A THEORY OF SOME MULTIPLE DECISION PROBLEMS*. II

By E. L. Leamann!

Unaversity of California, Berkeley

Summary. The theory of Part I is extended to problems in which it is per-
mitted not to come to a definite conclusion regarding one or more of the ques-
tions under consideration. Some problems are also investigated in which, from
a single set of observations, one wishes to answer a number of questions in se-
quence. Here the nature of the question at a later stage will depend onthe answers
obtained at the earlier stages.

9. Decision procedures permitting partial conclusions. It is a common feature
of all the problems treated in Part I, that a fixed partition of the parameter
space  into sets Q. is given, and that ore wishes to determine which of these sets
contains the true parameter point. There are however many statistical problems,
such as the estimation by confidence sets, in which the possible decisions do not
correspond to the sets of a fixed partition. In particular, this is the case in the
field of statistical inference, when the statistician is free to decide how sharp a
statement he can reliably make on the basis of the observations. We shall show
in the present section how such problems may be generated by the simultaneous
consideration of a number of two-decision problems as in Part I, if one suitably
modifies the interpretation of the decisions involved.

Previously we were concerned with testing a set of hypotheses H,:6 € w, , so
that in each component problem the choice lay between the two decisions 8 € w,
(acceptance of H,) and 6 ¢ w,' (rejection of H,). Suppose now instead that the
statistician is asked only whether the data reject the hypothesis, and that in
case they do not, no alternative positive statement is required. The choice may
then be said to lie between the statements 6 € ;" and 6 € 03 = Q.

This actually appears to be the point of view taken by Duncan (“Multiple
range and multiple F tests”, Biometrics, Vol. 11 (1955), pp. 1-42) in his formu-
lation of this class of multiple decision problems to which reference is made in
section 1 of the present paper.

If one considers simultaneously a number of such problems, one is faced with
a multiple decision problem in which the different possible decisions correspond
to the statements that a certain number of the hypotheses H, are false, but
where nothing is said regarding the remaining hypotheses. This is equivalent
to the statement that the parameter point 6 lies in the set

9.1) Q= Nyob
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548 E. L. LEHMANN

where the y’s are —1 for each rejected H, and 0 for the others. In the particular
case that all of the y’s are zero, we have @; = Q, and thus make no statement
whatever about the position of 8. As before, it may of course happen that some
of the formal intersections (9.1) are empty, and we shall then restrict the Q’s to
denote the nonempty ones and require that none of the possible decisions should
correspond to these empty intersections. If we assume that in the simultaneous
consideration of a number of problems the losses are additive so that the total
loss is the sum (or a weighted sum) of the losses of the component problems, and
if we suppose the losses to be a, for rejecting H, when 6 ¢ w, , b, for not rejecting
it when ¢ ¢ w,', and zero in the other two cases, the total loss is again given by
(2.2) and (2.3) with

(92) Tiy = 2yw + 1.

Since in particular the loss function of the basic two-decision problem is un-
changed, the associated optimum unbiased procedure of Part I will retain its
optimum property in spite of the reinterpretation of one of the decisions. It
now leads to the statements 6 £ ' and 6 £ w5 as X ¢ 47" or X ¢ A, where 4, is
the acceptance region of the best unbiased test of H, . The simultaneous carrying
out of a number of these tests then still leads to a procedure in which the decision
d;:0 € Q; is taken when X falls in the set

9.3) D, =N, 4™

but where Q; is now defined by (9.1) and (9.2) instead of (2.1).

As has already been pointed out the sets 2, , which define the possible decisions,
no longer constitute a partition of the parameter space. Instead, they are gen-
erated through intersections from the class {w,", v £ '}, that is, they constitute
the smallest class that is closed under intersections and contains the sets w,’.
It may happen that two of these Qs are equal, Q; = Q;, say, and one would then
wish to identify the associated decisions. On the other hand, viewing the problem
as a product one must consider all of the formal intersections (9.1) as distinct.
Otherwise the definition of the loss function, for example, would become am-
biguous since the losses resulting from decisions d; and d; when 6 is in some
, would usually not be the same even though Q; = Q;. Fortunately, the diffi-
culty arises in the applications we wish to make only in cases in which it can be
overcome. by a natural further restriction of the decision space. Suppose namely
that H, and Hs are two hypotheses with

wy C wpt
so that the two intersections w,' n w;* and w;' n w; are identical. It then seems
reasonable that whenever the data lead to the rejection of H, one would also wish
to reject the more restrictive hypothesis Hs . (In part I this was actually part of
the compatibility requirement.) With such tests the decisions 6 € w,"' n ws would

never be reached, and the conflict would thus be avoided. For this reason we shall
eliminate from the list of permissible decisions not only the formal intersections
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(9.1) that are empty, but also those for which the intersection ©; equals some
other Q; satisfying y;, < i, for all 4. It follows from the general discussion of
Sec. 7 that (9.3) defines a 1:1 correspondence between families of tests which are
compatible with this set of restrictions, and decision procedures for the restricted
product problem. It is useful to note further that for these restrictions the forma-
tion of restricted products of decision problems also retains the property of
being commutative and associative, which it obviously had in the problems of
Part I.

Let ®.(6,) denote the two-decision problem discussed above, in which the
choice lies between the statements 6 > 6, and — o < 6 < «, and let ®_(6,)
denote the dual problem in which the first of these possibilities is replaced by
the statement § < 6, . By considering these two problems simultaneously one
obtains a three-decision problem with loss function

dz do dl
0 < 6 —0 < f < ® 6 > 6

04 6 < 6, 0 b a+b
0 = 6 a 0 a

0> 6 a+0b b 0

As an example suppose that 6 measures the difference in quality of two products
which are being compared by an impartial research organization. The decisions
di and d; claim superiority for one or the other of the products, while dy states
that the data are inconclusive and that neither of the two products can be as-
certained to be better than the other. It is an advantage of such a formulation
over the more conventional one in which dj is replaced by the statement 6 = 6,
that it enables the statistician to control the probability of error. In the standard
situation with D, and D, given by

9.5) DT <C, and Di:T = C:

where Po{T < C1} and Po{T = C3} are < afor 8 > 6, and § < 6, respectively,
and where Py, {T < Ci} = Py,{T = C3} = a, the maximum probability of
error occurs when § = 6,, and is 2a. (A very similar formulation was discussed
by Bahadur, “A property of the t-statistic,” Sankhya, Vol. 12 (1952), pp. 79-88.)

The loss function (9.4) is not appropriate in situations in which a definite de-
cision is preferred to dy even when 8 = 6, . A formulation which is more suitable
for this case is obtained if in the one-sided problems ®_(6y) and ®.(6) one re-
places the decisions 6 < 6, and 8 > 6, by 6 < 6, and 8 = 6, respectively, so that
these two component problems are given by

’—oo<0<oo 9 < 6

(9.6a) 0 a

b 0

0> 6
0= 6




550 E. L. LEHMANN

and ®<a)
l—oo <6< w0 0= 6
(9.6b) 0 < 6 0 a
6= 6 b 0

The simultaneous consideration of these two problems leads to a four-decision
problem with loss table

ds do d; ds
oéeo —o < < o 0_2_,00 0 = 6
©.7) 0 < 6 0 b a-+b a
= 6 b 2b b 0
0 > 6 a+b b 0 a

It turns out that this formulation leads to essentially the same solution as the
previous one, with D, and D, given by (9.5), decision dy being taken when
C, < T < Cy, and decision d; not occurring at all.

