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LIKELIHOOD ESTIMATION
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Let x be a point of some abstract space &, on which is defined a measure u.
Further, let p(z, 8) denote a probability density function with respect to u,
which, but for an unknown parameter, 6, is completely specified for all x ¢ 9.
It is taken for granted that 0 ¢Q, a given index set. We make the following
assumptions:

(a) @ is an open interval of the real line.

(b) For almost all z(n), (dlogp(z, 6)/86) and (8" log p(z, 6)/06%) exist
for all 6 ¢ Q.

(¢) [ p(z, ) du and [ (0 log p(z, 0)/30)p(z, 0) du are differentiable under
the integral sign.

(d) E[(8log p(x, 6)/86)* | 6] > 0 for all £ Q.

To estimate 6, we construct a function, g(z, 6), on X X Q such that
(i) Elg(z, 6)]| 6] = 0 for all 6 £ Q,

(ii) for almost all z(u), dg/30 exists for all 8 ¢ Q, .

(iii) [ g(z, 0)p(x, 8) du is differentiable under the integral sign,

(iv) [E(3g/86 | 6)] > 0 for all 6 ¢ Q. _

The condition (i) above is not much of a restriction, for, from any function,
f(z, 6), such that, E[f(z, 6)| 6] < «, we can construct a g(x, 6) satisfying (i).

Now, given such a function g, the procedure of estimating 6, is as follows:
If the observed value of z = X, an estimate of 6 is given by 6,(X), where the
equation

(1) 9(X, 0) =0,

is satisfied by 6 = 6,(X).

For this reason, any function g satisfying conditions (i)—(iv) above, will be
called a regular estimating function. Let © denote the. class of all the regular
estimating functions g. Now from & we propose to select some g*, which, in a
certain sense is an optimum estimating function.

DerFiNiTION: A ¢* belonging to & is said to be an optimum estimating func-
tion if

(2) [E?%%? :S]z = [Elzégll :;]2 forallge©and 0 £ Q.

Of course there is certain amount of arbitrariness in the above definition of
“optimum?”. It is not however altogether unreasonable. We want the values of
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g to cluster around 0, as much as possible (i.e. E(g’ | 6) should be as small as
possible), and at the same time it is desirable that Elg(z, 6 + 86)| 6] should be
as far away from O as possible. (This is conveniently translated as

[E(3g/30 | 0)F

should be as large as possible). This justifies the definition (2). The following
Theorem establishes that g* = (8 log p)/06" satisfies (2) above. Hence follows
the optimality of the maximum likelihood estimation. /¢ is important to note
that the validity of the Theorem below is independent of the discussion of “op-
temality” in this paragraph.

TaEOREM: For all g ¢ &,

_E(@|6) - 1
S CE D!

the equality being attained for

(B) o = Ql_gg_p.
Then, obviously,
E@*|6) o _E@]0)
(C) l:E(%g; | 0)]2 [E (g_g | 0>]2
for all g £ &.
Proor: We have from (i), for 6 ¢ Q,
(3) [ g(z,0) p(z,0) du = 0.

Differentiating (3) under the integral sign (this is permissible because of (a),
(b), (ii) and (iii)), we have

ag f dlogp =
(4) faapd#+ 92 pdu = 0.
Further, because of (¢),

dlogp ) _
(5) E(——a ; |6) =0.

Thus second integral in (4) is the covariance of g and 0 log p/d6. It then follows
from (d), (iv) and the Cauchy-Schwarz inequality, that, for 6 ¢ 2,

E(g'|6) 1 _

(@] =[]

1 Tt follows from (a)-(d) that @ log p/d6 ¢ ©.

(6)

v
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This proves part (A) of the Theorem. Of course, instead of (iv), when,
E(9g/9816) =0,
(A) is true trivially. Further, if

d log p
* =
(7) g %

we have from (a), (b) and '(c) that ,
_ 8 log p ] _ l: (6‘ log p)2 ]
8) E[ g 21| = 5[ (2ERY 5],

and hence

E(g*|0) 1

® [2(%10)] [(6—13—5—2> o]

This proves part (B) of the Theorem.
It is interesting to note that the above theorem generalizes the Cramér-Rao

inequality [1], [2]. For let _

(10) q(z, 0) = f(z) — e(6),

where f is a function on &, and

(11) es(0) = E(f]6).

We assume ¢; £ &. Now if the above Theorem (A) is applied to g1 , we get,

(12) Var (f]6) > 1 .
[9e;(8)/06]* — E[(0 log p/36)* | 6]

This is the Cramér-Rao inequality. Part (B) of the above Theorem is valid

under general regularity conditions, while the sign of equality in (12) holds,

when and only when, in addition to regularity conditions,

a1l 6
(13) ? 1o 2(&.0) _ 5\(0)(s(a) = es(6)),
where A(6) is some function of 8 alone (Cramér [1], p. 480; Fend [3]). Obviously,
when the sign of equality holds in (12), g; in (10) is given by,

_ 0 log p(x, )
(14) - MO)gu(z, 6) = 8

The author acknowledges with pleasure that G. A. Barnard communicated
to the Royal Statistical Society, London, a result similar to the preceding

Theorem, independently, and at nearly the same time when this paper was
written. Barnard’s result is explained in [4], p. 145.
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