PROBABILITY DISTRIBUTIONS RELATED TO RANDOM MAPPINGS

BY BERNARD HARRIS

University of Nebraska

1. Introduction and Summary. A Random Mapping Space (X, 3, P) is a triplet, where X is a finite set of elements x of cardinality n, 3 is a set of transformations T of X into X, and P is a probability measure over 3.

In this paper, four choices of 3 are considered

- (I) 3 is the set of all transformations of X into X.
- (II) 3 is the set of all transformations of X into X such that for each $x \in X$ $Tx \neq x$.
 - (III) 3 is the set of one-to-one mappings of X onto X.
- (IV) 3 is the set of one-to-one mappings of X onto X, such that for each $x \in X$, $Tx \neq x$.

In each case P is taken as the uniform probability distribution over 5.

If $x \in X$ and $T \in \mathcal{I}$, we will define $T^k x$ as the kth iteration of T on x, where k is an integer, i.e. $T^k x = T(T^{k-1}x)$, and $T^0 x = x$ for all x. The reader should note that, in general, $T^k x$, k < 0, may not exist or may not be uniquely determined.

If for some $k \ge 0$, $T^k x = y$, then y is said to be a kth image of x in T. The set of successors of x in T, $S_T(x)$ is the set of all images of x in T, i.e.,

$$S_T(x) = \{x, Tx, T^2x, \cdots, T^{n-1}x\},\$$

which need not be all distinct elements.

If for some $k \leq 0$, $T^k x = y$, y is said to be a kth inverse of x in T. The set of all kth inverses of x in T is $T^{(k)}(x)$ and

$$P_T(x) = \bigcup_{k=-n}^0 T^{(k)}(x)$$

is the set of predecessors of x in T.

If there exists an m > 0, such that $T^m x = x$, then x is a cyclical element of T and the set of elements x, Tx, T^2x , \cdots , $T^{m-1}x$ is the cycle containing x, $C_T(x)$. If m is the smallest positive integer for which $T^m x = x$, then $C_T(x)$ has cardinality m.

We note further an interesting equivalence relation induced by T. If there exists a pair of integers k_1 , k_2 such that

$$T^{k_1}x = T^{k_2}y,$$

then $x \backsim y$ under T.

It is readily seen that this is in fact an equivalence, and hence decomposes X

Received August 20, 1957; revised September 7, 1959.

into equivalence classes, which we shall call the components of X in T; and designate by $K_T(x)$ the component containing x.

We define $s_T(x)$ to be the number of elements in $S_T(x)$, $p_T(x)$ to be the number of elements in $P_T(x)$, and $l_T(x)$ to be the number of elements in the cycle contained in $K_T(x)$ (i.e. l(x) = the number of elements in $C_T(x)$ if x is cyclical). We designate by q_T the number of elements of X cyclical in T, and by r_T the number of components of X in T.

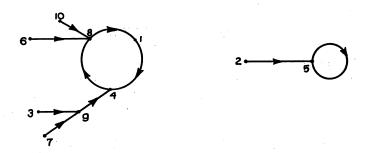
Rubin and Sitgreaves [9] in a Stanford Technical Report have obtained the distributions of s, p, l, q, and have given a generating function for the distribution of r in case I. Folkert [3], in an unpublished doctoral dissertation has obtained the distribution of r in cases I and II. The distribution of r in case III is classical and may be found in Feller [2], Gontcharoff [4], and Riordan [8]. In the present paper, a number of these earlier results are rederived and extended. Specifically, for cases I and II, we compute the probability distributions of s, p, l, q and r. In cases III and IV the distributions of l and r are given. In addition some asymptotic distributions and low order moments are obtained.

For the convenience of the reader, an index of notations having a fixed meaning is provided in the appendix to the paper.

2. Representation of T as a directed graph. It will be convenient to represent elements of 3 as directed graphs. For example, if $n = 10, X = \{1, 2, 3, 4, \dots, 10\}$, and

$$T(1) = 4$$
, $T(2) = 5$, $T(3) = 9$, $T(4) = 8$, $T(5) = 5$, $T(6) = 8$, $T(7) = 9$, $T(8) = 1$, $T(9) = 4$, $T(10) = 8$,

Then T has the representation below:



3. Probability Distribution for Case I. In case I, $P(T) = 1/n^n$ for all $T \varepsilon \mathfrak{I}$. We now turn to the computation of the probability distributions of s and l, the number of elements in $S_T(x)$ and the number of elements in the cycle contained in $K_T(x)$ respectively.