We mention finally that still another problem leads to the same solution,
namely that given by

dz do dl
[’} _S_ 00 —0 < 0 < 0 g 00

(9.8) 6 < 6 0 b a’ b<d

0 = 6 0 o’ 0 b<dv)/)

0> 00 a’ b 0
The level « of (9.5) is in this case given by

o = b —b
T ad + 20" = b))’

10. Partial classification of one or more parameters. (i) Let 6 be a real
parameter and suppose that we wish to determine, as far as possible, its posi-
tion relative to two given values 6; < 6,. A procedure may be generated by
considering simultaneously the four problems ®.(6:), ¢ = 1, 2. The resulting
problem offers the choice between the decisions

di: {6 < 6} = {6 < 6)n{6< 6,
di{0 < 6y) = {—0 <0< w}n {6 < 6
ds: {60 < 0 < 6} = {6 <6} n{0< 6}
diif0> 60} ={0>60jn{—o <6< o}
g
={

i

(10.1)

ds:{0> 6} = (6> 6} n {8 > 61)
ditf—0 <0< o} ={—0 << o}jn{—0 < —0< o},
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Here the sets {6 < 6,} and {6 > 6.} may also be represented as the intersections
{6 <O}n{—o <6< o}and {§ > 6.} n{—x <6 < »}, However these
decisions are ruled out by the convention of the previous section.

Suppose now that the tests of the four generating hypotheses have rejection
regions

T<C,, T=<C, T=z=C, Tz=z=C

for H:6 < 61,0 = 61, 6 = 6, 6 = 0, respectively, where the constants are
determined by

Po{T < Ci} = Po{T = C1} = Po,{T = Cs} = Py{T = (2} =
Compatibility requires that the intersections
(T<CIn{T=C}, {TSC}n{C;<T<Cs}
and {C; < T < Ci} n {T = C3}
should be empty, and hence that
¢, <C, C<Cy, Ci<C and C; <70Cj.
These conditions are satisfied if @« < %, and if for each fixed C

(10.2) Po{T = C} > Pp{T = C} when 6 <¥.
According to (9.3) the resulting procedure is given by

Di:T £ Cy Dymax (C1,Cy) < T < Cs
(10.3) D;:C; < T < min(Cy,Ce) Dg:T = Co

Di:Ci =T = C De:Cy < T < Ci

where < is < when C: < Cyand £ when C; = C,. Depending on the sign of
the difference C; — Ci and hence on the distance between 6, and 6, , only one
of the decisions d; and ds will occur. For intermediate values of T the positive
statement 6, < 8 < 6, will be made only if 6; and 6. are not too close. Otherwise
such T-values will leave the position of 6 in doubt.

If (10.3) holds, the probability of the procedure leading to a false statement

never exceeds 2a. For the probability of error is equal to
Po{T = Ci} S Py {T 2 C1} = « for <6
Po{T < Ci} + Po{T = C1} = 2a for 6= 6,
Po{T = C1} + PofT = Cs} £ Py {T = Ci} + Po,{T = Co} = 2a

fOI‘ 01<0<02,

and similarly for 6 = 6, .
In the usual applications T is a function of a sample, and as the sample size
increases T tends to 6 in probability. The procedure is then consistent in the
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sense that
P(D;) -1 for 6eQ (T=1,23).
Except when 6 is exactly equal to 6; or 6, , the probability is therefore 1 that one

of the three sharp statements d; , ds , or ds will be made, and that this statement
will be correct. Since

Py, (D;) = Pg,(Dy) = 1 — 2a,
it also follows that
Py, (Dz) = Po,(Ds) ~ 1

if one lets « tend to zero as n tends to infinity.

A slightly different procedure results for problem (10.1) when one is concerned
with a sample X;, ---, X, from N (6, o°). Here the tests of the four generating
hypotheses have rejection regions -

X-0)/Ss-¢ X-6)/8S=zC¢C,
(X - 6)/8S=—-C, (X —-06)/8z0C,

and the induced multiple decision procedure is given by (10.3) with
(10.4) T=%X/8, C=-c+% ci=c+ %

Both of the decisions d3 and ds occur in this procedure with positive probability,
d; only in cases in which S = (6, — 6:)/C and ds only when the opposite in-
equality holds. The remarks concerning error control and consistency require no
change.

As an application consider the comparison of two normal populations N (£, ¢°)

and N(n, o) on the basis of samples X;, --+, X,, and ¥y, ---, ¥, . With
6 =1n—§ 6 = —A 6, = A, the possible decisions become
ditn — £ < —A, dit—A < g — £ < A dsing — £ > A,
d2:77—£<A, d4:1]—f>—A, d6:—°° <?1_E<°0

Here d; states that £ is significantly larger than 5, d. that 5 is not significantly
larger than £, d; that the two means do not differ significantly, etc. The procedure
is given by (10.3) with 7 = (¥ — X)/S and

_a
S’

A A ’ ’ A

C,=—-C—3 Co=—-C+ 3 Ci=2¢C Co=0C+ <.

1 S’ 2 + S, 1 2 + S
Problem (10.1) leads to still another type of procedure in the case of two
independent Poisson variables, say X and Y, where one wishes to classify the
ratio p = N/ of the parameters of the two distributions with respect to two
values p1 < p,. Here the tests of the four generating hypotheses p = p;,

p = pi(z = 1, 2) are carried out conditionally, given the value of X + Y. The
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conditional distribution of ¥ given X 4+ ¥ = m is the binomial distribution
b(p, m) corresponding to m trials and probability p = u/(\ + ) of success.
The conditional situation is therefore of the kind discussed at the beginning of
this section, and leads to the procedure (10.3) with 7 = Y and 8 = p.

Whether d; or ds occurs depends here on m, d; being associated with large
values of m. To see this, let F, .(¢) denote the conditional cumulative distribu-
tion function, given X + ¥ = m, of ¥ + U where U is independent of ¥ and
is uniformly distributed on (0, 1). Then C; = C’(m) and C, = Cy(m) are deter-
mined by

(10.5) Fpym(Cy) = 1 — Fp, m(CY) = a.

We shall show that Ci(m,) < Ca(m,) implies that also C(mz) < Ca(ms) for all
me > my . Since Fpy m(Ce) = a, Fp, m(Cs) is the power of the most powerful
level o test for testing p, against p; in a binomial distribution b(p, m). If
Ci(my) < Cay(my) it follows from (10.9) that in the case of m trials this power is
greater than 1 — «; but then it must also exceed 1 — « for me > m; trials so
that

Fpl.mz(C{) =1l—-a< Fm ,mz(C2)y

and hence C1(ms) < Ca(my).

It is interesting to note that in all of these problems the choice between
decision d; and ds depends on the distance between 6; and 6, relative to the
amount of information the data contain for the problem.

