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1. Summary. Let samples of size n be drawn from each of k univariate con-
tinuous cumulative distribution functions on the same real line, and consider the
intersection of the % intervals between the rth and (r + 1)st order statistics in
the several samples. Then, to maximize the probability that that intersection be
nonempty the distributions should be identical. Furthermore, for each sample,
consider two intervals—that between the rth and (r 4 1)st and that between the
sth and (s + 1)st order statistics—then to maximize the probability that both
the intersection of the “r”’ intervals and the intersection of the “s” intervals be

nonempty, the distributions again should be identical and the value of the maxi--

mum probability is 1
()C=) |
r)\s—r {
- , r Sts.
kn\/kln — 7]
(kr)(k[s - r])
Some possible directions for generalization are discussed. The problem arose in
connection with a sociological study of interaction behavior in small groups. The
results make it possible to provide a test of the hypothesis that several samples
of the same size are randomly drawn from possibly different populations, against
the alternative that the samples are not independently and randomly drawn from
distributions.

For example, suppose we observe the frequency of a particular sort of inter-
action for each member of five groups of size six. Suppose the five men with the
highest frequencies each belong to a different group. Then we can say (ignoring
discreteness) that an event has occurred whose probability under random sam-
pling is at most 144/2639 or about 0.055. (The statistic would have but two

values, either the five highest belong to different groups, or they do not. Such a
test would be especially appropriate if group structure were thought to develop
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automatically certain specialized functions in members,) However, the main
interest in this paper is in the problem in probability.

2. Introduction. Suppose that we have a sample of n observations from each
of k& one-dimensional populations with arbitrary continuous distributions. Let a;
denote the largest, b; the second largest observation in the <th sample, 1 < ¢ < k.
We consider the probability P(min a¢; = max b;). In particular we wish to know
what relation must hold among the distributions of the %k populations for this
probability to be maximized. Alternative ways of describing this probability are
these: (a) Let the k largest observations in the entire collection of kn observations
be chosen. What is the probability that each of these is the largest in its own
sample (i.e., is an a;)? (b) Consider the % intervals formed by the largest and
second largest observations in each sample. What is the probability that no two
of these intervals fail to overlap?

It seems intuitively reasonable that the maximization is achieved when the %
distributions are identical, and so it turns out to be, as we prove later. The prop-
erty concerned is one which states a similarity among the & samples. It is reason-
able to expect the samples to have the highest probability of being similar when
the populations from which they come are identical. While it is possible that there
is a corresponding theorem for multivariate distributions, dealing with overlaps
of statistically equivalent blocks [6], the examples of Section 6 suggest that the
generalization is not immediate. '

This general probability question grew out of a study of sociological data. Prof.
Matilda Riley, of the Department of Sociology of Rutgers University, was inter-
ested in ways of formulating mathematically the notion of social structure. One
specific problem [5] was to show that the interaction scores of members of several
groups were not random collections of scores drawn from single populations (one
for each group). The results of the present paper yield one. way of studying such a
question for groups of the same size.

3. Derivation of the probability expression. Let us denote the %k cumulative
distribution functions by y:1(x), y2(x), - -+, yx(z). We assume these functions
are continuous; the reader may assume they are differentiable, but our demon-
strations are valid even if they are not.

Let the least of the largest observations in the & samples be w. This may, of
course, be the largest of the n observations from y;(x), or the largest of the n
observations from y,(z), and so forth through y(x). That is, v = min a; where
a; denotes the largest observation in the sample from y.(x).

Consider as typical the case in which the sample from y:(z) contains the
least of the largest observations; that is, the largest observation a; in the sample
from y;(x) has the value w. Then, the probability that this occurs and that no
second-largest observation b; in any sample exceeds % may be found by computing
this probability for fixed « and then integrating. We use differential language
for convenience and first find: '
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Prob {1st sample has » — 1 numbers not
exceeding u, 1 number in the interval
(u, u + du), and no number greater than
u + du, and that the 2nd, 3rd, - -« , kth
samples each have n — 1 numbers not ex-
ceeding w and 1 number greater than u}.

