+ X %, ; l.e., a B,-measurable real function of z is one which
depends on z only through (z;, - - -, ,), the only Bo-measurable functions being
constants. We denote by ©° the class of all sequential decision functions §, i.e.,
functions 6 on ¥ X By which are probability measures on D for each z (see also
the discussion of the paragraph containing (4.3) below for interpretation) where,
in addition to the measurability requirements of Section 2, each & £ 2° is assumed
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to satisfy the restriction that if e = (a;, -- -, a;) with s(e) = r and if Q. is
the set of all elements e, or e; of E of the form e, = (a;, -++, a, a, -+ ) or
e; = (@1, , 0, q Gya, -, 0a;) forallj = k + 1 and all a4z, -, then
8(x, Ay X e) (for each A; € Bp,) and &(x, Dy X Q...) are B,-measurable in z; that
is, the decision to stop taking observations or to take a_particular number of
observations at the next stage depends only on observations which have already
been taken. Let ©* denote the class of all § in ©° for which 0z, Dy X e) =0
whenever s(e) < ¢; i.e., which for each x observe at least z;, - - - z; w.p.1. For
i = 0, let Di denote the invariant procedures in D°; of course, § is invariant if
8(gz, A1 X €) = 8(z, Ay X e) forall g, z, A, , e. We have already seen in Counter-
example B of Sec. 2 that the theorem of Sec. 3 will not generally be true if © = ©°
because not all of the §, of Assumption 1 will be decision functions. Of course, if
G were compact we could use the method of [4] directly as outlined in Sec. 1,
without any difficulty. For the examples treated at the end of this section it
will suffice to take ©® = D' or D% (The sequential considerations of [1] consist
of briefly pointing out an example of the sequential setup of ® and the necessity
of not taking ® = D°.)

The question arises, how much do we lose by restricting ® to be ®' or D°
rather than ©’? The answer will usually be easy to verify. For example, suppose
D,, G, §, and the X; are as in Example i (or i’) of Sec. 2 (Examples vii to x of
the present section) and that W, , which we may think of as a function of 8 — d; ,
tends to its supremum w (say) when its argument tends to « (or, similarly,
— ). Then any procedure § which requires 0 observations w.p.1 clearly has
7 = w. Since any member of D’ can be written as a probability mixture of a
procedure in ' and a procedure which requires 0 observations w.p.1, it is evi-
dent that either every procedure requiring 0 observations w.p.l is minimax,
or else there is a & ¢ D' which is minimax. Which of these is the case will be
easy to verify in most practical examples. In particular, if w = «, the second
is always the case.

The function é as given above is (with a different notation) the function p de-
fined in Eq. (1.3) of [15]; 6(z, A1 X e) is the probability, when & is used and
X = 1, that the experiment will terminate with experimental decision e and
terminal decision an element of the subset A; of D; . The usual representation of
a sequential decision function is obtained by letting D be the union of D; with
the space L of positive integers and writing, for each element e of E and subset
Aof D,

o = 3@ A X &) + 6z, D X Q)

43 5| z, ,

“3 @l 8z, i X Q)

where Q. is the set of all elements of the forme, = (a;, --+, a5, -+- ) ore; =
(@, --,a, - ,a;)of Eforallj = k, whene = (a;, --- , ax) (thus,Q,,isthe

union of all Q.. for a > 0, together with e), while Q; is the union overa e An L
of the sets Q... , and we let A, = A n D;. If the denominator of the right side of
(4.3) is 0, define 6(A | z, €) = 1 or 0 according to whether or not 1 ¢ A n L; the
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definition in this case is only for definiteness and could be made in many other
ways. The left side of (4.3) represents the conditional probability, when & is used
and given that X = z and that the experiment has already proceeded
(if e = (a1, -+, a)) through k stages of experimentation as represented by e,
that a terminal decision in A; is made or that the next stage of the experiment
consists of a number of observationsin A, = An L. Clearly, 6(A | z, e) is B,-meas-
urable in z if s(¢) = r, and the functions (A | z, €) on B X ¥ X E satisfying
obvious restrictions are in 1-to-1 correspondence with the functions 8(z, A) on
X X Bp as described origina.lly (Bp consists of every union of a set in Bp, and a
set in Bz). Moreover, in terms of our later description, 8 is invariant if 5(A [z, e) =
8(g4 | gz, e), where gA = g(A,U A,;) = (gA,) U A, . We shall use this representa-
tion of D; below.