While the classification of  with respect to a single value 6, , or two values
6: < 6., are the most interesting cases, let us consider briefly also the problem
of classifying 6 with respect to a countable set of values -+ < 6, < 61 < 6y <
6, < --- . This is generated by the problems ®,(6;), 7 = 0, =1, &2, -- - . Sup-
posing that 6; — 4= as ¢ — 4=« and letting 6_, = — o, 6 = o, the possible
decisions consist of the totality of statements 6; < 6 < 6;. The decision
8; < 6 < 8; corresponds to the individual decisions that § < 6 for k¥ = 5 and
6 > 6. for k = 4, and that the position of 6 is left in doubt with respect to the
points 6, with 7 < k < j.

The limiting case of this problem, in which one wishes to classify 8 with re-
spect to all possible values of 6, , is obtained by considering simultaneously the
problems ®.(6,) for all 6, . The possible decisions then consist of the totality of
statements § < 6 < 8, and if ay, = a, by = b for all v, (9.3) yields precisely the
standard confidence intervals for 6 with‘confidence coefficient 1 — 2a. The loss
function resulting from the additivity assumption is in the simplest case’

(@+0b)@—06+0b0—0 if 6<8g
(10.6) b — 9) if 6<0<9
(@+b)6—8)+b0—9 if 6>08.

2 A loss function of this type was suggested by Wolfowitz [4].
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More generally one may replace § — § by f: du(6), and similarly for the lengths
of the other intervals. Unfortunately the condition of unbiasedness becomes very
difficult to interpret in the present problem, and it is doubtful that for the
standard distributions the procedure is unbiased with uniformly minimum risk,
as is the case with the other problems of this section.

It should be pointed out that all these procedures concerning a single real-
valued parameter 6 can be obtained from the standard confidence intervals con-
cerning 6. When classifying 8 with respect to 6; and 6. for example, one can state
0<6;iff<6,and ; < 6 < 6,if ; < 8 < 8 < 0;.0On the other hand, if § < 6,
< 8 < 8, only the conclusion 8 < 6, is possible, the relation of 6 to 8, being left
in doubt. This approach, however, does not yield any optimum properties for
these procedures, and does in fact not carry over to problems involving more
than one parameter.

In Example (iii) of Sec. 3 we considered the comparison of a number of normal
populations N(;, ¢°). The consistency difficulties that occurred in combining
the decisions 6; < 6; for different pairs (¢, 7) disappear if one treats the problem
from the present point of view, which is exactly that from which the problem was
treated by Duncan, “Multiple range and multiple F-tests,”” Biometrics, Vol. 11
(1955), pp. 1-42. For each pair (6;, ;) the possible decisions are now 6; < 6;,
6; > 0;,and —x < 0; — 0; < « instead of the earlier §; = 6, . Since there is
no loss in omitting the vacuous statements, the total decisions consist in the
ordering of some but not necessarily all of the pairs (6;, ;). In the case of three
populations, for example, the following decision types will occur:

(a) 0; < 0; < O, (C) 0; < 0;,60; < b
() 6: < 6,0, < 6, (d) 8 <0
(e) no statement.

We shall now show that for this procedure the probability of error can be
controlled through the choice of «, and that its maximum is in fact attained when
all of the @’s are equal and is then given by

(10.7) P {LX%XJ > C,; forsome 4, j}.
In the particular case of equal sample sizes this becomes
(108) p{w > c}

where C is the cut-off point of the one-sided #test at level .’ The probability
of error is the probability measure of the set

% - X, } {z'a— % }

3 For a table of the values C for which this probability is 1 per cent or 5 per cent see
[2], where also a number of related tables are discussed.
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where the first union is extended over all pairs (7, ) for which 6, < 6; and the
second union over all pairs (k, £) for which 6z = 6, . Let X7 = X; — 6;, so
that the X7 are distributed as N(0, ¢°). Then 6; = 6; and X; — X; > Ci;S
imply X7 — X7 > Ci;8, and 6¢ < 6, and X¢ — Xi < CieS imply X3 — X7 <
CtS. The probability of the set (10.9) is therefore not decreased if one replaces
the X’s by X*s, nor if one extends the union over all pairs (¢, §) and (k, £). But
this is equivalent to evaluating the probability of (10.9) under the assumption

that all of the 6’s are equal, which completes the proof.

11. Decision problems with simple loss functions. As a tool for proving the
procedures of Secs. 9 and 10 to be unbiased with uniformly minimum risk, we
shall now give an extension of Theorem 2 (Sec. 7), which is valid for a rather
general class of decision problems. We shall say that a decision problem @ is
simple if it satisfies the following two conditions.

(a) Itsloss function W(6, d), considered for fixed ¢ as a function of 8, has sets
of constancy independent of d, that is, there exists a partition II of the parameter
space  into sets 0., ¢ ¢ I, such that W (6, d) is independent of 6 on each ©; .
We may then write

(11.1) w(,d) = Vid) for 6c0,.

(b) With respect to some convergence notion in @, 8, — 6, implies Ep y(X) —
By (X)) for each integrable ¢ or, if all of the functions V; are bounded, for each
bounded .

We shall require the following properties of simple decision problems.

(i) For any procedure & the risk function Rs(6) is continuous on each set of the
partition II. The risk function is given by

(11.2) Rs(0) = E,V,[6(X)] for 6c0;.
Hence 6, , 6y ¢ ©; and 6, — 6, imply
R5(0,) = Eo,Vi[6(X)] = Ep,Vi8(X)] = Rs(6),

as was to be proved.

(ii) Unbiasedness of a procedure & tmplies the continuity of its risk function.
By (i) it is enough to prove this for boundary points of II. Let 6, be such a
boundary point, and suppose that 6, ¢ ©; and 6y = limg,., 0, with 6, £ ©;. Un-
biasedness implies

EaVi[3(X)] < B,V [5(X)),
Eo, V{5(X)] 2 Ea,V{5(X)] forn =1,2, -
and hence also
Eo,Vi6(X)] = Eo,Vi[6(X)].
It follows that
Rs(60) = Eo,Vil6(X)] = B, Vi6(X)] = limp., Rs(6s).
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(iil) Any resiricted product of simple decision procedures is again simple.

We can now prove the main result of this section, which provides a sufficient
condition for unbiasedness of a product procedure to imply continuity of the
risk functions of all of the component procedures.

(iv) Let ® be a restricted product of a finite number of simple decision prob-
lems @, , and suppose that the partitions II, of the component problems inio
sets 0,y , 1 ¢ I, satisfy the following condition.

(%) Let B4y, , 054, be any two sets of II,, with common bound-
ary points, let 6o be any such point, and assume without
loss of generality that 6o ¢ 0,,, . Then there exists a sequence
of points 6, ¢ 0;,, such that 6,— 6 and

0, ~ 6o(I1,) forall ~ = v,

where 8 ~ ¢'(II) indicates that the two points lie in the same
set of the partition.
Under these assumptions, if the risk function Rs(8) of a product procedure § is
continuous, so are the risk functions Rs,(0) of the components 6y of 8.
To see this, let v be any fixed value of v, 6, any boundary point of II,, , and
{6,) the sequence guaranteed by (x). Since Rs(6) = >, R;,(6) is continuous, we
have

Dy R (8.) = 2y Rs,(80).

