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0. Summary. The distribution of the operating life of a series system of like
elements supplied with a set of spare components has been obtained for the
situation when failed elements are in turn replaced by spares. This distribution
has been evaluated for some common types of component life densities, and
tables of expected total system life have been constructed. These expectations
have been compared with those of systems with no spares as a measure of the
efficacy of the additional spare components. The reliability of systems with
spares has also been studied.

1. Introduction. Consider a system which is made up of several components in
such a way that failure of any component causes the system to fail. With the
system is associated a fixed number of spare elements. System failures are cor-
rected by successively replacing failed elements from this store until it is empty.
Upon this “final failure” the entire aggregate is discarded. _

A convenient example of a system with two components and a single spare is
provided by the sale of identical nylon stockings in triplets rather than pairs.
Similarly, the four original tires and single spare of an automobile form such a
system. In both of these examples, however, protection afforded by the extra
elements is directed against accidental failures (runs in a relatively new stocking
caused by abrasion with a piece of furniture, or punctures in an otherwise solid
tire due to hazards distributed randomly along the highway). The replacement
scheme with only a small number of spares offers substantially less protection
against system failures due to fatigue or wear, for when one element has failed

from these causes, its mates are usually worn as well, and a fresh component will

provide relatively little increase in system life. _

Component life will be taken to be a positive random variable with density
function f(x) and absolutely continuous cumulative distribution function F(z).
Independence of the lives of all components and spares will be assumed. We
shall write the total operating life of a system of » components and % spares as
L(n, k); clearly L(n, 0) is the first order statistic from a sample of » independent
‘component lives. :

Cox [4] has recently considered systems with spare components as constituting
a problem in renewal theory. From a result of Cox and Smith [5], the approxi-
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mate expected system life may be obtained when the number of spare elements
is large relative to the number required in the system. Other methods of renewal
theory yield the exact expectations of total life for small systems with simple
component life densities.

Black and Proschan 3], [11] have also investigated an aspect of a more general
form of the spare components problem. Their system is a collection of subsystems,
each with a different form of component life density. Spares of each component
type are provided, and system operation continues in the usual manner until a

failure occurs in a subsystem whose store of spares has been exhausted. Proschan

develops the properties of Polya type distributions to establish the optimality
of solutions to the nonlinear programming problem of allocating spares among
the different subsystems under a budgetary constraint.

The system discussed in this paper also has an alternative statement in terms
of queuing theory. The positions of the system’s components may be thought of
as the n servers of a single queue. The totality of n + k original components
and assigned spares constitute waiting members of the queue, n of whom will be
served at once, while the remaining & will successively take the place of any
member who has been served. The random variable component life is equal to
serving time. Total system life is then the time from the start of service until
that point when some server finds himself without a waiting member to serve.

2. Systems with Two Components. It is convenient to distinguish between the
two components of the system which are in actual use at any one time and the
two positions of these components. In view of the pictorial representation’ of the
possible failure configurations of the system, as displayed in Fig. 2.1, sequences
of components that successively replace each other will be called “arms” of the
system. That sequence which terminates in final failure on the interval
(L, L 4+ dL) (henceforth taken as “L’”) will be designated as “Arm 1.” Cor-
responding outcomes arise when the arms are reversed. Fig. 2.1 shows all modes
of failure of a system of two components and four spares under this definition
of Arm 1.

Quite generally, the various ways in which the system can fail at time L may
be enumerated as follows:

1. The first component in one arm has life L, while all % spares replace the
initial elements in the other arm and each other in succession.

2. One arm has a single failure replaced by one spare, followed by failure at
time L, while the remaining £ — 1 spares replace failures stemming from the
first component in the other arm.