The problems we are going to consider are ones in which the difficulty en-
countered in Counterexample B can be avoided as indicated above, and in which
there is a very simple sufficient sequence {T;} of functions on ¥, T'; being B;-meas-
urable (the range space of T'; is immaterial). If one does not employ the principle
of sufficiency in the manner of this section the theorem of Sec. 3 will only yield
the dependence of the stopping rule on zo(=(x; — 3, -++, . — ;) after n
observations in Example vii, for example), nothing like the result we obtain.
Specifically, we assume (see Example xv for further remarks)

AsSUMPTION 6. For some positive integer m, Assumptions 1 and 2 are satisfied
for © = D" with g, a Bn-measurable function of x. There exists a sequence { T’}
of functions with T; a Bi-measurable sufficient statistic for (X1, -+, X.), §l,
such that there exist conditional probability d.f.’s

Fr(yly 7y7|t1') = P{gzl(le ,X,) = (y17 7y7‘) l TT(X) = tf}
for r = m with the property
(4.4) F.(y1, -+, yr | t,) does not depend on ¢. .

It will aid understanding to consider an example at this point, Example vii
of this section. The X; are normal with unknown mean and known variance,
and ¥; = G = D; = R'. We also identify § with R' in obvious fashion. We
can let n = 1 and g;u = w + x, for u in ¥, or D;, and identify the indices a
with sequences 2. = gz'x = (0, 2 — 1, @ — @1, --- ). Let T = S i, X;.
Since g}le = 0 and g}l(Xz, e, Xr) = (X2 - X1 y T, Xr —_ Xl), the dis-
tribution of gx'(X:, - -+, X,) given that T;(X) = ¢; is multivariate normal with
means and covariances independent of ¢;, so that Assumption 6 is satisfied.
Similarly, in Example xi with G the affine group and ¥; = R', we put
g 'xs = (x; — 21)/ (22 — 21), ete.

Assumption 6 is related to a property cited in [5a] as being proved in [4] in
certain regular cases, to the effect that we lose nothing in the validity of the
theorem of Sec. 3 for problems considered in [4] if we first use the principle of
sufficiency and then apply the invariance principle to the space of a correctly
chosen sufficient statistic. Assumption 6 also includes an additional strong
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property in that (4.4) is obviously not implied by this result of [4] (see also
Example xv below). This assumption is easily verified in Examples vii to xiv.

Denote by Q(s) the infimum of 7, — Wa(el”) over all § with 8(z, Dy X e{®) = 1,
where ef” = (s), and by Q:(s) the infimum when § is also restricted to be in-
variant; thus, Q@(s) and Q:(s) are the values of inf; 7; over all § or all invariant
8 for the fixed sample-size problem with sample size s when the weight function
is W1 . We assume

AssumpTION 7. Either 75 = o for all § ¢ D™ or else there is an integer m’ with
Q(m') < .

This assumption is easy to verify in practical cases for the examples considered
in this section, where one will usually know @;(j) < « for some j. The assump-
tion can be shown, in fact, to be implied by our other assumptions under mild
regularity conditions, although for the sake of brevity we forego such con-
siderations here.

The main remaining difficulty in applying the theorem of Sec. 2 to the present
problem is the verification of Assumption 4, which would usually be difficult to
verify directly in sequential problems. OQur form of the theorem which follows
reduces this verification to the much simpler nonsequential one of Sec. 2.

TueoreM. If G leaves the problem invariant and Assumptions 3, NR, 5, 6, 7,
(4.1), and (4.2), as well as Assumption 4 for W1 in each fixed sample-size problem
with sample size = m, are satisfied, and if D = D™, then for each ¢ > O there
exists a fixed sample-size invariant procedure 6* (the sample perhaps being taken
according to some grouping) with 73+ <e + infsp 75 . Thus, if Qi(s(e)) + Wale)
is minimized over s(e) = m by e = €' and if 6* s @ minimax invariant procedure
Sor the fixed sample-size problem with sample size s(e’) ignoring W , then a minimazx
procedure for the sequential problem is to take s(e’) observations according to the
grouping € (which minimizes Wa(e) over e satisfying s(e) = s(e’)) and then to
use &*.