Since the samples are independently drawn from the k populations, this proba-
bility can be written as the product of the following probabilities of the k events
described above in the curly brackets:

m‘:%m'[y,w)r—l [y (WL = ya(w))’ = nyi™ dys,
(7-—7%_'1)17 [y ()7L = ya(w)] = nys 7' (1 — 3),
a‘—%ﬁ ()L = ge(w)] = ng ™' (1 — ),

where dy:(u) = yi(u + du) — y(u) and, in the simplified expression for each
probability, the argument w has been omitted as understood.

Thus, the probability that the largest observation of the first sample be the
smallest of the largest, and that none of the second-largest observations exceeds

i, is given by

k
(1) n* LI_I2 yi (1~ yj)] yi ™ dys,

for any particular value u. Hence, the probability that the above event should
happen with some value of u is the integral of the expression (1) over u from
— o to 40 ; that is,

4o [ k o
(2) n* f [112 yi (1 — yj)] yi " dy,
[, [ A

where it is understood that each y; has the argument w and the limits —
and +  are those for w.? If y; is differentiable, the integral [*2 ... dy: is
JIe oo (dyr/du)du; 1f ¥ is not differentiable, the 1ntegral is construed in the

Stieltjes sense.
Exactly similar considerations hold for the cases in which the 2nd, 3rd, ---,

2 The argument of this paragraph may be made rigorous as follows. The sum of (1) over
a set of mutually exclusive and exhaustive intervals (u, v + du] approaches (2) as the
lengths of the intervals approach 0. Now this sum is the probability that, for some one of
the intervals (u, w + du], each sample has exactly one number greater than « and the first
sample has no number greater than w + du; hence (2) is the limit of this probability, which
is the probability that a; = min a; > max b, , since the latter event is the limit of the

former.
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kth samples each in turn contains the smallest of the largest observations, and
they yield the probability expressions,

n* [° [fI (1 - yf):l ys~ dys,
(3) .
[o I:ﬁl yi~ 1(1 - y,)] e dys,

respectively. The Hy"_l(l — y;) in each case lacks the factor y? (1 — y;) for
the particular value 4 that coincides with the subscript of the differential, dy; ,
being integrated.
- Now the event whose probability we want is the union of the k events de-
scribed in the foregoing, since we do not care which sample happens to contain
the smallest of the largest observations. And since these k events are mutually
exclusive, the desired probability is the sum of the k separate probabilities. We
denote this by P; ; thus

(4) Py L [H y""] > [ﬁ (1-— yf)] dyi,

m=1 t=1 | 574
where again the integration is over .

4. Maximizing the probability. We now address ourselves to our main question:
What relationship should hold among the k distributions y; in order that the
probability P; shall be as large as possible? If, as suggested in the introduction,
the maximum P, is attained when all k distributions are identical:
Y= ys = -+ = yp = y, then P reduces to

(5) kn f(]- k—l k(n 1) dy

Here the integration may be actually performed over y (instead of the under-
lymg variable ). The limits of y are 0 and 1 and the integral is a complete

» beta-function. The value of expression (5) is n / (k: ) (This result can alter-

natively be obtained by a combinatorial argument.)

We now prove that P, is maximized by the relation y; = ¢ = -++ = y.
We define
k
(6) ' H(u) = H1 1 — yi(uw)]

Motivation for the introduction of H comes from noticing that dH (see below)
is, except for sign, the last part of the expression under the integral sign in equa-
tion (4). H(u) may be interpreted as the probability that & observations, one
from each distribution, exceed u, or 1 — H (%) may be interpreted as the cumula-
tive distribution function of the minimum of k such observations. By two ap-
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plications of the well-known inequality between the arithmetic and the geo-
metric mean we find®
k

k k k
1 !
o -I0-0-wls[1-12a -]
‘ k k
=< [1 -JIa - y»”"] = (1 — H™",
=1
From definition (6), we see that the total differential of H(u) is

it =22 a= ) |a = -2 [ 110 - ) | aw

i=1 | 9y =1 i=1 | i

(7)

Substituting in (4) we find
(8) Pogat [ (1= B (1) am,

where again the integration is over u. Putting y(u) = 1 — H"*, so that H =
(1 — y)*, the right-hand side of (8) reduces to (5). This completes the proof.