(k 4 1). The original component of one arm has life in excess of L, while %
spares replace the initial component and themselves on the other arm, until
final failure at life L. The probability of the (¢ + 1)th of these out-
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comes, ¢ = 0, < -+ , k, in which ¢ + 1 failures fall on Arm 1 and ¥ — ¢ failures on
Arm 2 prior to time L, is
(21) 2Pr(L 2+ --- + 2541 = L + dL)

Pripn+ -+ i S LS+ -0 F Yroigr).
The factor 2 arises from the fact that either arm may be designated as “first.”
To avoid confusion with the lives in Arm 1, those in Arm 2 are written “y;.”
The first probability is equal to f:41(L) dL, the density of the convolution of
¢ + 1 independent variates, each distributed according to f(z). The second can
be written as Fi_i(L) — Fi_;11(L), where F;(L) = [¢ fi(u) du. If these differ-
ences of cumulative distributions are abbreviated as P;(L) = F;(L) — F.;y (L),
the required density of L(2, k) is

k
(2.2) p(L) = zgole(L)Pk_@-(L), 0<L< o.

p(L) and EL(2, k) will now be evaluated for certain component life densities.
The density of L(n, k) in the case f(z) = ¢ * can be derived from the properties
of the exponential distribution without recourse to the previous arguments;
it is well known to be
(2.3) p(L) = (k1)Tn*"L¥exp(— nL), 0<L< .

For f(z) a gamma distribution with integer power parameter m and unit scale
parameter,

f(z) = (m)z"e®, 0<z< o,
fi(L) = [(Gm + ¢ — )L™ E, 0<L< =,
im+i—1 .
(2.4) F(L) =1-¢* Y L, m an integer,
7=0

Py(L) = e‘LXm) L5 4 i(m + D)L
j=0
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Inserting these in (2.2) gives
Lf+k(m+l)+m

k m
(2.5) p(L) = 2 ;} ’;:) [i(m + 1) +m][j + & — 9)(m + D]’

while the rth moment of total life is

, BB 4 k(m 1) fm A iR
EL" (2, k) = ;; Gm + 1) +m][j + & — o(m + DT

Theoretical and empirical justifications for the gamma life density may be found
in [1], [2], and [6].

Tables 2.1 and 2.2 contain values of EL(2, k) for certain m and k. Except
for small m, no simpler expression for the mean appears to be available. If m = 1,
or component life a 1xi variate, the sums of (2.6) are the odd-index terms in
the binomial expansion of (3 + )" withn = 2k 4 1, 2k 4 2, respectively, and
it follows that

(2.7) EL(2,k) = k + 5/4.

Cox [4] has also obtained this expectation by way of renewal theory.
We shall define the relative advantage of a system with k spares over one with
none as ' :

(2.8) a(n, k) = nEL(n, k)/[(n 4+ k)EL(n, 0)].
From the density of the (k 4+ 1)th order statistic ¥ = Z@41jn) in a sample of n
independent and identically distributed random variables, viz.,

(29) o) = n ("3 i = FGIP P s

it follows for the gamma population (2.4) and k = 0, n = 2, that v = L(2, 0)
has density '

(2.6)

IIA

(2.10) g(u) = 2(m!)"'lu"'e—2“§§u"/j!, 0=u< =,
with rth moment
211) By = (mz)-lz“"*-'g;0 (m + r + §) 2750,
Since' the zeroth moment of any random variable must be unity,
1= (m!)_l2—"'jzm;) (m + 7)1279/51,
so that for » = 1, (2.11) may be summed to give

Ezqp = m + 1 — 277 (2m 4 1)1/ (m))?,

(2.12)
~m+1—32m+ 1)/ (rm) .
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Likewise,
(2.13) Ezom ~m + 1+ 32(2m + 1)/(xm).

The values of that quantity in Table 2.1 reflect the approach of EL(2, 1) to the
mean of the second order statistic.
The evaluation of (2.2) and subsequent computation of EL(2, k) for the

TABLE 2.1

Ezxpected Total Life, EL(2, 1), Relative Advantage, a(2, 1), and Expectations of Related Order
Statistics: 2 Components, 1 Spare.

f@) = (mh)~igme~m

m EL(2, 1) a(2, 1) Exa12) Ex@12)
0 1.000 1.33 0.500 1.500
1 2.250 1.20 1.250 2.750
2 3.492 1.13 2.062 3.938
3 4.711 1.08 2.906 5.094
4 5.906 1.04 3.770 6.230
5 7.081 1.02. 4.646 7.388

10 12.740 .93 9.150 12.873

TABLE 2.2

Ezxpected Total Life, EL(2, k) and Relative Advantage, a(2, k): 2 Components, k Spares.