Then, for any choice of x, we have:

$$P(s = k, l = j) = P\{T^r x \neq x, Tx, \dots, T^{r-1} x (0 < r \le k - 1); T^k x = T^{k-j} x\}$$

Hence

(3.1)
$$P(s = k, l = j) = \frac{(n-1)!}{(n-k)! n^k}, \qquad 1 \le j \le k \le n,$$

and summing over j, we have

(3.2)
$$P(s = k) = \frac{(n-1)!k}{(n-k)!n^k},$$

(3.3)
$$P(l=j) = \sum_{k=j}^{n} \frac{(n-1)!}{(n-k)! n^{k}}.$$

From consideration of symmetry, we note trivially that

(3.4)
$$E(l) = E[(s+1)/2].$$

We now obtain the asymptotic probability densities of s and l. In (3.1) let $k = \sqrt{n}x$, $j = \sqrt{n}y$, and replace factorials by Stirling's approximation. Then we have

$$P(s = \sqrt{n}x, l = \sqrt{n}y) \sim \frac{n^{n-\sqrt{n}x-\frac{1}{2}}e^{-\sqrt{n}x}}{(n - \sqrt{n}x)^{n-\sqrt{n}x+\frac{1}{2}}}$$

$$= \frac{n^{n-\sqrt{n}x-\frac{1}{2}}e^{-\sqrt{n}x}}{n^{n-\sqrt{n}x+\frac{1}{2}}\left(1 - \frac{x}{\sqrt{n}}\right)^{n-\sqrt{n}x+\frac{1}{2}}}.$$

Write

$$(1 - (x/\sqrt{n})^{n-\sqrt{n} nx+\frac{1}{2}} = \exp\left[(n - \sqrt{n}x + \frac{1}{2})\log(1 - x/\sqrt{n})\right],$$

and expand $\log (1 - x/\sqrt{n})$ in a power series, obtaining

$$P(s = \sqrt{n}x, l = \sqrt{n}y) \sim n^{-1}e^{-\frac{1}{2}x^2}.$$

Thus, the asymptotic density of $(s/\sqrt{n}, l/\sqrt{n})$ is

(3.6)
$$f(x, y) = e^{-\frac{1}{2}x^2}, \qquad 0 < y \le x < \infty.$$

The marginal distributions $f_1(x)$, $f_2(y)$ give the asymptotic densities of s/\sqrt{n} , l/\sqrt{n} respectively and are easily obtained by integration.

$$f_1(x) = xe^{-\frac{1}{2}x^2}, 0 < x,$$

(3.8)
$$f_2(y) = \sqrt{2\pi} (1 - \Phi(y)), \qquad 0 < y,$$

where $\Phi(y) = \int_{-\infty}^{y} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^2} dx$.

In numerical computations, the cumulative distribution function $F_2(y)$ is probably more useful than the density function $f_2(y)$ and is therefore given below:

$$(3.9) F_2(y) = P(Y \le y) = 1 - e^{-y^2/2} + y\sqrt{2\pi}(1 - \Phi(y)).$$

We note further that

(3.10)
$$EY^{r} = \frac{1}{r+1} EX^{r} = \frac{2^{r/2}}{r+1} \Gamma\left(\frac{r+2}{2}\right).$$

Hence

(3.11)
$$E(l) \sim \frac{1}{4} (2\pi n)^{\frac{1}{2}}, \quad \sigma_l^2 \sim n[(2/3) - (2\pi/16)].$$

Formulas (3.1), (3.2), (3.3), and (3.7) have been obtained by Rubin and Sitgreaves [9].

Rubin and Sitgreaves have also shown that

(3.12)
$$P\{q=j\} = \frac{(n-1)!j}{(n-j)!n^j}, \qquad j=1,2,\cdots,n.$$

We now prove this using a partition argument due to Katz [7].