ReMARk 8. Before proving the theorem we remark that the first paragraph
of the proof below can easily be altered to handle the case where D is further
restricted in some way such as bounding k or the a; or s(ex) inex = (a1, -« - , ax),
ete. We have already noted the fact that it will usually be easy to verify whether
a minimax procedure of D™ or a more trivial procedure is minimax in ®°. We
also note that one can think of G as acting on 7T, for r = m in the examples
treated by us, so that the conclusion of the theorem could be phrased in terms
of invariant functions of T, .

Proor or THEoREM. We may assume p = infsp 75 < o, the theorem being
trivial otherwise. By Assumption 7 there is an m’ and a procedure &’ with
Oz, D1 X ei™) = 1 and 7o — Wa(ei™) = C < o. Since the X, are inde-
pendent and identically distributed we can clearly assume m’ = m. Let € be a
positive number. The second line of (4.2) implies the existence of a number
N’ > m such that any procedure § ¢ D™ with 73 < p + € must require fewer
than N’ observations with probability >1 — ¢ for all F ¢ . For any such é
define the procedure &’ as one which proceeds like § except that whenever ex-
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perimentation has reached a stage e (including e;) where s(e) < N’ = s(e) + ¢
for some ¢ with 5(z, ef” | ¢) > 0, 8’ assigns the probability 5(z, e{” | ) which &
assigned to the taking of ¢ observations at the next stage (there may of course
be several such ¢) to the taking of exactly m’ additional observations one-by-one
and, if these observations are taken, uses &° on these last m’ observations to reach
a terminal decision. Since the X, are independent and identically distributed,
by the first and last lines of (4.2) we clearly have 75 < 7; + ¢(C + ¢m') and
8 ¢ D™ Since ¢ > 0 is arbitrary, we conclude that our theorem will be proved
if we prove it for the case where D is restricted to the class D™ of procedures
in D™ for which é(z, D1 X Ey) = 1, where N is a fixed integer and E; is the
set of e for which s(e) < k. We hereafter assume ® = D™,

In order to apply the theorem of Sec. 3 to the present case, it remains to verify
Assumption 4 when ® = D™". Let Q:(s) be the value of Q;(s) when Wy is re-
placed by W% . By Assumption 4 in the fixed sample-size case, we have

limgreo [Wa(e) + Q2(s(e))] = Wale) + Qu(s(e))

for each fixed e with s(e) = m. Since there are only finitely many e with
m = s(e) < N, we obtain, for ® = ™%,

lim inf 7% = lm min [Wale) + Q%(s(e))]

bs0 6Dy b>0 mZs(e) <N

= min [Wile) + Q:(s(e))] = aiﬂf s,

m=s(e) <N

which is Assumption 4 for the present problem.
Applying, then, the theorem of Sec. 3, we obtain for any 8¢ ™" and € > 0 an
invariant procedure 8’ with 75 < 75 + e. Since ¢’ is invariant, we have

8z, Al e) = ¥(gz'z, gz'A | €)
§(g-'z, gzt | ) + 8'(gz'z, An L | e).

Define the procedure 8” by
8 (z, Al e) = B{8(x'X, gx'Ar| €) | To = Toi(2)}

(4.5) ,
+ f ) (y’ AnL | e)Fs(e)(dyl; sy dYs(o l Ts(e)(x))-

Since Bp, = Borel sets on a Euclidean set, this defines a decision function for
some version of the conditional expected value (see, e.g., [18]). Clearly
8"(z, Dy X E,) = Ofork = mand = 1fork = N, s0 6” ¢ D™". Since {T.} is
sufficient, rs» = 75 . But for each e and A, C L, Assumption 6 implies that
8”(x, Az | €) is a constant. Hence 6” can be considered to be a member of the class
¢ of probability mixtures of fixed sample-size procedures of sample-sizes s(e)
with m < s(e) < N, where the sample may be taken according to some grouping
e (independent of X). It is easy to see that, under our assumptions, the result
of the previous paragraph remains true if ™" is replaced by ¢ and that Assump-
tions 1, 2, 3, and 5 remain satisfied; thus, the theorem of Sec. 3 is valid for © = ¢,



MINIMAX SEQUENTIAL ESTIMATION 595

so that there is a 8* e ¢; C DF"Y with 7+ < 7o + € < 75 + 2e This completes
the proof of the theorem, since condition NR implies the constancy of s+ and
hence the existence of a fixed sample-size 8* & ¢; with rs# < 74 .

