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1. Introduction and Summary. Let X be a random variable governed by
one of a family of distributions which is conveniently parametenzed by u, the
expectation of X, so that in particular, the variance of X, ¢, is a function of p,
which we denote by o* (). A transformation, ¢(X), is sometlmes sought so that
the variance of (X)), as sweeps over its domain, is independent of u (or much
more nearly constant than ¢ *(u)).

A standard method of obtaining such a transformation for stabilization of the
variance is to consider X as one of a sequence of random variables, the sequence
converging asymptotically in distribution, usually to a normal distribution.
One form of the basic theorem is stated and proved by C. R. Rao (8], pp. 207-8,
as follows.

TaeoreM (Rao). [ f X s asymptotically normally dzstmbuted about u, with
asymptotic variance o *(u), then any function ¢ = Y(X), with continuous first
derivative in some neighborhood of u, is asymptotically normally distributed with
mean ¥(u) and variance o"(u)(dy/dp)?, where (dy/du) denotes the derivative of
(X)) with respect to X, evaluated at the point .

From this we immediately have the following well- known

CoRrOLLARY. The random variable

(1) vx) =c ;‘%

where 0 < z < «, and where K is an arbitrary constant, has a variance which s
-stabilized asymptotically at é.

It is assumed, of course, that the integrand in (1) is integrable. If ¢(X) is not
a real-valued function on the domain of X, then the mapping is meaningless.

Transformations such as (1), perhaps slightly modified, not only often work
well for stabilizing non-asymptotic variances, but also often serve as well to
normalize non-normal distvibutions. In general, however, nothing is known about
the relative closeness to normality of the distribution of a random variable before
and after a variance-stabilizing transformation is applied. Nor can anything
general be said about the relative rapidity of approach to asymptotic normality.

The study of concrete examples, however, suggests some connection between
variance stabilization and normalization of non-normal distributions. A theo-
retical connection that may be relevant in certain cases has been put forward by
N. L. Johnson [3], pp. 150-1. Johnson shows that, when the random variable of
interest has a certain structure, then the differential equation for the normalizing

Received April 15, 1959; revised July 18, 1960.
1105

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Mathematical Statistics. BINORN

www.jstor.org



1106 NICO F. LAUBSCHER

transformation is similar to the differential equation for the variance-stabilizing
transformation. The specified structure is that X, = ¥; + Y,G(Xy) + «-----
+ Y.G(X,.1), where the Y’s are independent and small, and G(-) is some
function.

In what follows, we obtain the variance-stabilizing transformation for the
noncentral ¢ distributions and consider its normalizing properties. We repeat the
same procedure for the topside noncentral F distributions, although the variance-
stabilizing transformation in this case is not well-defined. We then derive two
other (well-defined) transformations for the approximate normalization of the
topside noncentral F. Numerical comparisons of these approximations and the
exact values are given.

2. Noncentral ¢. If U and V are independent random variables and U is N (0, 1),
V is x*/n (where x* denotes the central chi-square variable with n degrees of
freedom), and § is a real number, then the random variable defined by ¢ =
(U + 8)V* is known as the noncentral ¢ variable with n degrees of freedom and
with noncentrality parameter . We assume throughout that n = 4. The first
moment about zero, and the second and third central moments of noncentral
t were obtained by Johnson and Welch [4]. These moments are, respectively, '

w = (3n)r(In — 3)/T(3n),

e = [n(1 +8)/(n — 2)] = ¥,
and

pe = pfn(8 + 2n — 3)/[(n — 2)(n — 3)] — 2u3}.
Eliminating é between u and u; we find that
pe = a + b’
where
| a = [n/(n — 2))
and
b = {2I°(3n)/[(n — 2)T°Gn — ] — 1}

which is a positive real number for n = 4.
Now, from (1), (with K = 0 and ¢ = 1), the variance-stabilizing trans-
formation, £(¢), of noncentral ¢ is

£(8)

I

13
fo (@® 4+ " u) P du

o sinh_l(ﬁt),

where a = b_-1 and 8 = b/a.
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The random variable
(2) £(t) = £(t) — asinh™ (Bu)

will have, approximately, mean value zero and unit variance.