f(@) = (mh lzme=

m EL(2, 2) a(2, 2) EL(2, 3) a(2, 3)
0 1.500 1.50 2.000 1.60
1 3.250 1.30 4.250 1.36
2 5.001 1.21 6.500 1.26
3 6.762 1.16 8.748 1.20
4 8.532 1.13 10.989 1.17
5 10.321 1.11 13.220 1.14
10 19.591 1.07 24.341 1.06
m EL(2, 4 a(2, 4) EL(2, 5) e(2, 5)
0 2.500 1.67 3.000 1.71
1 5.250 1.40 6.250 1.43
2 8.000 1.29 9.500 1.32
3 10.750 1.23 12.750 1.25
4 13.504 1.19 15.998 1.21
5 16.262 1.17 19.245 1.18
10 30.192 1.10 35.378 1.10
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translated exponential life density f(z) = exp[—(z — g)] is slightly more in-
volved, although the expressions for the expectations are straightforward:
EL(2,1) = p+ 3/2 — 1/2¢°",
EL(2,2) = 2u+5/4 — 1/2¢* + ¢ *(n + 3/4),
(2.14) EL(2,3) = 2u+ 11/4 — ¢ *(7/8 + p/4) + ¢ /4 — /8,
EL(2,4) = 3u+ 33/16 + ¢*(7/8 4 n/4) — ¢ *(23/32 + 9/16)
+ /8 + ¢™*(5/32 + 5u/16).

3. The Distribution of L(n, k). Although it is possible to obtain the density
function of L(n, k) by generalizing the argument of Section 2 to n arms, it will
be of greater utility to find instead the cumulative distribution function of system
life in the guise of syslem reliability, or the probability that system life will
exceed z units of time. Where switching from failed to spare components is
instantaneous and perfect, the notion of reliability provides a measure of the
advantage of carrying a certain number of spares. Furthermore, the expected
system life is merely the integral of the reliability over all positive .

We shall write the reliability function of a system with » components and &
spares as R, (z) = Pr(L(n, k) > z). In the sequel, it will often be convenient
to abbreviate reliability, the P;(x) of Section 2, and the cumulative distribution
function of component life as B, , P;, and F, respectively. It is well known that
R.o = (1 — F)". Now a system with a single spare component can operate
throughout the interval (0, z) in either of two ways:

(1) The original n components function without failure.

(2) n — 1 of the original components and the single spare function without
failure. ,

‘The probability of the first of these disjoint events is of course R, o(z). In
the second, it will be helpful to visualize an extension of the arm concept of
Section 2 to n arms. The probability that the length of the arm with the single
failure exceeds z is Py(z) = Fi(x) — Fiy(x); obviously the probability that the
remaining n — 1 arms each has life greater than z is Ra.—;,0(z). Since the arm
with the single failure can be chosen in n ways, the probability of the second
event is nR.—10(z)Pi(z). Hence,

(3’1) Rn,l = Rn,O + an——l,O-Pl .

The reliability of a system with & 4 1 spares is likewise expressible as the
reliability of one with & spares, plus the probabilities of the ways in which ex-
actly £ + 1 elements can fail. Each of these probabilities is associated with a
partition of the integer £ 4 1, and is a product of the number of ways that par-
ticular partition may be assigned to the n arms of the system and certain terms
in B ..and P; . Since the partitions of k¥ = 2 are 1°, 2, the reliability of a system
with the two spares is

(3.2) Rus=Ru1+ nRu,0 Py + (g) Rn 20 Pi.
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Similarly,
(33) Rus = Raz+ (;‘) Ruso P42 (g)Rn—Z;o Py Py + nRoos Pi,

Rasa = Rua+ (Z) RouoPi4n (" 2 1) Ruso Pi P,
(34) ‘ _
—+ (g)Rn—2,Q Py +2 (Z)Rn—z.o Py P3; +nRn 1,0 Py

Note that the affixes of the P-symbols give the various partitions of k¥ = 3, 4.
Additional reliabilities for & = 5(1)8 are given in the technical report [10].