We note that §” in the preceding paragraph can be proved invariant in our
examples, for an appropriate version of the first term on the right in (4.5), but
the proof as given seems just as short. The lack of dependence of W on z in
(4.1) is of course used in invoking sufficiency.

ExampLes. We shall use the following notation in our examples, where z and
6; are real and 6, and v are positive:

1 —(z—01)%/203

filz; 61, 6,) = N 2nt, s
{1/202 if |2 —6,] <6,

fo(2; 61, 62) = .
0 otherwise,

fsr(%; 01, 02) =

(2 — 6)" "¢ =% 92 D(y) if z > 6,
0 otherwise.

In all the examples except xiv, the X; will be independent real random variables
whose common Lebesgue density will be assumed to be in some class of the above
densities, which class we identify with §.

(vii) § consists of the densities f; for — e < 6; < o with 6; assumed known
and 6; to be estimated and hence G = D; = § = additive group of R, W; being
a function of §; — d;. Note that in most practical examples Assumption 4 can
be verified by applying Condition 4a or 4b or 4c¢, and the question of whether
to use a procedure requiring no observations or one in D' will be easy to settle.
Of course, we can take T; = » +1 X;,m = 1, and g;u = u + 2, as previously
mentioned. Thus, the conclusion of the theorem will be satisfied for most W;
and W encountered in practice. Of course, @;(s) is easily computed in this case
to be given by

(46) Q) = inf [~ Wilh + wiilus 0,007 dus

and, if &, achieves the minimum, a nonrandomized sequential minimax estimator
will be given by taking s(e’) observations according to the grouping ¢’ described
in the statement of the theorem and then estimating 6; by s(e’ )—IT.,(,,/) + hscery -
(vii+) We mention several extensions of Example vii: (1) The form of the
minimax (or an analogous e-minimax) estimator above depends on 6; in such a
way that if it were only known that 6, belonged to some set B (not necessarily
the set of all positive numbers) and if W, were a function of (d; — 6;)63" instead
of (d — 6,), then the estimator of the previous problem vii for the case 6; = 1
would be minimax (or e-minimax) here. (2) A second extension is to note that,
for the original setup of Example vii, if W is symmetric we can also apply the
group of reflections as in Example iii of Sec. 2. If in addition W} is nondecreasing
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in |6; — di, we obtain the sample mean (h, = 0 in vii) as minimax estimator, a
result first obtained in [8], with a special case in [9]. Note that the question of
whether a procedure in D' or one requiring no observations is minimax is trivial
in this case.

(viii) Same as vii, except that the possible distributions are the f3, withy = 1
and 6, known and 6; unknown with —o < 6, < . In this case T; = min
(X1, -+, X,) and the considerations and conclusions are as in vii with f; re-
placed by fu(u; 0, 6:s7") in (4.6), the minimax estimator being Ty + hacey . A
very special case of this was obtained tediously in [11].

(ix) & consists of the densities f, with 6; known and 6, unknown, 0 < 6, < .
Here 6, is to be estimated, so D; = § = G = multiplicative group of positive
reals. The weight function is a function only of 6/d;. We can either take
G = G“ or can think of 6, is being 0 and let G = direct product of G* and
G where G contains the identity and an element which multiplies X; by — 1
and leaves § and D fixed. We have

m =1 and T,=ma.x(|X1— 01!, ,lX.'— 011)

andg;'u = u/(z; — 6)) if @ = G, withan obviousmodificationif welet G = G® X
G®. In either case, Assumption 6 is satisfied. Of course, this problem is really the
same as that of estimating 6, when X; has density 1/6, for 0 < z; < 6, and 0 other-
wise (put X1 = |X; — 6 above), and in this form the problem may be reduced
to that of viii by a logarithmic transformation as in Example i’. The form of the
analogue of (4.6) and of the minimax procedure are obvious. The special case
W2 = (8, — d1)*/63 was considered in [11]; Condition 4c is satisfied there.

