ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Stanford Annual Meeting of the Institute,
Awugust 23-26, 1960.)

39. On the Number of Distinct Values in a Large Sample from an Infinite, Dis-
crete Distribution. R. R. BAHADUR, Indian Statistical Institute (By title).

Let A, , Az, --- be an infinite sequence of events defined on the sample space of some
experiment such that P (4;) > 0 foreach j, P(4,;4:) = 0 forj # k, and >_;P(4;) = 1. Con-
sider a sequence of independent repetitions of the experiment, and let T be the number of
distinet events A ; observed in the first n trials. The paper studies the rate at which T, — «
asn — ©. Let un = E(T,), where E denotes expected value. Theorem 1: T'n/un — 1 in prob-
ability as n — . Suppose (with no loss in generality) that P(4;) = P(4 j41) forall 5. Let
f(z) = max {j:P(4;) = =z} for z < P(4:) and f(x) = 0 (say) otherwise. Theorem 2:
tn = nf@ em=f (z) dz + o(1) as n — «. It follows, e.g., that if P(4;) = ¢j™% where 1 < a
< w, then pn = I'(1 — B)(cn)f — 6, + 0(1), where 0 < 6, = 1 and 8 = 1/«; and that if
P(A;) = e™\i/jl, where 0 <\ < =, then un, ~ log n/log log n. There is, however, no attain-
able maximum or minimum rate of increase of us . Theorem 3: Given P, there exist prob-
ability distributions P* and P** such that, with s = E(T. | P*) and pn* = E(Ta |P3"),
u: = 0(us) and pn = o(p:*)asn—> 0, ) :

40. Expansions for Convolutions. REED DAWSON, American Systems Inc.

Asymptotic expansions for the ordinate and tail area in the distribution of the stand-
ardized sum of a large number of independent and identically distributed random variables
are developed from the Edgeworth series of Cramér. The formula for the ordinate extends
results of Daniels’ (Ann. Math. Stat., Vol. 25 (1954), pp. 631-650) and Good (Ann. Math.
Stat., Vol. 28 (1957), pp. 861-881). The expansion of the tail area is believed to be new.

41. On Sufficient Conditions for Consistent Parameter-Estimates in a Stochastic
Difference Equation with Regression on Several Lagged and Non-Sto-
chastic Variables. FriepaELM EICKER, University of North Carolina.

(By title).

The least squares estimates a; of a; and b; of B; in the stochastic difference equation
Ye=aWis+ - + aphip + Bitre + o+ + BgTqe + €, =1,2, .-+, where yo, Y1, ",
Y-p41 and all z;, are given constants, are shown to be consistent if conditions (A)-(C2) hold:
(A) The disturbances ¢, are independent with 0 means, and 2nd and 4th moments bounded
between two positive constants uniformly in ¢. (B) The roots of p? — ap?™t — -+« — ap =0
are within the unit-circle (stationarity). With X(N, ¢) = (z;:) and \i(P) = largest eigen-
value of P = X'X it is assumed further: (Cl) If the set {N} of those N for
which N-2,(P) = g(N), with some g(N) — 0 as N — «, is infinite, let '

(N + NP+ M(P))7H hmin (K'K) — 0, N in {N},

where K(N, (p + 1)q) = (X, LX, --- , LX), L(N, N) containing 1’s in its left subdiagonal
and 0 elsewhere. (C2) If the complement {¥} to {N} is infinite, Amia (P) — « suffices for
a; — a; i.p. on {N}. For b; — 8; on {N} suffices to have in addition that the elements
of P-1X'L’X are uniformly bounded for all j. This theorem is proved using only elementary
matrix theory. Simplified conditions are easily derived. They allow even exponentially in-
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creasing regression vectors. This case is not included in what seem to be the broadest condi-
tions known so far (Grenander, Ann. Math. Stat., 1954). The methods applied lead also to
statements about asymptotic distributions, the explosive case and other questions.

42. Multivariate Extremal Distributions. E. J. GumMBEL, Columbia University.
(By title).

A bivariate probability function F(z, y) with margins F:(z) and F:(y) is obtained by
writing [—log F (z, y)]™ equal to the sum of the corresponding expressions for F,(z) and
F(y) where m = 1. It is shown that the asymptotic bivariate probability function of largest
values ® (z, y) taken from F (z, y) has the same form, provided that the marginal distribu-
tions possess asymptotic extremal distributions. By analogy, a bivariate probability func-
tion II (z, ) for values exceeding « and y is linked to ®(z, y) by I (z, y) = ®(—2, —y). These
expressions can easily be generalized to n dimensions.