Analytic treatment of these expressions for system reliability seems feasible
for only the simplest f(x). It can be shown [10] for f(z) = ze™, 2 components,
k spares, that

Rox(z) — Ropa(z) = 3[(2k) 107%™ (22)™ + [(2k + 1)1 (22)™ ™
+ (2 + 2) e (22) T

Charts of system reliability may be found in [10] for small 7, k, and component
densities f*(z) = ze ™%, fP(x) = (3) %%

Since the expectation of the random variable with cumulative distribution
function F(z) is merely Ex = [¢ (1 — F(x)) dz, it will be convenient to com-
pute the expected system lives EL(n, 1), EL(n, 2) in that manner. With the
aid of the well-known relation for the expected values of order statistics [8],

(3.6) Exyny = Bz + <Z> [" (1 — F(z))" ™" F*(z) dz,

it is possible to express EL{(n, 1) and EL(n, 2) conveniently in terms of expecta-
tions of the first few order statistics and certain integrals in P; and R..:

(3.5)

EL(’I’L, 1) = E$(1|,,) + n .L‘ P1 Rn_l,o dL

(3.7) -
= Ex(gm —-n ‘/; Fz R”_l,o daL.
EL(n,2) = Exgm + (g) f Pf Ru20dL
0
— n—1,0 AL
n£ FaR 1,0
: (38) » = Ex(sl,.) - n_L F, Rn_Lo dL

—a(n—1) fo Fy FRos0dL

+ (;‘) fo Ruso F2dL.
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4. The Evaluation of EL(n, 1) and EL(n, 2) for Cerfain f(x).

a. Exponential Life with Guarantee Period u. Substitution of f(x) =
exp[—(z — p)l, p £ < =,in (3.7) and (3.8) yields, with proper modification
of the limits of integration,

(41) EL(n,1) = p+ @n — Dn(n — 1) — exp[— p(n — D]n(n — 1]7,
EL(n,2) = u+ (830 — 6n + 2)[n(n — 1)(n — 2)]™
— exp[—(n — 2)ul{n[(n — 1)(n — 2)]
— (8n —2)[n*(n — 1) (n — 2)]} + exp[—(n — L)uln™
— exp[—2(n — L)u’(n — 1)
Tables of these expectations and their associated relative advantages may be

found in [10].
b. f(z) = ze ". EL(n, 1), EL(n, 2), and associated order statistic expecta-
tions can be expressed in terms of a finite sum

(4.2)

S(n) = fow (14 z)""expl — (n — 1)z] dz
(4.3)

n—1

=(n—1ln—-1"2 (n— 1)/
7=0
With the aid of the recursion relation (3.6), integration of (2.9) gives the ex-
pectations of the first three order statistics in terms of S(-):
Ezqm = 8(n + 1),
(44) Ezgm = n8(n) — (n — 1)8(n + 1),

Exam = (;‘>S(n — 1) — n(n — 2)8(n) + (” 3 1>S(n +1).

The additional integrals in (3.7) and (3.8) may be evaluated from the expres-
sions (2.4) for F;and P;, m = 1:
(45) EL(n,1) = S(n + 1)[3/2 + 1/(3n)] + 1/(3n),
EL(n,2) = S(n + 1)[15/8 + 5/(6n) + 1/(18n%) — 2/(15n%)]
+ 8/(4n) + 11/(90n") — 2/(15n").

These quantities and their relative advantages a(n, 1), a(n, 2) have been evalu-

ated in Table 4.1. . _ .
It is possible to compute approximate values of the expectations derived from

S(n) for large n. In (4.3), replace (n — 1)! with its Stirling approximate:

(46)

n~—1

(47) 8(n) ~ (2r/(n — 1)>*§exp[—(n - D](n — 1)%51
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TABLE 4.1

Ezxpected Total Life, EL(n, k), Relative Advantage, a(n, k), and Expectations of Related
Order Statistics: n Components, k Spares.

f(z) = ze™®

n EL(n, 1) a(n, 1) - EL(n, 2) i a(n, 2) . Exain) Ex@1n) Ex@in)
2 2.250 1.20 3.250 1.30 1.250 2.750 —
3 1.663 1.30 2.333 1.45 .963 1.824 2.597
4 1.357 1.35 1.871 1.55 .805 1.438 2.210
5 1.167 1.38 1.588 1.62 702 1.215 1.772
6 1.034 1.41 1.395 1.66 .629 1.067 1.512
7 .936 1.43 1.254 1.70 .574 .960 1.335
8 .860 1.44 1.146 1.73 .531 878 1.206
9 .798 1.45 1.060 1.75 .495 .813 1.106
10 o .748 1.46 .989 1.77 .466 .760 1.026
11 .705 1.47 .930 1.78 .441 715 .960
12 .669 1.47 .879 1.80 .420 .677 .904
13 .637 . 1.48 .836 1.81 .401 .644 .857
14 .607 1.48 797 1.82 .384 .616 .816
15 .585 1.48 .764 1.82 .370 .590 .780

