STATISTICAL PROGRAMMING!
By D. F. Voraw, Jr.

Yale University?

1. Introduction. A “statistical programming” problem is encountered when
the information about one or more constants in a programming problem is
statistical. We shall first give examples of programming problems and then point
out how certain statistical analogues of them arise. The results given in this
paper pertain to these analogues.

Our first example is a transportation problem. Given a unit amount of a homo-
geneous product (e.g., oil) at each of n origins and required that a unit amount
be received at each of n destinations, and given the cost, say c¢;; , of shipping a
unit amount from the ¢th origin to the jth destination (3,7 = 1, --- ,n;n = 2),
find a most economical schedule of shipments of the product from origins to
destinations. More specifically, find an n X 7 matrix (z;;) of real numbers for
which :

1) > e

4, j=1

assumes its minimum value, where

Zx"f =1, (j = 1’ rn)’

i=1

(2) Zn:x,-j:l, (i=1;""n){

Jj=1
Zij _2_. 0

x;; represents the amount shipped from the ¢th origin to the jth destination;
and the matrix (z:;) is called a “program.” The expression in (1) is the total
shipping cost. The condition (2) expresses the facts that at each origin the sum
of all amounts shipped away must equal 1 and that at each destination the sum of
all amounts received from the origins must equal 1. The problem stated above
is a special case of the Hitchcock-Koopmans transportation problem, which is a
well-known special case of a linear programming problem (see [1], [2, Part 1]).

The next example is the personnel assignment problem, which is closely re-

lated to the first example (see [4], [5, pp. 255-258], and [8]). Let us replace:

“origins” by “persons,” ‘‘destinations” by “jobs,” and regard c;; as the produc-
tivity of the ¢th person if placed on the jth job. It is required that each person be
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placed full time on a job and that each job be filled: thus to the linear constraints
in (2) on (x;) there must be added the following constraint, which is not linear:

(3) each z;; = O or 1.
In view of (3) the admissible program matrices (z;;) are simply the n ! permut,a,-
tion matrices of order n X n. The problem is to find a permutation (j;, - -- ,Ja)
such that
(4) aj; + o0 ey = hax ey + -+ + Cnja)

F1ee e esin
wl,lere (1, N Ja) denotes any permutation of ( /1, -+« ,n). Having deterrlnined
(j1, *++,Jn), we would assign person 1 to job j1, --- , person n to job j, and

thereby obtain maximum average productivity of the group of n persons relative
‘to the jobs. Incidentally, when (3) does not hold, we may regard z;; as the frac-
tion of the 7th person’s time allocated to the jth job.

A sum of the form ¢;;, + -+ + c¢aj, Wwill be termed a “permutation sum of
€ii’s.” From [4, Lemma 2] we have that each program in the first example is a
weighted mean of the » X 7n permutation matrices and that the sum in (1) is a
weighted mean of permutation sums of ¢;;’s. This implies that there is a permuta-
tion matrix (z;;) for which the quantity in (1) assumes its minimum value. A
similar result holds relative to the maximum value. Clearly, the transportation
problem described in (1) and (2) and the assignment problem are nearly identi-
cal mathematically. For each problem the optimum sum is assumed when
(x:;) is a permutation matrix. The differences between the two are: (i) in-one
we seek a maximum sum and in the other a minimum sum; (ii) the integer con-
straint (3) is part of the assignment problem but not part of the transportation
problem. It is noteworthy that both problems are related to a certain O-sum,
2-person game (see [4], pp. 7-11).

The ¢;;’s are constants in the two examples stated above, and it is presupposed
that the numerical value of each is known to the “programmer.” When the
values are in fact not all known to the programmer, statistical information
regarding them may nevertheless be available (e.g., in the form of aptitude
indexes of personnel (see [7]) or in the form of records of unit costs of past ship-
ments). Such situations lead to the problems treated in this paper. As regards
the game discussed in [4] it should be noted that a “pseudogame’ arises when
the ¢;;’s are not all known to both players. For a discussion of pseudo-games see
{3, p. 3571.

We shall set up a statistical analogue of the personnel assignment problem.
By simply replacing ‘“maximization” by ‘‘minimization,” we can transform the
analogue into an analogue of the transportation problem. Both these analogues
are related to pseudo-games based on the game in [4].

A generalization of the assignment problem and of the statistical analogue will
be considered in Section 4.

2. Statistical Programming. Consider an n’-dimensional Euclidean sample
space, W*, and represent each point of W* by (wy , Wiz, *** , Waa). Let H(wy ,
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Wiz, *** , Was) be the distribution function associated with W* and let (Wu ,
Wi, -+, W) be a random n’-dimensional vector whose distribution is H.

We assume that the c;;’s are known to be parameters of H; however, the
numerical values of the ¢;;’s are assumed to be unknown to the assigner. We also
assume that an observed value, say (wu, 'wu, .. w,,,,),of (Wu, Wi, -, Waa)
can be obtained by him. In general the observed value supplies h1m w1th sta-
tlstlcal information regarding ¢i1, ¢z, ** * 5 Cn - Ha.vmg obtained (wy , Wiz, -+ ,
we,) the assigner selects a permutation of (1, --- , n).