The proof just given was suggested by the referee. It replaces a longer proof
that routinely applied the method of Lagrange multipliers. Our original proofs
of Theorems 1 and 2 below also used Lagrange multipliers, but, at the sugges-
tion of the referee we developed proofs that are more in the spirit of the above
method. '

We now prove that P; is maximized only where all y; are equal. Note that,
for any given set of y; , (6) defines u as a function of H. The y; are single-valued,
continuous, monotonically decreasing functions of H except possibly at H = 0,
even though u is not. For H = 0, let y; equal its limit as H decreases to 0. Since
there is no contribution to (4) when H = 0, for then at least one y; is 1, it
may be rewritten as

i=i

1 k
P = f I 42 am.
)
The right-hand side of (8) becomes

n* f (1 — By g,
0

Both integrations are now over H.

3 At the request of the editor we note that the inequality between the first and fourth
member could have been rewritten as an inequality expressing the convexity of the func-

tion [ IT y;]1/%:
Iy + [T @ =yl < 1.

That inequality is a special case of what Hardy, Littlewood, and Pélya [2] call the Holder
inequality, and they attribute the quite special form T el + (T 8:01%* = (I1 (a: + 8:)11*
to Minkowski in 1896. We refer to the current reprint [4] of that work.
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The difference. of the two integrands is continuous and, by (7), nonnegative.

Since [1] the integral of a continuous nonnegative function vanishes only if the

" function is identically 0, the two integrals can be equal only if the integrands

are. But the inequalities in (7) are strict unless all y; are equal. This shows that

if Py is maximized, the y; must be all equal except possibly at H = 0. But then

they must all approach 1las H decreases to 0, and hence they must be equal
to 1 when H =

6. Two generalizations. The result obtained in the preceding section is extended
in two ways in this section. The first extension concerns the maximization of the
probability of overlap of the k intervals formed by the rth and (r + 1)st order
statistics of the & samples. The result, as before, is that all distributions should
be identical, and we have removed the restriction » = 1, imposed in Section 4.

We sketch the ‘proof.
Denoting the rth observation (in descending order of magnitude) in the sth
sample by z,;, the probability to be maximized turns out to be given by

Prob {min z,; > max Tria,i}

(9) < > ..=1f [H Y1 — ;) ] yi (1 — y) " dy..

Defining H(u) and y(u) as in Section 4, we find that this probability is
bounded by

k ©
r <:I'> [ (1 Hl/k)k(n—r)Hr—lz H dy, v

t=1 ]

oLl i
- r(’:) [ @ —mya an,
0

(10)

The last expression in (10) is the probability given in (9) when gy =y = - - =
1x = y. Hence, this is again the maximizing condition. We shall not take space
for a uniqueness proof similar to that at the close of Section 4.

In considering the intervals [€,1, 2,7 = 1,2, - -, » — 1, included between
the adjacent order statistics #,41 and z,, it is convenient to extend the set of
intervals to include [%,41, @,) and [z; ,; %o), where z,.1 and x, are interpreted as
—ow and 4+« respectively. The whole set of intervals then forms the basic
statistically equivalent blocks for a univariate distribution. If we substitute
r = 0 or r = n in expression (11) below for the minimum probability, we get
unity in each case, as we.should.

We summarize the foregoing in

TuporeM.1. If samples of size n are drawn from each of k continuous distribu-
tion functions y«(z), 1 = 1, 2, , k, the probability that

min z,; > Max &y,
) i
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foragivenr (=1,2, --- ,n — 1) is maxvimized if and only if ys = g2 = -+ - = Yy,
and the maximum value s

w O/,

As our second extension, we consider a more general situation in which we
pay attention to two corresponding intervals from each sample, say the interval
formed by the rth and (r + 1)st order statistics and that formed by the sth
and (s -+ 1)st order statistics. What is the condition for maximizing the proba-
bility that the “r’’ intervals overlap and also the “s” intervals overlap? The
answer turns out to be the same as before: the & distribution functions should
be identical. We sketch the demonstration.