(x) § consists of the densities f;y where v and 6; are known and 6, is unknown,
0 < 6, <. This is a scale parameter problem with G@ = the G of ix, and we
need only remark that the theorem applies with T; = Y iy X;, the analogues
of (4.6) and the form of the minimax procedure being obvious. This problem
was treated for a particular y and weight function in [10] and for a special class
of weight functions in [12].

(x') If X; has symmetric density about known 6, , the density of | X; — 6, |
being that of Example x, the same considerations apply, using also the G® of
ix. Similarly, the problem of estimating 6, when f; is the density and 6, is known
can obviously be reduced to that of Example x.

The next three examples are similar in that, in each, there is both an unknown
location parameter 6; and also an unknown scale parameter 6, with — » < 6; <
and 0 < 6, <. In each case m = 2, G is the real affine group (see Example ii),
and g;'z; = (z; — 21)/(x2 — 1). There are three main types of problems in each
example: (1) estimation of both 6, and 6, , so that D; = G, dy = (du , dis), W1 is
a fllIlCtiOIl of (01 - du)/02 and d]z/ez , and

ge' di = ((du — 21)/ (@2 — 1), due/ (@2 = 71));

(2) estimation of 6, , where D; = R;, W, is a function of (6 — dy)/0:, gz di =
(dy — 21)/(z2 — 21); (3) estimation of 6, , where D, = positive reals, W, is a func-
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tionof di/6s , =" di = di/ (2, — 21); of course, (2) and (3) can really be considered
as special cases of (1) where W; only depends on one of its two arguments. For
each type and example it is simple to write down an analogue to (4.6) and the
corresponding form of a minimax procedure. In each case the conditions of the
theorem are easily verified for many commonly used W, and the verification of
whether one should use a procedure in ©° or onerequiring one or no observations is
also easy. The use of the Bayes method in these examples would of course be
much more complicated than that in [8], [11], and [12].

(xi) § consists of all densities f; . Putting X*° = ¢ 'Y i; X;, we have T; =
(X®, 3T (X; — X)) for ¢ = 2. Note that the problem of estimating 6, ,
even for the appropriate weight function, cannot be obtained by the method of
[10] without some modification, because of the nature of the Cramér-Rao bound.

(xii) ¥ consists of all densities f; . Putting U; = min (X;, ---, X;) and V; =
max (X1, -+, X;), we can take T; = (U, Vi) or (Us + Vi)/2, (Vi — U)),
for ¢ = 2. (The second form of 7'; here and in the next example are pertinent to
remarks made below in Example xv.)

(xiii) § consists of all densities f3 (i.e., v is known to be 1), and in the notation
of the previous two examples we can take T; = (U, , X?) or (U;, X¥ — Uy)
fors = 2.

(xiv) Asan example of a multivariate nature, suppose ¥; = R’ for some positive
integer J, the X; again being independent and identically distributed. Here
X:;=Xu, -+, X)), and we assume X; has a multivariate normal distribution
with the identity convariance matrix and unknown mean § = (6;, --- , 6,) e R’.
The problem is to estimate 6, so that D; = § = G = additive group of R’ and
W, is a function of the difference between the vectors d; and 6; . Takingm = 1
and T; = X and ¢;'w = u — 2 for u ¢ R’, the theorem is applicable for many
common weight functions. (Examples viii to xiii have similar multivariate
analogues.)

(xiv+) We can extend Example xiv in the manner of vii4-. In particular,
if W1 is an increasing function of the usual Euclidean distance between d; and 6,
it is easy to see that X““"” is a minimax sequential estimator. The orthogonal
group also leaves the problem invariant in this case, but this fact need not be
used in obtaining the above form of the minimax estimator, it sufficing to apply
a result of [19]. It is interesting to note that it is shown in [20] that, when W, is
the squared length of the distance and J > 2, this estimator is not admissible.