Also, for each v = v, all of the points 6, lie in the same set of the partition II,
with 6, , so that by (i)

Rav(en) i Rav(eo) for all Y # Yo .

It follows that R(84,,0.) — R(84,,60), as was to be proved, where we have written
R(5, 0) for R5(6).

It is convenient that (x) depends only on the partitions II, , not on the values
the loss functions W, take on over these partitions. For applications it is further
important to note that (x) may be weakened slightly. Let A;, be the set of com-
mon boundary points of 8;, and 6;, that belongs to ©,, . Then in order to ensure
(iv) it is sufficient if (x) holds on a dense subset of each A;j, . This is an im-
mediate consequence of (i).

Consider now any problem @, which is a restricted product of a finite number
of problems ®,(6,), and which satisfies (). For the component problems con-
tinuity of the risk function is equivalent to similarity on the boundary at level
a, = by/(a, + by). Hence a product procedure 6 uniformly minimizes the risk
among all unbiased procedures of @ provided each component procedure 4, uni-
formly minimizes the risk among all procedures of ®.(6,) that are similar on
the boundary at level e, . Since ®.(6,) is formally equivalent to the problem of
testing @ < 6, or 6 = 6, , this is the case in particular if the possible distributions
of the observable random variables constitute an exponential family, and the
procedures 8, are the best unbiased tests of the hypotheses in question. Under



MULTIPLE DECISION PROBLEMS 557

these conditions it is then only necessary to verify () in order to establish the
desired optimum property for the resulting 5.

As an example consider problem (9.4), which is generated by @.(6,). Here
®_(6o) induces the partition 8 < 6y, § > 6y, with 6 as its only boundary point.
Let 6, be any sequence of points greater than and tending to 6, . Then all the
points 6, and 6, lie in the set § = 6,, and hence 6, ~ 6, with respect to the
partition induced by ®,.(6,), which completes the verification of (x). The argu-
ment is exactly the same for problem (9.6) and (10.1).

In the example of Sec. 10 leading to procedure (10.7), a typical partition is
0: < 61, 0. > 6,. Attention may be restricted to boundary points 6© with
coordinates

0, < - <0 <6® =06 <6 <. <6,

For these, (¥) is satisfied by the sequence of points 6" with coordinates
0 = 6 for i # 2, and 65™ between 6” and 65> and tending to 6{".

12. Consecutive decisions in a single experiment. The multiple decision prob-
lems treated in the previous sections were generated by the simultaneous con-
sideration of a number of simpler component problems. We shall now suppose
that these separate problems arise not in parallel but in sequence. A single sample
is available for investigating a number of questions that are potentially of in-
terest and are taken up one by one. Whether a given question is relevant, or
which of a number of possible alternative formulations is appropriate at a certain
stage, depends on the decisions reached up to that point.

(1) As an example suppose that independent variables X;, ---, X, from a
normal distribution N(£, ¢°) are measurements on an experimental batch of a
new product of quality & The produect is of no interest unless £ > &, so that
one will wish to test first of all the hypothesis H1:¢ < & . If the quality is found
satisfactory, that is, if H; is rejected, it becomes necessary to investigate the
variability of the product. One will then test Hy:o = 00, and in case this hypothe-
sis is accepted one will try to reduce o, for example by using less variable ma-
terials. The problem of testing H, arises here only in case H, is rejected.

(ii) Suppose that two treatments are being compared on a number of different
categories of patients. Let the observed effect of treatment 7(: = 1, 2) on the
kth patient of the jth category be distributed as N (¢;; , ¢°) where

Es= 4+ N oui v (i = 2B = Diviy = 2 = 0).

Here A; is the main effect of treatment 7 and »;; the interaction between the
ith treatment and the jth category. One may believe in the possibility of the
interactions being negligible and hence wish first to test the hypothesis H;:v;; = 0
for all 7, j. In case H, is accepted the N’s are the objects of primary interest, and
the problem becomes that of deciding whether A, — A\ is <, =, or > 0, or to
estimate this difference either by confidence intervals or by a point estimate.
On the other hand, if H, is rejected one will be concerned less with the over-all
effects of the treatments which is measured by the A’s than with the treatment
differences &; — &1; for each category.
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More generally, let there be given a first problem ¢, in which the possible
decisions are d; , - - - , dy, and the loss function is W’(6, d). If decision d; is taken,
a second problem @®; arises with possible decisions dij(j = 1, - -+, n;) and loss
function W7 (6, d). The combination of these two problems leads to a two-stage
problem with decisions di; = (d: , d7;). One may of course continue in this man-
ner and suppose that decision (d: , di;) gives rise to a further problem ®:;" with
decisions d:j; . However, it is enough to treat the case of two levels since the
discussion then extends immediately to the more general situation by induction.

In specifying a loss function we shall assume that even if a wrong decision is
taken at the first step, so that the second problem is not the most appropriate
one or perhaps need not have been considered at all, it is still desirable to do
as well with respect to it as is possible. Thus in example (ii) above, if one has
incorrectly decided that the interactions are negligible, one will in the estimation
of 6, — 6, still wish to obtain as good an estimate as possible, and analogously
if H; has wrongly been rejected. Whether the assumption holds in Example (i),
that is, whether one would wish to control the variability of the new product
after having mistakenly judged its quality to be satisfactory, appears to depend
on the circumstances of the problem.

With this assumption, a natural loss function for the compound problem is

(12.1) W9, di;) = W'(6, &) + Wi (6, d7j).

The possibility of not considering a second problem in case a certain decision
d: is taken at the first step, is included in this formulation. One need then only
take as problem ®; the vacuous decision problem, that is, set n; = 1 and
Wi (6, dix) = 0. Suppose in particular, as was the case in Example (i), that a

second problem occurs only for one of the decisions of the first stage, say di .
The possible decisions of the compound problem are then

di; = (di, di3), j=1-,n
and . dz =d;,"’,d,,,=d,’,.,
and the loss function is given by
W(o, d1) = W’(o, d:), ’i = 2’ ey m;
(12.2) , ) .
W(07 dl]) = W’(0) dl) + W”(0: dl]‘ ) J = 1, ey n.

Returning now to the general case, suppose that there exist a satisfactory
procedure & for ¢, which takes decision d; when X & D; , and that the problems
®y, -+, ®n are all different. It then seems natural to retain & as first step of
the compound procedure, and to consider the problems at the second level
relative to the circumstances in which they occur, namely conditionally given
that X e D1, ---, X & D,, respectively. Suppose further that for each ¢ = 1,

-, m there exists a satisfactory procedure 8; for ®; when the distribution of
X is the conditional distribution given X & D; . Such a procedure consists of a
partition of the new sample space D; into regions D7; in which the decisions
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di; are taken. Together, the sets Di;(j = 1, -+, n;; ¢ = 1, -+, m) form a
partition of the original sample space and a solution of the compound problem,
with decision d;; = (d: , d7;) being taken when X & D7; . One can of course again
include in the formulation the possibility of ruling out some of the decisions
d;;, and the resulting compaitibility questions can be treated exactly as before.
However, this possibility seems to be less important in the present context and
in order not to complicate the discussion unnecessarily we shall assume that no
restrictions are imposed on the compound decision problem.