Using the second— and third—derivative terms respectively in the Taylor series
for expectations, the following transformations might be expected to eliminate
more bias than (2):

(3) &(t) = &) + %bzﬂliz_’,
(4) (1) = &a(t) — 3% uel26® — (a*/0%)].

To find the degree of approximation to normality of these transformations,
P{t < n'z} is approximated by P{£:(t) < #:(n'z)}, where £(t), 7 = 1, 2, 3, is the
transformation used. If n and & together with &, 0 < & < 1, are specified, then
the equation P{t < n'z} = 1 — « determines z uniquely". Let ®(-) denote the
unit normal distribution. If £;(¢) is exactly N (0, 1), then d(E(n'r)) =1 — a
is an identity. From tables of the normal distribution, if @ = 0.10, it follows that
£:(n'z) = 1.282,7 = 1, 2, 3. Hence, given 7, § and « = 0.10, we obtain z from
the tables of Resnikoff and Lieberman [9], pp. 383-9°. We enter the values of
£:(n*z) in Table 1. To see how good the approximations are in terms of prob-
abilities (rather than in terms of the deviates) it suffices to note a few values of
®( ) for quick reference: $(1.26) = 0. 896, $(1.27) = 0.898, ® (1.28) = 0.900
and ® (1.29) = 0.902. , .

There is a considerable degree of skewness in the noncentral ¢ distribution for
large values of & and small values of n (Johnson and Welch [4]). Thus we do not
expect (2) to be a very good approximation for simultaneous small values of n
and large values of 8. Table 1 confirms this suspicion. Also, for small n, the
quality of approximation deteriorates as & increases. Larger values of » improve
this transformation. In this case (3) and (4) are seen to be very close to nor-
mality, even for large .

Other numerical work, not presented here, was done for the cases ¢ = 0.05 and
o = 0.01 and for the same values of » and §. These results show that (2) is the
most suitable transformation when o = 0.05. The probability integral is over-
estimated by (3) and (4). When & = 0.01, (2), (3) and (4) over-estimate the
probability integral, (2) being the closer approximation.

1 We are limited, for exact values of the probability integral of noncentral ¢, to the tables

of Resnikoff and Lieberman [9]. These authors tabulate P{n~% =< z} because the range for
the argument 7% is about the same for all n and 6. This, of course, makes tabulation more
compact. )

2 The rather odd values of 3 which appear in Table 1 are not strange if one understands
the mechanism of Resnikoff-Lieberman tables! In these tables, once n is selected, the non-
centrality parameters are determined through the relationship § = (n 4 1)}K, where K,
is the upper p-point of the unit normal distribution and K, is determined from: ®(K,) =
1 — p. Hence & is given as a function of n and p and only tabulated for a suitable range
of values of p. The reason for this construction depends on the original purpose for which
these tables were constructed.
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TABLE 1
Values of &, (néx), 1 =1, 2, 8, where ndz is the 90th percentile of ¢
n 8 z & & &
9 2.132924 1.325 1.155 1.221 1.224
4.052622 2.177 1.124 1.223 1.214
7.356558 ©3.723 1.102 1.223 1.199
9.772173 4.879 1.096 1.222 1.193
19 3.016410 1.073 1.223 1.263 1.263
5.731273 1.811 1.206 1.266 1.264
10.403744 3.131 1.191 1.267 1.261
13.819939 4.113 1.186 1.266 1.259
29 3.694333 0. 983 1.241 1.272 1.272
7.019347 1.685 1.228 1.275 1.275
12.741932 2.933 1.218 1.277 1.275
16.925900 3.859 1.214 1.277 1.274
39 4.265848 0.935 1.255 1.281 1.281
8.105244 1.618 1.240 1.280 1.280
14.713116 2.829 1.232 1.282 1.281
19.544345 3.726 1.229 1.282 1.280
49 ' 4.769363 0.903 1.259 - 1.282 1.282
9.061938 1.576 1.251 1.286 1.286
16.449764 2.763 1.240 1.285 1.284
21.851242 3.641 1.236 1.283 1.282

3. Noncentral F. If X;, ---, X,, are independently distributed and X; is
N(u:, 1), then the random variable x> = X; + --- 4+ X5 is called a noncentral
chi-square variable with m degrees of freedom and noncentrality parameter
N=pit oo o