Consider the directed graph representation of T and partition X as follows. Let $M_0(T)$ be those elements of X cyclical under T. Define $M_1(T)$ to be those elements of X whose images are cyclical under T, but are not themselves cyclical. Let $M_2(T)$ be those elements of X whose images under T are in $M_1(T)$. Continuing in this manner until X is exhausted, the n-j non-cyclical elements of X are partitioned into m(T) sets each non-empty for $j \neq n$. Designate the cardinality of $M_j(T)$ by $n_j(T)$, $j=1,2,\cdots,m(T)$.

The number of decompositions of X for n_1 , n_2 , \cdots , n_m fixed is

(3.13)
$$\frac{n!}{i! \, n_1! \, n_2! \cdots n_m!} \, j! \, j^{n_1} \, n_1^{n_2} \cdots n_{m-1}^{n_m} \,,$$

where $\sum_{i=1}^{m} n_i = n - j$. Hence

$$(3.14) P(q=j) = n^{-n} \sum_{n_1 \mid n_2 \mid \cdots \mid n_m \mid} j^{n_1} n_1^{n_2} \cdots n_{n-1}^{n_m}, j \neq n,$$

where the sum is taken over all non-empty m-part partitions of n-j.

Katz [7] has shown that

(3.15)
$$\sum \frac{n!}{j! \, n_1! \, n_2! \cdots n_m!} j^{n_1} n_1^{n_2} \cdots n_{m-1}^{n_m} = \frac{n! n^{n-j-1}}{(j-1)! (n-j)!},$$

from which we obtain (3.12) for $j \neq n$. We have j = n, if and only if T is one-to-one and onto; hence

$$(3.16) P(q = n) = n!/n^n,$$

which coincides with (3.12) for j = n.

It is curious to note that this is exactly the same as the distribution of s given in (3.2), and hence has the same asymptotic distribution and asymptotic moments.

The distribution of p has been obtained by Rubin and Sitgreaves [9],

(3.17)
$$P\{p=j\} = \frac{(n-1)!j^{j-2}(n-j)^{n-j}}{(n-j)!(j-1)!n^{n-1}}.$$

We establish this as follows:

Let X_{j-1} be j-1 specified elements of X say x_1, x_2, \dots, x_{j-1} . Let x be a distinguished element of X not in X_{j-1} . Then define \mathfrak{I}_1 as those transformations T in \mathfrak{I} such that $T(X-(X_{j-1}\cup x))=X-(X_{j-1}\cup x)$. Define \mathfrak{I}_2 as those transformations in \mathfrak{I} such that $T(X_{j-1})=X_{j-1}\cup x$, and $T^kx_i=x$ for some k>0 and $i=1,2,\dots,j-1$. We further define $\mathfrak{I}^*=\mathfrak{I}_1\cap\mathfrak{I}_2$. Then

(3.18)
$$\binom{n-1}{j-1} P(T \varepsilon \mathfrak{I}^*) = P(p=j),$$

and

$$(3.19) P(T \varepsilon \mathfrak{I}^*) = P(T \varepsilon \mathfrak{I}_1) P(T \varepsilon \mathfrak{I}_2).$$

We readily see that

$$(3.20) P(T \varepsilon \mathfrak{I}_1) = [(n-j)/n]^{n-j}.$$

Hence we have only to compute $P(T \in \mathfrak{I}_2)$. For any $T \in \mathfrak{I}_2$, we can, by restricting attention to X_{j-1} define an associated transformation T_{j-1}^* which has $T_{j-1}^*x_i = Tx_i$, $i = 1, 2, \dots, j-1$, and $T_{j-1}^*x = x$. Let N_{j-1} be the member of distinct transformations which can be constructed in this manner from $T \in \mathfrak{I}_2$. Since, in \mathfrak{I}_2 , x has n equally likely images under T, we have

(3.21)
$$P(T \in \mathfrak{I}_2) = N_{i-1}/n^{i-1}$$

and N_{j-1} is readily obtained by Katz's Lemma and the partition argument used in (3.13). Hence

$$(3.22) N_{j-1} = \frac{1}{j} \sum_{1 \mid n_1 \mid \cdots \mid n_m \mid} 1^{n_1} n_1^{n_2} \cdots n_{m-1}^{n_m} = j^{j-2}, j > 1,$$

and, trivially, $N_0 = 1$.