With reference to the assignment problem we deﬁne statistical programming
as partitioning the sample space W* into n! mutually exclusive and exhaustive
subsets and establishing a one-to-one correspondence between the subsets and
the n! permutatlons of (1, -+, n).? It is understood that when the observatlon
(wu , Wiz, - , Wan) 1S obtamed one selects the permutatlon ]1 , *+, Jn COITe-
sponding to the subset, say Pj....,;., in which (wu , Wiz,. -, Wny) lies. In
advance of obtaining an observed value of (Wy , Wy, -+, ,,,,) the permuta-
tion to be selected is a random variable, say (J;, - - -, J»), and so the permuta-
tion sum ¢y, + - =+ s, is 2 random variable. We can regard the distribution
of this random sum as a “performance function” characterizing the statistical
programming with which it is associated.

A natural kind of statistical programming is that in which one considers
estimates of the n! permutation sums and selects the permutation corresponding
to the largest estlmate This will be termed “programming by estimation.” A
permutation sum of w; s would often be a suitable point estimate of the corre-
sponding permutation sum of ¢;;’s. This leads to a set of n! regions Pj; ... ;,
such that any given Pj; ... ;: would contain the set of points in W* such that
(5) Wy + o Waj, > max.  (wy, + o A Wag).

(G100 +1dn) 4 (G10e = +2d0)
Incidentally, formula (5) does not assign points of W* having two or more
equal permutation sums. We shall assume that H(wy , Wiz, -+ - , Wan) is continu-
ous; consequently, such points can be assigned to the subsets arbitrarily.

3. Companson of Purely Random Programming and Programming by Estima-
tion. Let (J1, - - - ,Jn) be a purely random permutatlon (1 e., for any preassigned
permutation (j;, - -, j.) the probability that Ji, - J Y= (Gi, *+ , Jn)
is 1/n!). Let

(6) S=cu+ -+ cuy,
and let
(7 F(s) =I_’r(S£s) (—o <s< »).

The possible values of S are the values of permutation sums of the ¢;;’s; hence
F(s) is a purely discrete distribution having not more than n! saltuses. Let d

3 This definition can be generalized to provide a definition of statistical programming
that is associated with general linear programming. In this paper, however, the generaliza-
tion will not be carried out.
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represent the number of distinct possible values of S (thus 1 < d < n!). When
d = 1, let s; be the one value. When d > 1, let the values be represented by
o . . . . %*
81,5+ , Sainincreasing order of magnitude. The selection of a value of (J; , - - -,
Ja) will be termed “purely random programming.”
For each (4, 7) let

(8) Yij = Wi — ¢,

and represent the sample space of Y;/’s by Y* Let (yu, 412, - - , Ynn) be any
point of Y* and let the distribution function of (Yy, Y12, -+, Yus) be K(yu ,
Y12y *°* 5 Ynn). We shall assume that K is completely symmetric in its variables
and continuous. These assumptions imply that (for d > 1)

(9) F(S) = Pr{(Yll ’ Y12, Tt Ynn) SRS], (81 =<s= Sd)
where E, is the set of points in Y* such that

max (Y, + 0 F Yning) > max (Y + 0+ Ynjeg)

( 19) Grogy ine) Gty -vima?)
where (j1,4, "+ -, jn.a) Tepresents a permutation of (1, ---, n) such that
(11) Cljyg + -+ Crjng = Q(q = 81,8, ", sd)'

Let (J1, ---, J») be a permutation to be selected under programming by
estimation with an observed value of (Wy , Wi, - -+, Wa,) asin (5). Let

(12) Z=cy,+ -+ cu

and let G(s) be the cumulative distribution function of Z, thus

(13) G(s) = Pr(Z = s), (= <8< +w).
G(s) has the same saltus points as F(s) — namely, s = s, + -+, sg. It follows
from (12) and (13) that (ford > 1)

(14) G(s) = Pr{(Wu, Wi, -+, Wa) e R}, (—» <s< +w)
where R, is a region in W* such that

(15) (fl,:?:f;n.q) (Wiaq + 20 & Wning) > (n..,f;?j.:i;..q') (gt Wninge)-

Clearly we have that
(16) G(-S‘) = PI'{(Yn, Y127 ) Ynn)é‘R:,},
where R, is the region in ¥* such that

_ max (ylj,,,, + -+ Ynjng + Q)
(Jl.q;l"‘svh».q) .

(17) B
> max (Wrjng + - F Yning + ).

(Jl-q’q-;‘)‘;.?n.q')



STATISTICAL PROGRAMMING 1081

G(s) is the performance function for programming by estimation and F(s)
is the performance function for purely random programming. Under certain
conditions G(s) and F(s) can be compared by means of the theorem below.