As an application consider the case that m and the n; are equal to two, so that
each of the component problems is one of hypothesis testing. Suppose that the
hypotheses in question concern the parameters 6; in an exponential family

dPy(z) = C(6y, -+ -, 6,27 @ dy(z).

There then exist uniformly most powerful unbiased tests of the hypotheses
0; < 60 and more generally of Y ¢:6; < co. (See, for example, [2].) Since after
truncation on a fixed set D the family of distributions Py retains its property of
forming an exponential family, such optimum unbiased tests will in particular
also exist at the second stage after a preliminary test of significance has been
performed as a first step. This will however not coincide with the standard op-
timum test for the corresponding problem without truncation.

We have assumed so far that the problems occurring at the second stage are
all distinct. Suppose now instead that ®i is appropriate when decisions
di, -+, dr, are taken in the first problem, that ®; corresponds to decisions
dris1, -+, drysr , etc. One would then consider the problems ®7, ®; , -
conditionally given that X e D} + -+ + D;, , X eD},ja+ -+ + Dy 1yry, -+,
and otherwise proceed as before. If one is dealing in particular with the product
of two decision problems so that all of the problems at the second level are the
same, one considers this common problem @®” given that X ¢ D+ ---+ D, .
that is, unconditionally. The procedure therefore reduces to the product of the
procedures for ® and ®”, so that the present theory agrees with that given earlier
for products of decision problems.

Unfortunately the properties of the conditional procedures considered in the
present section are not as satisfactory as of those discussed in the earlier parts
of this paper. To be specific, let ® and @} , - - - , P,, define a two-stage problem, in
which the components ®; of the second stage are distinct. The risk function of a
procedure & with components &, & , - - - , &, is then

(12.3) Ri(8) = Ror(6) + 2_7e1 Po(Di)Ra15(6)

where the notation R s is used to indicate that this risk component is computed
conditionally given X & D; and hence depends on & as well as on &; .
It is clear from (12.3) that unbiasedness of & and &1 , - - - , &, implies that of
5. Also it is again true for most problems of interest that unbiasedness of &
implies either unbiasedness or at least similarity on the boundary for &, & ,
., om . However, the basic comparison of two procedures in terms of their
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components is no longer simple. In particular,
Ry(0) = By (6),  Rono(0) = Rygiyr(0)

does not in general imply R;(8) < Ry(8). If one wishes to minimize Rs(8) then,
given &', one must select 8; to minimize Rs s (6). But the best choice of & is not
necessarily that which minimizes Ry (6) since the choice of & influences not only
Rs(6) but also the second components of (12.3) and in particular the conditional
risks Rs, s . As a result of these complications it turns out that for the problem
under consideration there usually does not exist among the unbiased procedures
one that uniformly minimizes the risk. Of the procedures, the components of
which have this optimum property we can only say that they are unbiased,
and within the class of all unbiased procedures admissible.

13. Some examples of conditional procedures. Although we have found no
satisfactory justification for the procedures discussed in the preceding section,
they are rather natural from the Neyman-Pearson point of view, and we shall
briefly illustrate them here with a few examples leaving a more detailed discus-
sion and comparison with alternative procedures for a later paper.

(i) The problem mentioned at the beginning of Sec. 12 is concerned with
testing, on the basis of a normal sample, the two hypotheses Hi:# < & and
Hy:0 = oo, where H, is assumed to be of interest only in case H; is rejected.
If without loss of generality we put £ = 0, the best unbiased procedure for testing
H, is Student’s ¢-test with rejection region

(13.1) X/8=zc¢C

and size oy = bi/(a1 + b1). With this as first step, the condition of unbiasedness
implies in the usual way that the rejection region R, of H, must satisfy

(13.2) P,(R:| 8 £ %/C | %) Pas.

Applying the fundamental lemma of Neyman and Pearson one sees that the
uniformly most powerful unbiased conditional test of H, has a rejection region of
the form

(13.3) St < f(X).

Here the function f is defined by
£(u) u?/C?

(13.4) [ Doo(2) dz = fo Doy (2) dz, u > 0,
0

where p,, is the probability density of S* when ¢ = o9 .
The resulting compound procedure then decides between the three possible
conclusions
dy:§ £ £ —the new product is not of satisfactory quality,
dy:t > &, 0 = oo —the quality of the new product is satisfactory but its vari-
ability must be reduced,
d3:£ > &, ¢ < oo —the new product is satisfactory with regard to both quality
and variability,
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as the sample falls into the corresponding one of the regions
Di:X |8 =0,
Di:X|8>C, 82X
Di:X|8S>¢C, 8§ <fX).

These decision regions are illustrated for the case n = 10, a1 = o, = -05 in
the figure.

(ii) As a somewhat more complex example consider two treatments which are
being compared on a number of different categories of patients. Let the observed
effect Y. of treatment ¢ (i = 1, 2) on the kth patient (5 = 1, ---, n) in the
Jjth category be distributed as N(£;;, o°), and let

Gi=mt Nt it o (ki = Diui= Doivig= Doivi = 0)

where A; is the main effect of treatment ¢ and »;; the interaction between the
th treatment and jth category. One may here wish to test first the hypothesis of
no interaction

Hltvi,- =0 for all 'i,j.

If H, is accepted one will be interested in the difference of the A’s and wish
either to test it or alternatively to estimate it by confidence intervals or point
estimate. We shall here suppose that we then want to test

H2:>\2 — A é 0.

On the other hand, if H, is rejected one will usually be concerned less with
comparing the over-all effects of the two treatments, which is measured by the
\’s, than with a comparison of the treatment effects £; and £; separately for each
category j. In particular one may be interested to test the set of hypotheses

Hsjiboj — 815= o+ v2)) — M+ 1) £0.

W
* D, 0,
10 -
S
"
e
D,
5 -
0 ——r
o 5 1.0 15

Fig. 1
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Although there exists no uniformly most powerful unbiased test of H; it seems
natural to start out with the standard test of this hypothesis which is uniformly
most powerful invariant, and is given by the acceptance region

(13.5) S8t < ¢
where
8o =222 (Yip — Yii)’
St= 2> (Yij.— Yi. = Y + V. )

The hypofhesis H, should then be considered conditionally, given S3/S; < C.
A routine application of the theory of unbiased tests and similar regions' shows
that a necessary condition for the rejection region R, to be unbiased is

Pr-niR:|st, s + sz, 81/8 = C} = o
for all values of s and s; + s; where '
S =i (Y. =Y. ) = 3(Ya. — Y1.)%
If one puts
U= (Yo.— Y1)/, V=848, W=(S+8)/81,

it follows from the fundamental lemma that the uniformly most powerful (con-
ditional) test of H, has the rejection region

UzkV,W)
where k is determined by
PronfUZ RV, W) |V =0, W=w and U’ = Cw — 1}a,.
Now when \; = ), , the variable U is independent of V so that & depends only
on w, k(v, w) = f(w) say. The rejection region then becomes
(13.6) U z f(w),
where f is determined by
Pron{U < fw) | U* £ Cw — 1}P(1 — a).