If x”* has the noncentral chi-square distribution with m degrees of freedom and
noncentrality parameter A, and if x*, independently of x”, follows the central
chi-square distribution with n degrees of freedom, then the ratio

F = (xX"/m)/(x*/n)
has the topside noncentral F distribution [6] with m and n degrees of freedom

respectively, and with noncentrality parameter \.
3.1. The cosh™ transformation. The first two moments of F are given by Pat-

naik [6] as follows:
u = n(m + \)/[m(n — 2)],
pe = w’[(m 4+ \)* + 2(m + 21))/[m’(n = 2)(n — 4)] — &

It will be supposed throughout that » > 4. By eliminating the parameter A
between the second central moment and the mean, we find that the variance is

pe = 2{[u + (n/m) — a*}/(n — 4),
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where
=n(m +n — 2)*/m(n — 2)*.

From (1), (with ¢ = 1 and K = @ — (n/m)), the variance-stabilizing trans-
formation, +(F), is obtained as

(F) = (é n — 2>% cosh™ [f’_—l—_é'n/_m)] .

It may be hoped that 7(F) is approximately normal with mean value

() = (% n— 2)* cosh™ [(n ZZ ;;?m+_|_)\n__2 2)&]

and with unit variance. Using the second derivative term in the Taylor series
for expectations, the transformed random variable

r=17(F)= <%n - 2>i{cosh'l[——————1 +(Z‘/n) F:I

— cqsh_1 [L":(_;)n_/_@]}_l_ [“ ';(-7_7'/4 m):l #2—%,

where b = (m +n — 2%/ (n — 2)! may be better approximated by the normal
distribution with zero mean and unit variance.

However, the transformation cosh™ {[F 4 (n/m)]/a} looks more innocent
than it is: cosh™ (z) is real only if = 1, i.e., in our case only if

F = /m){lm/(n —2) + 1 — 1} > 0.

Thus, for small values of F, we get no sensible approximation at all’. If m = n,
the lower limit for F is {[2(n — 1)]/(n — 2)}} — 1 = 0.414, so it is not only
very small values of F which are affected.

Strictly speaking, therefore, this transformation is not well defined and hence
should not be used to approximate the probability integral P{F < x}. However,
we have investigated the approximation of this by P{r(F) = r(x)}. The values
for m, n, A and x are the same as those considered by Patnaik [6] and the ap-
proximation (5) is given in Table 2 and compared with the exact values as given
by Patnaik [6]. As may be expected, this approximation is not very satisfactory.

3.2. The Square Root Transformation. It is well known [5] that (2x2)% is ap-
proximately normal with mean (2n — 1)* and unit variance. Also [6], (2x™)} is
approximately normal with mean [2(m + \) — (m + 21)/(m 4+ 2)] and variance
than (m + 2\)/(m + \). Thus, to the extent that these approximations hold,

(5)

3 However, it seems possible to remedy the situation as follows: It is clear that r(F + €)
is well-defined if ¢ = a — (m/n). Hence consider a power series expansion of 7(F + ). Take
mathematical expectations to find Var [+(F + ¢)] as an ascending series in powers of A7,
where A is the noncentrality parameter. Then it might perhaps be possible to select a value
of € for which =(F + e) is well-defined and which will eliminate bias of O(\~*). Precisely this
type of argument is used to derive the well-known transformation (X + 3/8) from X* for
the Poisson distribution. The details in the present problem might be overwhelming!
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TABLE 2 :
Approzimate and Exact Values of the Probability Integral P{F < x}
Approximation .
m n A x Exact P[Fg x}
® © %) ~
Plr s v(x)} Pl s ny(2)} | Plry= 7(x)}
3 10 4 3.708 0.734 0.743 0.750 0.745
4 6.552 0.902 0.915 0.919 0.918
16 3.708 0.274 0.205 0.202 0.206
16 - 6.552 0.527 0.520 0.520 0.517
3 20 4 © 3.098 0.696 0.696 0.707 0.700
4 4.938 0.881 0.888 0.889 0.887
16 3.098 0.151 0.124 0.119 0.126
16 4.938 0.357 0.346 0.349 0.347
5 10 6 3.326 0.716 0.730 0.734 0.731
6 5.636 0.895 0.910 0.914 0.914
24 3.326 - 0.232 0.158 0.155 0.158
24 5.636 0.481 0.467 0.463 0.461
5 20 6 2.711 0.658 " 0.661 0.669 . 0.664
6 4.103 0.861 0.870 0.872 0.870
24 2.711 0.096 0.069 0.064 0.069
24 4.103 - 0.264 0.244 0.244 0.245
8 10 9 3.072 0.698 0.715 0.716 0.714
9 5.057 0.888 0.903 0.909 0.908
36 3.072 0.197 0.118 0.117 0.119
36 5.057 0.438 0.416 0.409 0.408
8 30 9 2.266 0.574 0.574 0.581 0.578
9 3.173 0.806 0.813 0.815 0.813
36 2.266 0.027 0.017 0.014 0.017
36 | 3.173 0.105 0.087 0.085 0.088