In (3.22), the sum is over all non-empty *m*-part partitions of j-1, and the factor (1/j) is obtained by distinguishing the element x. Hence

$$P(p = j) = \binom{n-1}{j-1} \frac{j^{j-2}}{n^{j-1}} \left(\frac{n-j}{n}\right)^{n-j}$$

and (3.17) is established.

We now note an interesting relationship,

$$(3.23) E(S) = E(p).1$$

This is established at once by symmetry. For any $T \in \mathfrak{I}$ such that y is a successor of x, there is a corresponding $T \in \mathfrak{I}$ with x a predecessor of y; the correspondence is accomplished by interchanging x and y in the directed graphs.

We may also note an interesting physical property of directed graphs of this type, which holds for every $T \in \mathfrak{I}$. For any $T \in \mathfrak{I}$, let r_j be the number of ele-

¹ This was pointed out by D. Blackwell in a private conversation with the author.

ments x for which $T^{-1}x$ has j elements. Then,

$$\sum_{i=0}^{n} jr_i = n.$$

Also,

(3.25)
$$\sum_{i=0}^{n} r_i = n.$$

Thus,

(3.26)
$$r_0 = \sum_{j=1}^{n-1} j r_{j+1} .$$

From this it follows at once that

$$(3.27) E(p^{(1)}) = 1,$$

where $p^{(1)}$ is the number of elements in $T^{-1}(x)$. The distribution of $p^{(1)}$ is readily seen to be

(3.28)
$$P\{p^{(1)} = j\} = \binom{n}{j} \left(\frac{1}{n}\right)^j \left(\frac{n-1}{n}\right)^{n-j}.$$

We proceed now to the question of the probability distribution of r, the number of components of X in T. Folkert [3] has obtained the distribution and has shown

$$(3.29) P\{r=j\} = \frac{1}{n^n} \sum_{\mu=1}^n \frac{S^j_{\mu}}{\mu!} \sum_{k_1, k_2, \dots, k_n} \frac{n!}{k_1! \, k_2! \, \cdots \, k_n!} \, k_1^{k_1} \, k_2^{k_2} \, \cdots \, k_{\mu}^{k_{\mu}},$$

where S^r_{μ} are Stirling's Numbers of the First Kind, and the sum over k_1 , k_2 , \cdots , k_{μ} is over all choices of k_1 , k_2 , \cdots , k_{μ} with $k_i > 0$ $(i = 1, 2, \cdots, \mu)$ and $\sum_{i=1}^{\mu} k_i = n$.

In this paper we obtain a probability generating function for the number of components, which has a good deal of intrinsic interest because of its relation to Faa de Bruno's formula (Jordan [6]) and the exponential polynomials of Bell [1].

Let k_i denote the number of components with exactly i elements. Then every $T \in \mathcal{S}$ determines an n-tuple (k_1, k_2, \dots, k_n) . Hence, for every specification of (k_1, k_2, \dots, k_n) we have a set of transformations $\mathfrak{I}_{k_1, k_2, \dots, k_n}$ in \mathfrak{I} . Then

$$(3.30) P(T \varepsilon \mathfrak{I}_{k_1,k_2,\ldots,k_n}) = \frac{n! I_1^{k_1} I_2^{k_2} \cdots I_n^{k_n}}{1!^{k_1} 2!^{k_2} \cdots n!^{k_n} k_n! k_n! k_n! \cdots k_n! n^n},$$

where I_j/j^i $(j=1, 2, \dots, n)$ is the probability that a transformation T_j on j elements X_j is indecomposable, i.e. $K_{T_j}(x) = X_j$ for all $x \in X_j$, where $0 \le k_i \le n$

and $\sum_{i=1}^{n} ik_i = n$. We have

$$\frac{I_j}{j^j} = \sum_{i=1}^j P(q=i, K_{T_j}(x) = X_j) = \sum_{i=1}^j \frac{(j-1)! \, i(i-1)!}{(j-i)! \, j^i \, i!}.$$