Since acceptance of H; is equivalent to 4 < Cw — 1 it implies in particular

that 0 < Cw — 1. The defining condition for f may therefore be written as

(Cw—1)1/2

1 (w) '
(13.7) f po(w) du = (1 — ay) f pu(u) du

—(Cw—1)1/2 —(Cw—1)1/2

where py(u) is the probability density of U when Ay = ., that is, essentially,
the density of a ¢-distribution with 2m(n — 1) degrees of freedom.

4 The proof requires the easily shown fact that the family of noncentral x2-distributions
with a fixed number of degrees of freedom is boundedly complete.
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Let us now consider in a similar manner the hypothesis
Huy:2 — M) + (va — vu) =0,

conditionally given that S3i/8s > C. Let \; and #;; be the least squares esti-
mates of the corresponding parameters so that

8= a2 bl
and let
Zy =30 — A\t — bu + i)
Zy =10 — Ny + P — 1)
S =81 — (0h — o)’ = 81 — (Z. — Zu)"

If ;i = E(Z;), the hypothesis becomes {» = 0, and unbiasedness of the condi-
tional test of Hy with rejection region Ry implies -

PeyofRul2z,s8 + 25,8 and Si/85>C} = an.
The condition S; > 'S} is equivalent to (Z, — Z;)* > CSs — 87, which may be

rewritten as
Z \ CZ3 C 2 Q2
<22 1+0)+<1+C)2>1+0T St

where T? = S; + Z3 . This is satisfied for all values of Z, if
C CZ1

—~

Nl pof

(13.8) H_—C,T2—S'12—m)—2§0
and otherwise for the values of Z; , for which either
o 5 /
T arer A e 5 - atga= 5 (P T)
or
Lo S _ _C__S_?_,L_£§=K(_Z_l ﬁ)
T "1+ 0r I+C TF (Q+CpT T'T)”

Since Z,/T is independent of Z;/T and Sj/T when ¢, = 0, the uniformly
most powerful unbiased test of Hg given S31/8: > Cis then given by the re-

jection region
Zs o 4 (% S
7=k <T’ T)
with the function K defined as follows. When (Z,/t, Si/t) satisfies (13.8),

we have
K(z_1 s_i) =K
t’t
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where
1
f pe(1) dr = as,
K

pr(r) being the probability density of
= gf = %(3‘2 _ 3\1 — b + 1"11)

T VS + 30 — M+ o — o0)°
when ¢, = 0. For all other values of (2,/¢, s1/t), K(z1/t, s1/%) is given by

Kj(z1/t),(s1/¢t))
p}z(r) dr = ag l:‘[l pk(r) dr

1

‘L((21/t).(8{/t))
1

f (1) dr] .
K3 ((22/8),(83/1))

(iii) As an example involving more than two stages let us consider the determi-
nation of the degree of a regression polynomial. Let ¥;, - -+ , ¥, be independently
normally distributed with constant variance ¢* and means

n = E(Y:) = et €z + - +eai  (@=1,--,n).

We shall assume that a polynomial of degree s will in any case be adequate for
our purposes, and wish to determine the smallest degree r < s that would also
be satisfactory. It is convenient for this purpose to express the regression poly-
nomial in terms of the orthogonal polynomials P; defined by

1 for 7=
2 ket Po(@)Py(zy) =
0 for 7 j.
Writing
= C + cs—lpl(xi) + -+ COPs(xi)y
we test successively the hypotheses Hoico = 0, Hiicp = 0, ---, continuing as
long as no rejection occurs.
The problem can be stated in the following canonical form: X, ---, X, and

St are independent variables, with X, being distributed as N(¢;, ¢°) and with
St/o” having a x*-distribution with no = n — s degrees of freedom. One wishes
to test consecutively the hypotheses H;:&; = 0, (f = 1, -+, s) continuing as
long as no rejection occurs. Slightly more generally one might have variables

X:iN(ij, o), (G=1,---,m; ;5 =1, ---,s)and St and consider consecutively
the hypotheses H;:%;; = O forj = 1, ---, n; . Invariance reduces the problem
to the statistics S and Si = 7 X3;, which are independent and where

S2/4* has a x* distribution with n; degrees of freedom when H; is true.
Let

8 8 B < 1>_s§+s§
Ui—_g‘, Vz ‘—‘Sg_l, Wr,,— Vi 1+—E —_— 3.—1‘.
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We shall now show inductively that the best unbiased conditional test of H;,

given the acceptance of H;, ---, H; 3, has an acceptance region of the form
(13.9) Ui = filWi, Vi, oo+, Vo).
The functions f; are defined by
[fl(’wl) = (|
(13.10)

fi(wgwi_1, - v2) wihg1 (V51,0 v2)—1
f pi(r) dr = (1 — a) / pr)dr (i = 2)
0 0

where p; is the probability density of S3/Ss when H; is true, h; is defined by

hl = C,
(13.11)
hi(vi y " 112) = min[vih‘i—l(vi—l y "7 02), gi(vi y T 1)2)] (7/ = 2)

and g, is a function taking on values in the space of u; and defined by

-1
(13.12) u = gii, -, 0) v = e 1 ) (¢ = 2)
14+ =
U
where f;' denotes the inverse of f; considered for fixed values of v; 1, -+, 02

as a function of u. It is seen that (13.10), (13.11) and (13.12) define f; in terms
Of fi_l .

The best unbiased test of H; has the acceptance region u; < C and hence
satisfies (13.9). Suppose now that the acceptance regions 4;, ---, A, have
been shown to be given by (13.9). To prove (13.9) for A; we need the fact that

(1313) Al n---nN Ai—l = {(U,, v):uiwl < hi_l(vi_l y T, 1)2)}

and since this is true for ¢ = 2, we may accept (13.13) as part of our induction
hypothesis. The condition of unbiasedness implies that A; should satisfy

PufA:|ss +si, s, -, sty and Uiy € hia(Via, -+, Vo)) = 1 — a;.
Now U,—; £ hi—1 is equivalent to
Ui £ Wihiea(Viey, o+, Ve) — 1
so that the best unbiased acceptance region for H, is
Us < Ki(Ws, 8%, -+, St)
where
Pr{U; S Ki|so+si,st, -+ ,sia and Ui £ Wikia(Viea, -+, Va) — 1}
=1—q.

Since U; is independent of W, , V1, ---, V, when H; is true, it is seen that
K; depends only on w;, v;—y, -+, vo and that 4; is given by (13.9).
To complete the proof, it only remains to verify (13.13) for the set
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Ain ---n A;, which is the intersection of

Arneeon At uig S hea(icr, » o0, v2)

and
At ue = filwi, via, -0, 02).
The inequality describing A4; is equivalent to

I ey viay oo, 0) S wi = v, (1 + l)

2
and hence to
At ug = gi(wi, -0, va)
by (13.12). Since the inequality describing A;n --- n A;_; is equivalent to

Al n---nNn Ai_lzui =< vihiﬁl(vi_l y T, vz),

the intersection A;n --- n A4; is given by (13.13), as was to be proved.