43. Tolerance Regions. IrwiN GurtMaN, McGill University. (Invited Paper).

A discussion of Distribution-Free and 8-expectation tolerance regions for fixed sample
cases and sequential sampling schemes is given. Let X, -+ , X, be a sample of n inde-

pendent observations on X. Definition. S(X1, -+, X,) is a distribution-free tolerance
region if the induced probability distribution of the coverage of S is independent of the
probability distribution of X. Definition. S (X‘. , -+, Xa) 18 a B-expectation tolerance

region if the expected value of its coverage is 8.

A connection between tolerance regions and the concept of Best Population (c.f., the
work of Gupta, et al.) is indicated. Definition. Suppose there are %k populations that are
distributed by P, i = 1, ..., k respectively. Let C; = [, dP%  where A is fixed, and
known in advance. Then the k populations are said to contain a best population if and only if
there exists an ordering of the @; such that Cyy > Cp_y = ++- = Cpy .

44. Estimation of the Scale Parameter in the Weibull Distribution by Means of
a Life Test with Censoring both by Time and by Number of Failures.
EuceENE H. LEaMAN, Jr., North Carolina State College. (Introduced by
R. L. Anderson).

The distribution of life spans of certain classes of individuals is assumed to be Weibull
with two parameters—a shape parameter assumed known and a scale parameter to be esti-
mated. The maximum likelihood estimator of the scale parameter is derived in a test in
which N items are subjected to test. The test continues until R (less than N) items have
failed and a minimum time T has elapsed. The bias, small sample variance, mean square
error, asymptotic mean square error, cost and price of the estimator are determined, where
cost is defined as a linear combination of N and the expected duration of the test, and price
is the product of cost and mean square error. By means of calculations on an IBM 650,
actual values of these characteristics are determined for certain values of R, N, T and the

shape parameter.

(Abstracts of papers not presented at any meeting of the Institute.)
1. On the Foundations of Statistical Inference, II. (Preliminary Report). ALLAN
BirnBauMm, New York University.

Let E = (pi;) be any stochastic matrix (D; ps; = 1, for eachd), ¢ =1, --- k (k finite),
j =1, -+ m (possibly infinite). Then E is the mathematical model of a statistical experi-
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ment for k simple hypotheses: Prob (X = j| H;) = p:; . For any fixed k, E is simple if it is
(or is equivalent to) such a matrix with m = k. A simple experiment is cyclic-symmelric
(c.s.) if it can be represented by a c.s. square matrix (ps,; = pi-1,j-1 , with any subsecript 0
replaced by k). Any experiment is called ¢.s. if it has a representation E = (p;;)
= (@1, Q:, -+ ) where each @ is square c.s. Lemma 1: Each c.s. experiment is equivalent
to a mixture of c.s. simple experiments. Lemma 2: Every experiment is a component of
some c.s. experiment. Hence for typical purposes of informative inference, any outcome
X = j of any experiment £ = (p;;) can and should be interpreted as an outcome of the es-
sentially unique simple c.s. experiment having a column proportional to the jth column of E.
The structure of E is irrelevant to such interpretations except through its jth column,
which is the likelihood function determined by outcome j. Such interpretations can be
expressed exclusively, if desired, in terms of error-probabilities defined in the simple c.s.
experiment and admitting frequency interpretations; such interpretations include point and
confidence-set estimates. A formal correspondence exists between some such interpretations
and inferences based on formally postulating equal prior probabilities; this gives a construc-
tive explication of the traditional Bayesian ‘‘principle of indifference.” A formal corre-
spondence exists also between such interpretations in confidence-set form and the state-
ments obtainable by formal application of Fisher’s ‘“fiducial argument”’ (which is possible
in any simple c.s. experiment).

2. Trees and Negative Estimates of Variance Components. W. A. THOMPSON,
JR., University of Delaware. (By title)

This paper provides an algorithm for solving the problem of negative estimates of vari-
ance components (see Abstract 69, Ann. Math. Stat., 1960) for all random effects models
whose expected mean square column may be thought of as forming a mathematical tree in a
certain sense. The algorithm is as follows. Consider the minimum mean square in the entire
array; if this mean square is the root of the tree than equate it to its expectation. If the
minimum mean square is not the root then pool it with its predecessor. In either case the
problem is reduced to an identical one having one fewer variable and hence in a finite num-
ber of steps the process will yield estimates of the variance components. These estimates are
non-negative and have a maximum likelihood property.



