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1. Introduction. Inverse binomial sampling plans are discussed in a number of
papers in the literature, e.g., [3], [6], [7], [8], [13]. In addition, inverse sampling
procedures have been proposed for some problems of drawing inferences from
counted data about a parameter other than a population proportion, e.g., in
[1] and [12]. In this note it is pointed out that inverse binomial sampling plans
can be applied in certain situations where continuous observations must be
taken with censoring. In particular, when the observations follow an exponential
distribution and large values are censored, the use of such a sampling plan gives
rise to a complete, sufficient statistic [10] that has a simple, well known distribu-
tion. This result is closely related to the work of Malmquist {11].

2. The statistical model. Let X be a random variable with c.d.f.

1 — exp (—=z/8), ifz >0
1 F, =
@ @ {0 ife <0,

’ =

where 0 < 6 < o« is unknown. Suppose that observations are to be taken from
this distribution with the restriction that for a known constant z,, the value
of X can be observed if and only if X < z, ; otherwise, just theinformation that
X > z,is provided. From a sample of observations with this sort of censoring
(sometimes called “single censoring on the right”), it is required that an inference
be made about the value of .

To apply a binomial sampling plan to this situation, define the random variable

’ 1, if X=u
@) U=
0, f X > Zo.
Clearly, U is a Bernoulli chance variable,
(3) PriU=1} =1—exp(—2,/0) =p, Pr{iU=0}=1—-p=y,

that can be sampled only by taking observations on X subject to censoring.
Thus, a sampling plan for the distribution of U specifies a procedure for sampling
from the distribution of X with censoring.

The proposed sampling plan is defined in terms of taking observations on U:
For a given, positive integer r, a sequence of independent observations, say
Uy, U, -+, is sampled until for the first time Y 1—; U; = r. Then sampling
is terminated. This inverse binomial sampling plan implies that independent ob-
servations on X are taken sequentially until » valuesof X < 2, ,say Y1, -+, Y.,
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are obtained. In the experiment the total number of observations N taken with
censoring (including Y5, ---, ¥,) is a random variable.

3. A sufficient statistic. The method of maximum likelihood suggests the use
of the statistic

S=§_31Y,-+(N—r)xo

for the analysis of such an experiment. Some important properties of S are now
derived.

TaEOREM: With the proposed sampling plan, S is a sufficient statistic and 2S/6
has a x* distribution with 2r degrees of freedom.

Proor: Regard the given experiment as r independent repetitions of an ex-
periment in which observations are taken one at a time with censoring until a
single value of X < x, is obtained. In the 7th repetition (# = 1, ---, r), let ¥;
be the observed value of X and N; — 1, the number of censored observations
immediately preceding Y;. (Each censored observation is known to be greater
than z,.) Define

(5) S8i=Yi+ (N: — 1)z,.

Since, with probability one,

(6) N; =14 [Si/z], Yi = 8 — x[8:/x],

where [z] denotes the integral part of z, S; ‘is sufficient for the joint distribution
of YV, and N;.

To determine the distribution of S;, note that there is no loss of generality
in assuming that X is the waiting time up to a change of state in a homogeneous
Poisson process, where changes occur at the mean rate of 1/0 per unit time.
From this point of view, taking an observation with censoring has the interpreta-
tion that starting from an arbitrary moment in time, the process is observed for
an interval of min(X, z,) units of time. Drawing a sample of observations with
censoring then amounts to observing a sequence of these time intervals that are
disjoint, but not necessarily adjacent. Using the properties of a Poisson pro-
cess, write

Po(t) = exp(—1/6)

for the probability that no change occurs in an interval of length ¢.
For arbitrary z > 0, let m = [x/z,] and consider

(8) PriS: < a} = Pr{S; < m} + Prim < S; < 2}.

The event S; < m in terms of the Poisson process is the complement of the
event that no change is observed in each of m non-overlapping intervals of length
Z, . Furthermore, m < 8; < x is equivalent to the intersection of the event that

no change is observed in m disjoint intervals with the event that at least one
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change is observed in an additional interval of length * — mx, that does not
overlap any of the previous m. Hence,

Pr{S: = a} =1 — {Po(z,)}" + {Po(2.)}"{1 — Po(z — ma,)}
=1 — exp(—z/0).

Therefore, S;, - -+, S, form a random sample from the exponential distribu-
tion (1). Since S = »_i_; S;, the theorem follows from well-known properties
of the TI' distribution (see e.g., Example 17.8 of [9])".

‘CorOLLARY. The distribution of S belongs to a complete family of distributions.

A proof of the corollary is supplied by Example 3.5 of [10].

It is not difficult to verify that the theorem does not hold for the analogue
of S in the single sample case [2], i.e., when the total number of observations
taken with censoring is fixed and the number of values of X < z, is a random

" variable. Indeed, the principal advantage of the inverse binomial sampling plan
is that appropriate procedures are often well-known or easily derived. The com-
pleteness property provides easy proofs of the optimal character of many of
these procedures.

(9)

4. Remarks. :

(i) It is not essential to the sampling plan that observations are taken one at
a time. The results of the theorem are valid, for example, in the following multiple
stage experiment: In the first stage, a sample of r independent observations on X
is drawn. The experiment is terminated if » values of X < z, are observed; other-
wise; the experiment is continued. At each successive stage a sample of observa-
tions is taken whose size is the additional number of values of X =< x, required
to make the cumulative number of such values (i.e., the number observed in
the entire experiment) equal to at most r. Experimentation is terminated as soon
as r values of X = =z, are obtained.

(ii) The “nice” properties of S are shared by a statistic proposed by Epstein
and Sobel [4], [5]. From the point of view of the experimental design, however,
the restriction imposed on the observable values of X in this paper differs im-
portantly from the one considered by those authors.

(iii) An inverse binomial sampling plan can, of course, be applied when X
follows some distribution other than (1). Typically, results like the theorem above
do not hold for such cases. At least from the point of view of maximum likelihood
estimation, however, it is frequently advantageous to use such a sampling
plan. '
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1 M. Sobel, John W. Tukey, and the referee independently suggested that an earlier
derivation of the distribution of S; might be replaced by one proceding along the lines pre-
sented here.
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