Hence

(3.31)
$$I_{j} = \sum_{i=0}^{j-1} \frac{(j-1)! j^{i}}{i!}.$$

This result has been obtained earlier by both Katz [7] and Rubin and Sitgreaves [9]. Then, the generating function of k_1 , k_2 , \cdots , k_n is given by

$$(3.32) \quad G(x_1, x_2, \cdots, x_n) = \sum_{\substack{k_1, k_2, \cdots, k_n \ 1!^{k_1} 2!^{k_2} \cdots n!^{k_n} k_1! k_2! \cdots k_n! n^n}} \frac{n! (I_1 x_1)^{k_1} (I_2 x_2)^{k_2} \cdots (I_n x_n)^{k_n}}{1!^{k_1} 2!^{k_2} \cdots n!^{k_n} k_1! k_2! \cdots k_n! n^n},$$

since the coefficient of $x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}=P(T\ \varepsilon\ \mathfrak{I}_{k_1,k_2,\ldots,k_n})$ for $\sum_{i=1}^n ik_i=n$. Since $r=\sum_{i=1}^n k_i$,

$$G(x_1, x_2, \dots, x_n) = \sum_{\substack{k_1, k_2, \dots, k_n \\ n}} \frac{n! r! (I_1 x_1)^{k_1} (I_2 x_2)^{k_2} \cdots (I_n x_n)^{k_n}}{n^n r! k_1! k_2! \cdots k_n! 1!^{k_1} 2!^{k_2} \cdots n!^{k_n}}$$

and

$$(3.33) G(x_1, x_2, \cdots, x_n) = \sum_{r} \frac{n!}{r! \, n^n} \left(\frac{I_1 x_1}{1!} + \frac{I_2 x_2}{2!} + \cdots + \frac{I_n x_n}{n!} \right)^r.$$

We can extend the definition to $G(x_1, x_2, \cdots)$ with no loss of generality, since this will in no way affect the coefficient of $x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$. Hence

(3.34)
$$G(x_1, x_2, \cdots) = \frac{n!}{n^n} \exp \sum_{i=1}^{\infty} \frac{I_i x_i}{i!}.$$

If in (3.34), we replace x_i by x^i , the coefficient of x^n in $G(x, x^2, \dots)$ is 1 for all n. Thus, we have

(3.35)
$$\frac{n!}{n^n} \exp \sum_{i=1}^{\infty} \frac{I_i x^i}{i!} = \frac{n!}{n^n} \sum_{i=0}^{\infty} \frac{i^i x^i}{i!}$$

and

(3.36)
$$\sum_{i=1}^{\infty} I_i x^i / i! = \log \sum_{i=0}^{\infty} (i^i / i!) x^i.$$

Replacing x_i by $t^i x_i$ in (3.34) we obtain:

(3.37)
$$G(tx_1, t^2x_2, \cdots) = \frac{n!}{n^n} \exp \sum_{i=1}^{\infty} \frac{I_i t^i x_i}{i!}.$$

In (3.37) the coefficient of t^n gives the probability of any possible decomposition of X into components with the exponents of x_i indexing the decomposition. Finally we observe that, replacing x_i by tx^i , we get

(3.38)
$$G(tx, tx^2, \cdots) = \frac{n!}{n^n} \exp t \sum_{i=1}^{\infty} \frac{I_i x^i}{i!},$$

or equivalently

$$(3.39) G(tx, tx^2, \cdots) = \frac{n!}{n^n} \left[\sum_{i=0}^{\infty} \frac{i^i x^i}{i!} \right]^i,$$

and the coefficient of $t^k x^n$ in $G(tx, tx^2, \cdots) = P\{r = k\}$.