A closely related problem arises in the study of components of variance when
one is dealing with a hierarchical classification. Here the problem reduces to
independent statistics S, S3, --- where S/o; has a x’-distribution with n;
degrees of freedom. It follows from the underlying model that 1 < o2 < -- -,
and one is interested in testing successively the hypotheses Hiiop = o1,
Hyio03 = o2, ---, continuing only if all the previous hypotheses were ac-
cepted. If Hy, --- , H; are true, the distribution of S, ---, 8} is the same as
in the preceding problem, and it is easily seen that exactly the same proce-
dure is applicable to the present situation.

14. Minimizing the maximum risk. For problems of the kind discussed in the
preceding section unbiasedness is closely related to the minimax property. We
begin by considering the two-decision problem of testing a hypothesis H:0 ¢ w.
Let dy and d; denote the decisions of accepting and rejecting H, and let the losses
of false rejection and acceptance be a and b respectively. Then we have

(i) A necessary condition for a procedure § to be minimax is that it be un-
biased.

(i1) This condition is also sufficient if the probability Ps(A) of any set 4 is
continuous in 6 and if the common boundary of w and ™' is nonempty.

To see (i) note that unbiasedness of a procedure § implies

b torbew, Pod) < —*

—1
g a+bf0r6€w .

(14.1) Py(dy) <

Since the risk function of any procedure 6 is given by

[aPy(d)) for 6¢ew

(14.2) Ri0) =\ opyds) for 06,
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do satisfies
ab
a+b
Any minimax procedure §; must then also satisfy (14.3) and hence by (14.2)
must also be unbiased. Suppose next that the assumptions of (ii) hold, let 6o

be a common boundary point of w and w™, and let 8, be unbiased. Then (14.1)
and Pe(de) = 1 — Pe(d;) show that

b
a-+b

Thus for any unbiased procedure 8 we have

(14.3) sup R;,(0) =

Ps,(dy) = and hence R;,(8) = ab/(a + b).

ab
a+b
By (i), this relation holds in particular for any minimax procedure, so that
ab/(a + b) is the minimax risk and (ii) follows from (14.4).

We shall now extend (ii) to the case of a number of hypotheses H;:£:(6) € w;
(¢ =1, .-+, s) to be tested in sequence, where each hypothsis H is tested only
if a particular prescribed chain of decisions has been reached on Hy, -+, Hi .
For these problems we have

TueoreM 3. Every unbiased procedure minimizes the maximum risk provided
(i) Po(A) is a continuous function of 0 for each A, (ii) the 2° intersections N oy o7,
(each x; = =1), are all nonempty, (iii) there exists at least one parameter point 6o
which lies on the common boundary of w; and w; - for all i, (iv) the losses a; and b;
for falsely rejecting and accepting H; satisfy condition (14.10) below.

Proor. Let us write a;” for b; , let d; and d;' denote the decisions of rejecting
and accepting H; , and let y; = +1 if H;,, is considered in case H; is rejected,
and y; = —1 in the contrary case. If 6 eNi_; w?’, the risk of a procedure ¢ is
then given by

Rs(0) = af'P(d1') + P(di'){az’P(d?’ | di') + P(d%’ | dt')
la3*P(d5* | di'dy” + -+ 1}
= ai'P(d7") + a3’ P(d7")P(d3" | d1')
+ a3*P(d1)P(d?’ | di)P(ds’ | di'ds’) + - .

By comparing each of these expressions for which z; = 1 with the corresponding
one for which z; = —1 but all the other z’s are the same, it is seen that un-
biasedness implies and hence is equivalent to the conditions

bs
a; + b;
a;

a; + b;

(14.4) sup R;,(0) =

Py(d: | d1' - - di5")

IIA

for 0 ¢ w;

Po(dit | dYt -+ - d¥ig) < for 6 £ wi
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fori = 1, -+, s. Putting r; = asb; / (a; + b;) we see that the risk function of
any unbiased procedure satisfies
a!ll al agz
sup R;(6) < r
p a()_1+al+ 2+a1—|—b1a2+b2
Y1 Ys—1
+...+ a1 o e @s—1 7*3:7'*‘

a; + by As—1 + bo1

It now remains to show that r* is the minimax risk.
Consider any procedure §, and let

a; = Py (d; | it --- 1h).
Then it follows from assumptions (i), (ii) and (iii) that

(146) sup R;(0) = max [(ma)™ + o' (azan)™ + -+ + ' -+ %5 (a, ap)*

Ty,ee,Ty

since the 2° expressions in brackets are the possible values of lim Rs(6) as 6 tends

to 6o . Let us now minimize the right-hand side of (14.6). Givenany a;, -+ - , a1,
T, -, Teo1, the maximum of the pair of expressions
Ys— Ts— —
(alal)xl + -+ CM?{I tee aZ—22(as—1as~1) =4 a’il s a’éil‘ (asas)y
z ! - - k Ys— —1
(ao)™ + --- + oft - - 5 (g0 1) + ot - i (asas)

is clearly minimized by minimizing
—1
max(asa; , a; (1 — a,)].

. . *
This gives a; = @, where we put

-1
- b.
14.7 L L
(14.7) * a; + a7t a4+ b’
so that
(14.8) aif = (aiad) ™.
We can now proceed inductively. Suppose that it has already been shown for
any fixed a1, - - -, a; that the right-hand side of (14.6) is minimized by a; = oF
forj = ¢+ 1, .., s. Consider now the minimization of the maximum of the
quantities
((110!1)11 + -+ Olzil aziil(azai) + 061{1 oo agi[(ai+laf+1)zi+l
+ (a?+1)yi+1(ai+la?+2)“+2 + .- ],
(@a)™ 4+ -+ 4+ at' -+ a5 (@) + - QY
[(ai+1011!=+1)xprl + (af+1)yi+l(ai+2a?+2)“+2 +

where the expression in brackets by (14.8) is independent of the z’s and hence
equal to
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(14.9) k: = ai+la?+1 + (afﬂ)““auzai‘-z + -+ (01?4-1)““ te (a’f_l)““asal".

Eliminating the common terms at the beginning, and the common factor

af' -+ - a¥i7' of the terms involving a; , we see that it is enough to minimize

max[aiai + kiaﬂf‘ ’ bia.; + k;a’f‘].

This is achieved by equating the two quantities, which gives a; = «f , provided
the coefficient of a; in b; + (k; — b;)a; is <0 in case y; = 1, or that the coefficient

of a; in a;e; + ki(1 — a;) is >0 in case y; = —1. Thus the right-hand side of

(14.6) is minimized by putting a; = ai for all 4, provided

(14.10)  aipalyy + (@) aipore + oo+ (@)U - (@)Y g
< a;¥.

Putting a; = o in the right-hand side of (14.6) one then sees that the 2° quan-
tities in brackets become equal, and that their common value is r*. Thus, for
any procedure §, we have
supRs(8) = r*
and the desired result now follows from comparison with (14.5).
CororrLARY. The conclusion of Theorem 3 holds if (14.10) is replaced by either

(14.11) yi = 1foralls and b = b= -+ 2 b,
or
(14.12) y; = —1foralle and a1 2 a2 = -+ = as.