(xv) As an example which illustrates the fact that the method of this section
yields little if no T'; satisfy Assumption 6, consider the problem of estimating
6, when the X, have density f; and 6, is known. This problem is considered for
certain W in [15] and [21], and the minimax procedures obtained there are not
fixed sample-size. As in Example xii, (U;, V;) is a minimal sufficient statistic.
Assumption 6 cannot be satisfied for any sufficient T'; . The application of our
method in this example would yield the form of the estimator obtained in [15]
and [21], but would only yield the fact that the minimax stopping rule depends on
U; — V;at the ith stage; the stationary form of the minimax stopping rule seems
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to depend strongly on the particular nature of f, . It will be noted that the pre-
vious examples differ from this one in that in the former, but not in the latter,
there is a natural version of T; for © = m whose range is G and such that the problem
in terms of the T is left invariant by the natural operation of G on the range of T’ .
This is the essence of the examples where the method of this section yields the
conclusion of the theorem, although we have seen that G may be modified some-
what from what this statement indicates (see Examples vii+, ix, x’, and xiv+)
to the case where the range of T is a subgroup or homogeneous space of G. We may
add that, in most sequential festing problems, the invariance principle yields
little, for reasons similar to those present in Example xv.

ReMaRk 9. We end this section with a remark about other versions of the
statistical problem, such as that of minimaxing the W; component of the risk
subject to a bound on the W, component or vice versa. This includes such prob-
lems as the problem of finding optimum sequential estimators of bounded relative
error of the scale parameters in Examples ix to xiv (in [7] there is some discussion
of this problem but our results are not obtained) and that of obtaining optimum
sequential interval estimators of prescribed length and confidence coefficient
for the location parameters in Examples vii and viii. The latter problem is con-
sidered in [8] and [9] in the case of Example vii, while [8] considers also the prob-
lem of minimaxing one component of risk subject to inequalities on two others,
etc. The discussion of [8], [21], and [12] shows at once on application of our the-
orem that results of all these types hold for appropriate fixed sample-size pro-
cedures, or probability mixtures thereof, in Examples vii to xiv.

5. Sequential problems with continuous time. In this section we will use the
method developed in Secs. 3 and 4 to obtain certain sequential minimax results
for decision problems concerned with stochastic processes with continuous time
parameter. Two types of problems will be considered: in Part I of this section
we treat problems where the invariance is present in the same form as in Sec. 4,
while in Part II the invariance has to do with the time parameter.

1. Extension of Section 4 to continuous time. The problems we consider here
will be continuous time analogues of certain of the problems of Sec. 4 (in fact,
those of Sec. 4 can be considered as special cases of those here, in the manner
of [12]). Since the proofs are essentially identical to those of Sec. 4, we shall
not give them. In fact, rather than to state a general theorem, we shall merely
list three examples. In each of these the separable process {X(¢), ¢ = 0} is one of
independent and stationary increments which can be taken to be continuous on
the right, and X (T is sufficient for {X(¢),0 < ¢ < T'}. Asin Sec. 4, W can be a
function of 6" d (6 being the unknown parameter) and of the experimentation
decision, but for convenience of exposition we discuss the case where it is a sum
W, + W, . The cost of experimentation W, may either be taken to be of the
form Wo(T) if the process is observed continuously up to time T, or else the
cost may be allowed to depend on the number and spacing of the instants at
which the process is observed; a description of this and other modifications
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(such as the problem of having to give an estimate continuously), as well as a
more detailed discussion of the nature of sequential decision functions in the
case of continuous time, and of the processes considered, will be found in [12].
In all of the examples, assumptions on W, can be treated as in Sec. 4. The ana-
logue here of the restriction to ©' in Sec. 4 is that we must restrict ourselves to
the union over all € > 0 of the classes ©° of procedures which observe the process
for at least 0 < ¢t < e w.p.1 for all F ¢ §. When we consider 9, the g, is a func-
tion of X (e). Asin Sec. 4, it will be easy in most practical cases to decide whether
there will be a minimax procedure in D° for some ¢ > 0 or a minimax procedure
which does not observe the process at all.

In each of the three examples, our result is, under assumptions on W like those
of Sec. 4, that there exists an invariant minimax or e-minimax procedure which
observes the process for a constant length of time w.p.1 (or a minimax procedure
which does not observe the process at all). Formulas for computing the minimax
procedure can be given as in Sec. 4 or [12], and Remark 9 of Sec. 4 applies also
to these examples.