We now employ the generating function given above to obtain Folkert's formula (3.29). From (3.38), we have

(3.40) coefficient of
$$t^k = \frac{n!}{n^n k!} \left(\sum_{i=1}^{\infty} \frac{I_i x^i}{i!} \right)^k$$
,

and from (3.36) we have

(3.41) coefficient of
$$t^k = \frac{n!}{n^n k!} \left[\log \left(1 + \sum_{i=1}^{\infty} \frac{i^i}{i!} x^i \right) \right]^k$$
,

Since

$$\log (1+u)^k = \sum_{\mu=k}^{\infty} \frac{k!}{\mu!} S_{\mu}^k u^{\mu};$$

see, for example, Jordan [6], p. 146. Employing this in (3.41), we get

(3.42) coefficient of
$$t^k = \frac{n!}{n^n k!} \sum_{\mu=k}^{\infty} \frac{k!}{\mu!} S^k_{\mu} \left[\sum_{i=1}^{\infty} \frac{i^i}{i!} x^i \right]^{\mu}$$
,

and, expansion by the multinomial theorem gives

(3.43) coefficient of
$$t^{k} = \frac{n!}{n^{n}k!} \sum_{\mu=k}^{\infty} \frac{k!}{\mu!} S_{\mu}^{k}$$

$$\cdot \sum_{\substack{k_{1},k_{2},\cdots,k_{n} \geq 0 \\ \sum 2 k_{1}=\mu}} \frac{\mu!}{\overline{k_{1}!} k_{2}! \cdots k_{n}!} \left(\frac{1}{1!} x\right)^{k_{1}} \left(\frac{2^{2}}{2!} x^{2}\right)^{k_{2}} \cdots \left(\frac{n^{n}}{n!} x^{n}\right)^{k_{n}}.$$

To find the coefficient of x^n in (3.43) it suffices to restrict the second sum to non-negative *n*-tuples (k_1, k_2, \dots, k_n) with $\sum_{i=1}^{n} k_i = \mu$, $\sum_{i=1}^{n} i k_i = n$; hence

$$(3.44) \quad P(r=k) = \frac{n!}{n^n k!} \sum_{\mu=k}^n S^k_{\mu} \sum_{k_1, k_2, \dots, k_n} \frac{1}{k_1! \, k_2! \, \dots \, k_n!} \left(\frac{1}{1!}\right)^{k_1} \left(\frac{2^2}{2!}\right)^{k_2} \, \dots \, \left(\frac{n^n}{n!}\right)^{k_n \hat{\mathfrak{p}}}$$

which coincides with (3.29), except that partitions of n are enumerated without regard to order in (3.44), and thus we have obtained an alternate form of Folkert's formula. Rubin and Sitgreaves [9] noted that $n^{-1}E(s) = E(s^{-1})$. We remark, further, that it is even more curious that

$$(3.45) \quad n^{-1}E(s) = P(r=1) = P(l=1) = n^{-1}E(p) = n^{-1}E(q).$$

4. Probability Distribution for Case II. In case II, $P(T) = (n-1)^{-n}$ for all $T \in \mathfrak{I}$. As in case I, we first consider the probability distribution of \mathfrak{s} and \mathfrak{l} . Computing exactly as in Section 3, we obtain

(4.1)
$$P(s = k, l = j) = \frac{(n-2)!}{(n-1)^{k-1}(n-k)!}, \qquad 2 \le j \le k \le n,$$

and

(4.2)
$$P(s=k) = \frac{(n-2)!(k-1)}{(n-1)^{k-1}(n-k)!},$$

(4.3)
$$P(l=j) = \sum_{k=j}^{n} \frac{(n-2)!}{(n-1)^{k-1}(n-k)!}, \qquad 2 \le j \le n.$$

Comparing these results with (3.1), (3.2) and (3.3), we have

(4.4)
$$P(s = k \mid I, n) = P(s = k+1 \mid II, n+1) \\ P(s = k, l = j \mid I, n) = P(s = k+1, l = j+1 \mid II, n+1),$$

and

$$P(l = j | I, n) = P(l = j + 1 | II, n + 1).$$

Hence

$$(4.5) E(l | II, n + 1) = E(l | I, n) + 1$$

and

(4.6)
$$E(s \mid II, n+1) = E(s \mid I, n) + 1.$$

From (3.4) we have

(4.7)
$$\frac{1}{2}E(s \mid II, n) + 1 = E(l \mid II, n).$$

Then, by analogy with (3.6), we note that the asymptotic density of $(s/\sqrt{n-1}, l/\sqrt{n-1})$ is

(4.8)
$$f(x, y) = e^{-\frac{1}{2}x^2}, \qquad 0 \le y \le x < \infty,$$

giving the same marginal density functions as (3.7) and (3.8).