TaeoreM: If K(yu, Yz, *--, Ynu) 18 completely symmetric in its variables
and continuous, then for every sin (s < s < 8a)
(18) G(s) < F(s).

If, furthermore, every non-degenerate interval in Y* contains positive probability,
and if d > 1, then for every s in the interval (s; = s < sa)

(19) GQ(s) < F(s).

Proor: When d = 1, formula (18) is obviously correct. When d > 1, formula
(18) is correct when s = si, since both G and F equal 1. When d > 1 and s is
any point of (s; = s < sa), we have from (9) (10), (16), and (17) that Ry
is a subset of R, since for each s the quantity ¢ — ¢ is non-negative. This com-
pletes the proof of (18) To prove (19) we shall show that for every s in (s <
§ < $4) there is an n’-dimensional interval in B, — R: .Lett = min (8,41 — )
(e =1, ,d — 1), and let r be in the interval (0 < r < t/(n + 1)) For any
given s in (31 < s < sa) and for some ¢ < s consider the following n ?_dimensional

interval in Y*
t/n-—r/n<y,-j,~'q<t/n (Q§8)(i=1,“”’”),
0<y'5i<r/n (z',j=1,-~-,n; j7£ji,q)'

It can be shown easily that throughout this interval the maximum permutation
sum of y;;’s iS Y1j., + *** + Ynin, - Thus the interval lies in E, (see (10)). It
will now be shown that the interval does not lie in Ry . Note that for each point
of the interval

(20)

Yyt ot Ynj,, T 82 > Sa
liag 'd

but
max  (yy,, + o F Yuing + 0 <t (=8 =5 (51 £ 58 < %)

(F1.g0°* *+In.g)
qé

hence no point of the interval lies in RY (see (17)). We have thus shown that the
interval lies in B, — R, . It follows that the probability content of R, exceeds
that of R, ; hence for each sin (s; < s < ss) we have that G(s) < F(s).

Let E(S) and E(Z) denote the expected value of S and of Z, respectively.
It can be shown easily that

(21) E(8) = X cij/n.

1M
It should be noted that when (18) holds, E(Z) = E(S), and that when (19)
holds, E(Z) > E(S). An interesting feature of the statistical analogue of the
transportation problem is that we can be certain of attaining the sum given in
(21). This can be accomplished by setting every z;; equal to 1/7.
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‘When the W,;’s are mutually independent and each (W; — ¢;;) has the same
continuous distribution, K(yu1, y12, - - - , ynn) satisfies the conditions that imply
(18). When Wy, Wi, -+, Wa.. are normal and independent with means
Cu, Ci2, ', Cun, respectively, and a common variance, K(yu, Yiz, -+ Yan)
satisfies the conditions that imply (19). It should be noted that the theorem does
not require that the W,;’s be independent. v

When (18) holds, programming by estimation is uniformly at least as good as
purely random programming; when (19) holds, programming by estimation is
uniformly better.

It is easy to find situations in which random programming is better than pro-
gramming by estimation. For example, let W;; have a negative exponential dis-
tribution, (1/c¢:;)e” "% /c.;, which has mean ¢;;, and suppose that n = 2 and
that Wy, Wi, Wa, and Wy, are mutually independent. When ¢;; = 20, ¢12 =
¢ =10, and ¢z = 1, wefind that with programming by estimation the expected
sum of ¢;;’s is 20.467, approximately. This is less than 20.5, which is the expected
sum of ¢;;’s when random programming is used. We can also find situations in
which the hypothesis of the above theorem is not fulfilled but the conclusion
holds. An example of this arises when the four W;;’s described above are asso-
ciated with the following c;;’s: cu = 9, c12 = 7, ¢u = 8, ¢z = 5. Here the expected
sum of ¢;;’s is 14.531, approximately, when programming by estimation is used.
This exceeds the expected sum, 14.5, when random programming is used.

4. A Statistical Analogue of the Generalized Optimum Assignment Problem.
Consider a B-dimensional array (B = 2) having n “layers” in each dimension
and let c;;i,...s5 be the element in “cell” (41,2, - ,4) (B =1, ---,n;b =1,
-++, B). As pointed out in [4, p. 11], this situation could be of interest when each
of n jobs requires a team of B — 1 persons and ¢;,s,...; represents, say, the pro-
ductivity of the team consisting of persons %, -« , 451 on job ¢z . Other inter-
pretations can be made easily. The problem here is to find an “assignment set”
for which the “assignment sum” of ¢’s equals its maximum value. This is the
generalized optimum assignment problem. When B = 2, the problem is the
personnel assignment problem stated in section 1.

By straightforward generalization of our statistical analogue of the personnel
assignment problem we obtain a statistical analogue of the generalized assign-
ment problem. The theorem stated in Section 3 generalizes to this statistical
analogue.

With regard to the generalized assignment problem, it can be shown that
under purely random assignment the expected total production equals
(22) . Z . C;l,'z...iB/nB_l

inirip
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