The expression within the summation represents the probability of n — 1 or
less occurrences of a Poisson variate with parameter n — 1 Since the stand-
ardized variate v = (z — n + 1)/(n — 1)} is distributed as N (0, 1) for large
n, the sum may bereplaced by the normal probability integral 3 — ®(—4/n — 1);
this approaches % as n increases, so that ‘

S(n) ~ %(2x/(n — 1))},
Exqim ~ 3(2r/n)},

a result which also can be obtained by standard methods. The approximate
expected values of the next two order statistics follow in turn from this result
and several applications of the asymptotic expression (n — 1)} ~ (n)t —

1(n)}/n:

(4.9)

(4.8)

Exin ~ 3/2 Exqny ,
Ex(sm ~ 15/8 Ex(u,,) .

These expressions imply that the relative advantages a(n, 1), a(n, 2) approach
3/2 and 15/8, respectively, as n increases. ,

- ¢. Rayleigh Distribution of Component Life, 1 Spare. The Rayleigh density is
a particular case of the Weibull failure law,

(4.10) f(@) = pa” exp (—2"),
with p = 2. Some integrations by parts in (3.7) yield

(4.11) EL(n, 1) = i(x/n)[1 + n/(2n — 1)],
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while
Ezgy = 3(x/n)},
(412) Ezg = 30 ()0 + [n(n — 1)} — ()}(n = D)/ (n — 1)}
~ x/n)Y[1 + n/(2(n — 1))].

5. Bounds on EL(n, k). From the way in which replacements are added, it

follows for k < n that L(n, k) cannot be less than the first order statistic of a

random sample of size n (all spares have life zero), or larger than the (k + 1)th
(no spares are available to extend life upon final failure.) Thus,

(5.1) Ei(nn) < EL(n, k) £ Exgqaim , k< n.

The lower bound is of little practical value for £ > 2. The upper bound is also

of greatest utility for small &, but its sharpness improves with increasing 7.
Bounds for more general k that do not require knowledge of the order statistic

expectations are available from a different direction. We may write

L(n, k)

Il

[Total life of n + k components — remaining life of n — 1
survivors]/n '

TABLE 5.1
Comparison of EL(2, k) with its Lower Bound (k + 1)n~'Ez and Upper Bound (n + k)n™*Ezx.

(5.2)

fl@) = (mh)~izme™

m Lower Bound EL(2, 2) Upper Bound I;ower Bound EL(2, 4) Upper Bound

0 1.500 1.500 2.000 - 2.500 2.500 3.000

1 3.000 3.250 4.000 5.000 5.250 6.000

3 6.000 6.762 8.000 10.000 10.750 12.000

5 9.000 10.321 12.000 15.000 16.262 18.000
TABLE 5.2

Comparison of EL(2, k) with the Lower Bound Euqyy for Selected Component Life
Denstties f(x)

fa) = e® ' fa) = 2
k .
Lower Bound Ex1n EL(2, ¥) Lower Bound Euq1n EL(2, k)
2 1.250 1.50 2.906 : 3.250
4 2.062 2.500 4.646 5.250
8 3.770 4.500 8214 9.250
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Assuming non-negative wear, D i r; = 0, ED_ it r; < (n — 1) Ez, so that
(5.3) (k+ 1)n" Ex £ EL(n, k) £ (n + k)n™* Ez.

The lower bound is exact for exponential life. Some indication of the closeness
of these bounds for certain gamma densities is given in Table 5.1.

For a system of two components and an even number % of spares, it is possible
to show that

(5.4) EL(2,k) 2 Euqyy ,

where the variate u is the convolution of 1k + 1 independent random variables,
each with density f(z). This lower bound is equal to the expected life of a system
wherein each original component position is preassigned 3k replacements for
its sole use. Relative to EL(2, k), this bound appears to become more precise
as f(z) departs from exponential form, and as k increases. Table 5.2 compares
EL(2, k) with this lower bound for certain f(z).
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