(xvi) The process is the one-dimensional Wiener process with known variance
per unit time and with EX () = 6, the object being to estimate 6, . Thus, G,
&, D, and the form of W, are the same as in Example vii. In particular, in the
special case of a symmetric monotone W, , we obtain the result of Sec. 5 of [12].

(xvi’) For the Wiener process with unknown scale or unknown location and
scale, it has been shown in [12] that the scale parameter can be estimated with
arbitrarily high accuracy in arbitrarily short time. Hence, the only new practical
problems that arise when the scale parameter is unknown do so because W,
reflects the number of instants at which the process is observed. In this case,
as indicated in [12], we obtain problems analogous to Example xi with G the
affine group, or to Example x’ (see also the next example below). In either of these
problems there will be an invariant minimax procedure which observes the
process at a certain set of instants specified in advance of the experiment.

(xvii) The process is the Gamma process; i.e., X(0) = 0 and X (1) has density
function f;, of Sec. 4 with 6, = 0 and y known, the object being to estimate the
scale parameter 6, . Here §, D, G, and W, are the same as in Example x of Sec. 4.

(xviii) Consider the J-variate Wiener process X(t) = (Xi(2), ---, Xs(£)
where the X(f) are independent with known scale factors and EX;(t) = 64,
the 6; being unknown, — e« < 6; <. This is the continuous time analogue of
Example xiv, and the considerations there and in xiv+ carry over to the present
example. '

II. Invariance in time. We now consider a process {X(¢), ¢ = 0} with unknown
parameter § > 0 and with the property that, if {X(¢), ¢ = 0} has probability law
labeled 6, then the process {X.(f), ¢ = 0}, defined by X.(t) = X(ct) where ¢ > 0,
has probability law labeled cf. The most familiar process of this kind is the
Poisson process. Another such process is the gamma process with 6; known and
v unknown.

Suppose the weight function (for estimating 6) is a function only of d;/6 and
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T/6, where d, is the terminal decision and T is the length of time experimentation
is carried on (modifications of the type mentioned earlier in this section and
-discussed in [12] are also possible). Then clearly the multiplicative group of posi-
tive reals leaves the problem invariant, where we define g({X(¢)}, 0, (d:, T)) =
({X(gt)}, g8, (gdy, g~'T)), the group operation being ordinary multiplication.
The difference here from previous problems is that G acts on the process by
shifting the time argument of a sample function by a scale factor rather than by
operating on the values of the sample function, and that G' acts nontrivially on
the experimental decision. The reason for allowing this last action and the
accompanying dependence of W on T/6 rather than on T lies in the form of the
result which this setup yields when one applies the invariance theorem and
examines the invariant procedures.

The details here are slightly more delicate and lengthy than those in Part I,
so we shall be content with sketching the main idea. Consider the Poisson process
with right continuous sample functions. X () is sufficient for {X(¢),0 =< ¢t < =}.
Suppose we have a nonrandomized stopping function which depends on the
sufficient statistic, i.e., a nonnegative functional T’ of the process with the prop-
erty that the event t; < T =< ¢, is measurable with respect to the Borel field
generated by {X(¢), & < t < t}. For such a T to be invariant we must have
T(x) = cT(x,) for all ¢ > 0 and all sample functions x, where x, is the sample
function of X, when x is the sample function of X. It is easy to see that such a
stopping function as 7'(x) = constant is not invariant, while T',(z) = first time
¢t that z(¢) = r, where r is a fixed positive integer, is. In the present problem we
must restrict D to decision functions which observe the process until at least
the first time X (f) = 1 (that time gives ¢z ). Under fairly general conditions one
can verify whether or not a minimax procedure should observe the process at all
and that, if it does, a stopping rule of the type T, is minimax. Of course, an
invariant nonrandomized estimator will be of the form constant/T, . A special
case of this result thus shows that the procedure suggested in Sec. 3 of [22] and
which was asserted there to be minimax among all procedures using a particular
stopping rule 7. (analogous to a fixed sample-size problem) actually has an opti-
mum property among all sequential procedures: e.g., among all procedures
which give at least the prescribed accuracy of estimation, this one minimaxes
E,T/6.
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