It can be shown that the probability in question (letting s > r) is given by

Prob {min z,; > max %,41,; and min 2,; > max Z,.1,;}
i 1 i 2

k ko op u g 00" Ty(w) — 1@ — )]
— A5 [t [ G BT v

where 4 = min; z,; and v = min; z,; and

n! *
A4 =r(s—r) [r!(s —nrln — s)!] )

We plan to integrate first with respect to v. To facilitate this we pull out
from the integrand factors involving u alone, and we factor out enough powers
of y:(u) so that every y;(v) and dy;(v) may have a matching denominator of
yi(u). We then substitute z:(v) = y:(v)/y:(u), noting that z;(v) can itself be
regarded as a cumulative distribution. After these substitutions we have as the
integral with respect to v :

19 [ a0 @I ¢ = 26)I™ T dz0)/(1 — 50).

(12)

By the methods used earlier, the maximum of this expressidn is readily found

to be 1 / [(s - r)<ZE: __ :)))]. Then aside from constants we are left with

the expression
a0 [ Tw@™ I - ww) T dyw/( - ),

whose maximum is readily found from equations (10) and (11) to be

/()]

The constant A of equation (12) and the two numerical results just obtained,
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when multiplied together, give the bound shown below in Theorem 2. It is easy
to verify that this upper bound is achieved by the right-hand side of equation
(12) when all the y;(u) are identical. Again we omit a uniqueness argument like
that at the close of Section 4. We state the conclusion as

TaEOREM 2. If samples of size n are drawn from each of k continuous distribu-
tion functions yi(x), 1 = 1,2, -+, k, the probability that

min r,; > mMax Ty,
% Y 1

and
min y; > MAax Tei,i
1) i
for a gwen r(=1,2,--- ,n — 1) and a given s(=r,r + 1, -+, n — 1), is
mazimized if and only of y1 = Yo = -+ = yi, and the mazimum value s

()G

r s—r

,( 15) (kn) (k[n — r]) ’
‘ kr ) \k[s — 7]

A degenerate case occurs when s = 7, because then only one interval is denoted,
and then expression (15) should reduce to expression (11), as it does.

Theorem 2 extends to three or more corresponding intervals, and the prob-
ability in the case of identical distributions is the obvious extension of expres-
sions (11) and (15). The following alternative proof generalizes directly. The
probability in Theorem 2 is the probability P that min; z,; > max; Z,41,; times the
conditional probability @ that min; x,; > max; Z,41,; given min; &,; > mMax; Lry1,i .
The probability P is maximized, by Theorem 1,if and onlyif y1 = 4o = -+ = yi .
Theorem 2 follows if we show this condition also maximizes @. Given that
% = min; Z,; > mMaxX; Try1,;, there are exactly n — r observations below % in
each sample. Thus, conditionally, Z;y1,4, - , Za,; are the order statistics of a
sample of n — r from the conditional distribution y:(x)/y:(u), * < u. By
Theorem 1, the conditional probability @ is maximized if y; = v = -+ = Y,
which is all that remained to be shown.

6. Examples in two dimensions. The generalization of our results to higher
dimensions is not immediate. Examples show that, even though the samples are
drawn from the same distribution and statistically equivalent blocks are con-
structed for each sample by the same program, the probability of overlap depends
on both the common distribution and the common program.

Even in one dimension, the probability may depend on the program: if the
first block in each of £ samples is the interval between the rth and (r + 1)st order
statistics, the probability that the intersection of the & first blocks is nonempty
depends on r, by equation (11) of Theorem 1.

Here the dependence of the probability on the program can be removed by re-
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numbering the blocks correctly. In the following example, this dependence is per-
haps even clearer, since it cannot be removed by renumbering blocks..