Proor. It is necessary only to show that each of the conditions (14.11) and
(14.12) implies (14.10). If all the y’s are 41 the left-hand side of (14.10) may be
rewritten as

bin(elfi)™ + bip(efi) el + o+ bad) el e et
If (14.11) holds, this is
S biyl(ef) ™ + afulelf) ™+ o+ el ada(ed) T
= bl — atpadys - ar] < by < bi.
Similarly, if (14.12) holds, the left-hand side of (14.10) is
< aipladyn + (@) et + st (e @) ad)
=aipyll — (s a7 < ai.

If the assumptions of Theorem 3 are not satisfied it is sometimes possible to
prove a slightly weaker result. We shall illustrate this with the simplest case of
Example (i) of Sec. 12. Here one is concerned with four means &;; (¢, 7 = 1, 2)
given by

n= N+ up+v fb= N—u-—v

= —Atu—v fm=-N—u-—»
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The first hypothesis tested is Ho:» = 0. In case of acceptance this is followed by
Hi:\ = 0, while in case of rejection one is interested in the two hypotheses
H,: £y < £ which is equivalent to A + » < 0 or H3 & < £ which is equivalent
to A — » = 0. The feature which complicates this problem is that when H, is
true the three remaining hypotheses must either all be true or all be false. Thus
the condition corresponding to (ii) of Theorem 3 is not satisfied.

Let us denote the decision of rejecting or accepting H; by d; and d;* as before,
and consider the class  of procedures satisfying
(

<_b

P(dO) = a0 + bo

by
a + b,

Qo

# 0
ag + bo g

if »=0, Pl =

P(d|do") <

if A +v=0,

a

1 1 >
(14.13) Py |dy) o b

if A4+»>0

b;
a; + b

P(d;|do) = if H,is true,

Q;
a; + b;
We shall then prove that any element of €, which is a subclass of the class of
unbiased procedures, is minimax, under the additional assumption that

P(d;' | do) < if H;isfalse (i = 2,3),

a; =a and b; = bforall <.

For any procedure 8, consider the error probabilities ap = P(do), oy = P(dy | da *)
a; = P(d: | do) (7 = 2, 3), evaluated for A = » = 0 and some fixed values yo and
oo of u and ¢. Then the possible value of lim R;(6) as 6 = (A, u, v, o) tends to
6y = (0, po, 0, ao) are

al(l —_ ao)a1 + ao[ao + 177623 + a3a3] for 6 ¢ Wow1Waws3
bl(l bl ao)(l bl al) + ao[ao + bz(l - az) + b3(1 -_ a3)]

—1 -1
for 0 € wowi wews

(1 — ag)lbo 4+ aron] + aolasas + asas) for 6 ¢ w§1w1w2w3
(1 _ ao)[bo + alal] + 0[0[(12(12 + 'bg(]. b a3)] for 0 ¢ walwlwgwgl
(1 e ao)[bo 4+ alal] + ao[b2(1 - 0[2) + 0/3CM3] for 8 ¢ wElwlwglwg

(1414) (1 - ao)[bo + a1a1] + ao[bz(l - 012) + b3(1 - a3)]
for 0 & wo ‘wiws ws "

(1 — ag)lbo + b:i(1 — a1)] + aolasas + asas) for 0 & wo 'wy waws
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(I = a)lbo + b:(1 — )] + aolasa + bs(1 — a3)]
for 6 & wo w; wywy
(I = a0)[bo + bi(1 — )] + aolbo(l — ) + azas]
for 0 & wo ‘w1 ws ws
(1 — ao)[bo + bi(1 — a1)] + aolbe(l — @) + bs(1 — as)]
for 0 & wo wr 'ws w5 .
With u = ap, v = (1 — adan, w = awen, 2 = aas and a; = a, b; = b these
quantities become
au4v +w +2]
(@ 4+ by —bv—bw —bz+ b
—bu 4+ av + aw + az + b
av +aw — bz + b
av — bw + az + b
bu + av — bw — bz + b
—2bu — bv 4+ aw + az + 2b
—bu — bv 4 aw — bz + 2b
—bu — bv — bw 4+ az + 20
—2bu — bv — bw — bz + 2b.

(14.15)

From the first form of these 10 quantities it is seen that they all become equal
for a; = af = bi/ (a: + b:). Let the corresponding values of (u, v, w, 2) be (uo,
v, Wo, 2). We shall now show that if we change from (uo, v, wo, 20) to some
other point (u;, v1, wy, 2) at least one of the 10 quantities will be increased so
that (uo, vo, wo, 20) and hence a; = of minimizes their maximum. If in (14.15)
all possible sign combinations were occurring, this would be obvious. For then
in at least one row all of the four increments == (u; — o), == (v1 — v5), == (w;y — wy),
=(21 — 2) would be positive. But of the 16 possible combinations only 12 occur
(with rows 4 and 5 each counting for two combinations, the missing combina-
tions being — + — —, 4+ — + +, + — + — + — — +.

As an example let us consider the first possibility. Suppose that u; = up — £,
vi=v F+ o w = w — Az = 2z — §, with £ 9, A, ¢ all nonnegative. The
total change in the first and tenth rows of (14.15) will be

o(—=¢+9—A—¢) and b2 — 9+ A+).
Since both of these are to be < 0, we have

26 +A+ e =nsSE+ A+
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and hence ¢ = 0. But then the change in the sixth row will be positive unless also
n = A = ¢ = 0. The other three possibilities can be ruled out in a similar manner
so that a; = of minimizes the maximum of the 10 quantities in question. If r*
denotes the common value af[ao + a1of + aes + azes] of these quantities, it
only remains to show that (14.13) implies R5(8) < r* for all 6. This is clearly the
case since for each ¢ the coefficient of a; in (14.14) is = 0 in the lines correspond-
ing to 0 ¢ w; and = O otherwise.

The result that the natural combination of a number of best unbiased or
minimax tests leads to a minimax procedure for the compound problem, does
unfortunately not hold even in the simplest cases in which the different hypothe-
ses concern the same parameter. Consider for example problem (i) of section 3,
in which the simultaneous consideration of H;:0 = 6, and H,:0 < 6, leads to the
choice between the three decisions dy:0 < 6y, do:8 = 6 and d;:0 > 6. If the
losses of false rejection and acceptance are ¢ and b for both hypotheses the risk
function is given by

b Ps(do) + (a + b)Pe(di) for 6 < 6y
Rs(0) = {alPe(d1) + Ps(ds)] for 0 = 6
bPo(dy) + (a 4+ b)Pe(dz) for 6 > 6.
If a; = Py,(d;) we have
(14.16) supRs(0) = max[aas — bae + b, alar + @), acs — boy + b).

For a given value of oy + a2, the maximum of the first and third terms on the
right-hand side is minimized by equating them which gives a; = a, and reduces
the right-hand side of (14.16) to

max[(a — b)a + b, 2aal.

In the usual case that @ > b, this is minimized for « = 0, that is, for a = 1,
a1 = a; = 0. In the standard case that the family Py is homogeneous this implies
Py(dy) = 1 for all 6, the risk function of which is

b if 65 6
Rs(0) = i
0 lf 6 = 00
which is then clearly minimax.
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