(mF/n)t = 2x™)Y/(2x")}

is the ratio of two independent normal random variables.
From a theorem due to Fieller [2], if X and Y are normally and independently
distributed with means m, and m, and standard deviations o, and o, respectively,

then the function _’
R = (m,V — my)/(@2V? + ob)}, where V = Y/X,

will be nearly normally distributed with zero mean and unit variance, provided

the probability of X being negative is small.
Applying this theorem to the variable (mF/n)*, it may be hoped that the

transformed random variable
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(2n — 1)}mF/n)* — [2(m 4+ ) — (m 4+ 20)/(m + NI
[(mF/n) + (m + 20)/(m + NP

will approximately have the unit normal distribution.

To obtain the degree of accuracy of this transformation, the exact probabilities
P{F < z} for given values of m, n, A and = have been compared with those of the
above approximation. This comparison is also shown in Table 2, and the closeness
of approximation is very satisfactory.

3.3. The Cube Root Transformation. Another transformation for normalizing
the noncentral F distribution is obtained in a similar way by using the fact [5]
that (x*/n)! is approximately normally distributed with mean [1 — 2/(9n)]
and variance2/(9n) and that (x?/r)} is also approximately normally distributed
[1] with mean [1 — 2(1 4+ B)/(9r)] and variance 2(1 4+ B)/(9r), where r =
m + Aand B = A/r. Thus

g Ot

mF/(m + WP = sy

is, insofar as these approximations hold, the ratio of two independent normal

random variables, and thus it may be hoped that the transformed random
variable :

(6) 7 =mn(F)=

[1 —2/(9n)][mF/(m + M)} — {1=[2(m 4+ 2))/9(m +2)*]}
[(2/9n)[(mF /(m + NIt + [2(m + 2N)/9(m + N }?

will approximately have the unit normal distribution. Table 2 shows the approxi-
mation of P{F < z} by means of (7).

By substituting A = 0 in (7), this transformation reduces to the transforma-
tion of Paulson [7] for the central F distribution. From (6) it is seen that an
alternative transformation for normalizing the central F distribution is

(2n — 1)} (mF/n)t — (2m — 1)}
[(mF /n) + 1]*

If we put m = 1, then F = x’*/(x’/n) reduces to the noncentral random variable
. We conjecture that (6) and (7) with m = 1, F = ¢, (hence X = &), will
transform #* approximately to the unit normal distribution.

Although it is known that the Wilson-Hilferty transformation (x*/n)* and the
Aty transformation (x"/ )} are both more nearly normally distributed than the
Fisher transformation (2x?)! and the Patnaik transformation (2x)! respec-
tively [1], [6], it can be seen from Table 2 that (6) is a better approximation than
(7), at least for the values of m, n, A and z considered. The reasons for this ap-
parent inconsistency remain undiscovered. Furthermore, (6) is a better approxi-
mation than that given by Patnaik [6], at least for the values of m, n, A\, and z
considered.

(7) T2 = Tz(F) =

U=
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The approximations in the tables were computed on the “ZEBRA” digital
computer of the National Physical Research Laboratory of the South African
Council for Scientific and Industrial Research.
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