ExampLE 1. From any continuous two-dimensional eumulative, take twe sam-
ples of size two. Program 1. For each sample, construet statistically equivalent
blocks by using as boundary funections the vertical lines through the two sample
points, thus obtaining three regions in the plane: the right, the left, and the
middle. The right-hand regions of the two samples always overlap, as do the left-
hand regions, but the middle regions overlap with probability 2/3 because the
construction program essentially reduces the problem to one dimension and equa-
tion (11) applies with n = 2, k = 2, r = 1. '

Program 2. In each sample, use the vertical line through the right-hand sample
‘point for the first boundary function, and, for the second, the horizontal half-line
running from — o through the left-hand sample point to the first vertical line. -
This program produces three regions for each sample: the right-hand region, the
upper-left, and the lower-left. Each region always overlaps its mate in the other
sample.

Thus we have shown that, even when samples are drawn from the same distri-
bution, different methods of constructing statistically equivalent blocks can pro-
duce different probabilities of overlap, here 2/3 for one region and 1 for two regions
of Program 1 and 1 for all regions of Program 2.

In this example, for neither program did the probability of overlap depend on
the distribution sampled. The following example shows this too is possible.

ExAMPLE 2. Again draw two samples of size 2. '

Program. For each sample the first boundary is a circle about the origin through
the sample point farther from the origin; the second boundary is the chord of this
circle passing horizontally through the remaining sample point. Now there are
three regions, the one exterior to the circle, and the two interior to the circle, say,
the upper-interior and the lower-interior.

Let the samples be drawn from a uniform distribution over a circle of radius 1
with center at a point (c, 0) on the horizontal axis. If ¢ is large, then the upper
region is practically the upper half of a large circle about the origin, and such
regions are sure to overlap from sample to sample. (Actually, they are sure to
overlap near (0, 1) if | ¢| > 2.) On the other hand, if ¢ is 0, then both points of
one sample may fall within one half unit of the origin while both points in the
other sample fall at least one half unit above the horizontal axis. Then the upper-
interior regions do not overlap. Thus without further calculation we can say that
the probability of non-overlap is strictly positive for ¢ = 0 and zero for large c.

All told then we have shown that, for the two-dimensional problem, even if two
samples are drawn from the same distribution and statistically equivalent blocks
are constructed in each sample by the same program, the probability of overlap
may vary from program to program for a fixed distribution, and from distribution
to distribution for a fixed program. It is suggestive that in Example 1 the smaller
probability of overlap is associated with the “one-dimensional” Program 1.

One generalization of Theorems 1 and 2 to several dimensions is readily pre-
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sented, but it succeeds essentially by reducing several dimensions to one. In fact,
these theorems apply immediately to statistically equivalent blocks defined by the
order statistics of a real-valued function f of the observations. (That is, the first
block is the region where f(z) exceeds f(X;) for every member X; of the sample,
the second block is the region where f(z) exceeds f(X;) for every X; but one, etc.)
The sample may be drawn from any probability distribution on any set whatever,
as long as f is measurable and f(X;) has a continuous c.d f. (The distribution must
be non-atomic or no f(X;) has a continuous c.d.f.).

7. Remarks. In connection with another problem, Lehmann ([3], p. 172,
Lemma 4.1) proves what amounts to the special case of Theorem 1 with n = 2,
Ek=2r=1

Several possible generalizations bes1des those already considered suggest them-
selves. For example, Theorem 1 concerns a set of k corresponding intervals, one
interval for each of k& samples, and states that the probability that all & intervals
overlap is maximized when the distributions sampled are identical. Is the same
true of the probability that at least m of these k intervals overlap? Theorem 2
states that the probability that overlap occurs in both of two sets of corresponding
intervals is also maximized when the distributions are identical. Is the same true
of the probability that overlap occurs in at least one of the two sets of intervals?

The probability that non-corresponding intervals overlap is not necessanly
maximized when the distributions are identical. For example, for one sample of
one, take the interval from the observation to 4 e ; for another sample of one,
take the interval from the observation to — «. These intervals overlap if and only
if the second observation exceeds the first. This has probability 1/2 if both obser-
vations have the same distribution, but may be larger (even 1) if the observations
have different distributions.

Some work is being done on problems of samples of unequal sizes.

Finally, of course, all such questions can be ralsed about statistically equivalent
blocks.

We wish to express our appre01at10n to William Kruskal for numerous sugges-

tions.
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