Now consider the probability distribution of the number of elements of X cyclical under T. We show that

(4.9)
$$P(q=j) = n^{n-j} D_j \binom{n-1}{j-1} / (n-1)^n,$$

where D_j is the jth derangement number, i.e., D_j is the nearest integer to j!/e, $j \neq 0$, and $D_0 = 1$.

The proof is identical with the proof of (3.12) except that the j! in the numerator of (3.13) is replaced by D_j . Hence an application of Katz's lemma

gives

$$(4.10) \quad P(q=j) = \frac{1}{(n-1)^n} \sum_{j \mid n_1 \mid n_2 \mid \cdots \mid n_m \mid} n_j j^{n_1} n_1^{n_2} \cdots n_{m-1}^{n_m}, \quad j \neq n,$$

the sum being taken over all non-empty m-part partitions of n-j. Hence

(4.11)
$$P(q=j) = \frac{1}{(n-1)^n} D_j \frac{n! n^{n-j-1}}{(j-1)!(n-j)!}, \qquad j \neq n,$$

and thus P(q = j) is given by (4.9). The case j = n, is given trivially by (4.9). The asymptotic distribution is obtained by replacing D_j by j!/e, and replacing factorials by Stirling's approximation. Then, letting $j = \sqrt{ny}$, we get

$$f(y) = y^{-\frac{1}{2}y^2}, 0 < y < \infty,$$

for the asymptotic density of $qn^{-\frac{1}{2}}$. The agreement of (4.12) with (3.7) can hardly be surprising in view of the agreement of (3.2) and (3.12).

We now obtain the distribution of p,

$$P(p=q)=\frac{(n-1)!(n-j-1)^{n-j}j^{j-2}}{(j-1)!(n-j)!(n-1)^{n-1}}, \qquad j=1,2,\cdots,n-2,$$

$$(4.13) P(p = n - 1) = 0,$$

$$P(p = n) = 1 - \sum_{j=1}^{n-2} P(p = j) = \frac{n!}{(n-1)^n} \sum_{j=2}^n \frac{n^{n-j-2}}{(n-j)!}.$$

This is established as follows. Define X_{j-1} , \mathfrak{I}_1 , \mathfrak{I}_2 , and \mathfrak{I}^* , as in case I. Let x be a distinguished element of X. Then, as before,

$$(4.14) P(p=j) = {n-1 \choose j-1} P(T \varepsilon \mathfrak{I}^*),$$

and

$$(4.15) P(T \varepsilon \mathfrak{I}^*) = P(T \varepsilon \mathfrak{I}_1) P(T \varepsilon \mathfrak{I}_2).$$

Then

(4.16)
$$P(T \varepsilon \mathfrak{I}_1) = [(n-j-1)/(n-1)]^{n-j}.$$

Exactly as in (3.22), we can employ Katz's Lemma to obtain

(4.17)
$$P(T \varepsilon \mathfrak{I}_2) = j^{j-2}/(n-1)^{j-1}.$$

Combining these we have

$$P(p=j) = \binom{n-1}{j-1} \left(\frac{n-j-1}{n-1}\right)^{n-j} \frac{j^{j-2}}{(n-1)^{j-1}}.$$

The condition $Tx \neq x$ for all $x \in X$, precludes the possibility of p = n - 1. There remains the case p = n.

(4.18)
$$P(p = n \mid x) = \sum_{j=2}^{n} P(q = j, K_{T}(x) = X, C_{T}(x) \neq 0)$$

$$= \sum_{j=2}^{n} \frac{n^{n-j-1}D_{j}n!}{(n-1)^{n}(j-1)!(n-j)!} \cdot \frac{(j-1)!}{D_{j}} \cdot \frac{j}{n}$$

Inasmuch as (3.23) depends only on invariance under the symmetric group operating on X and (3.26) is a property of the directed graphs in general, both of these apply in II.

The distribution of $p^{(1)}$ is obtained trivially,

(4.19)
$$P(p^{(1)} = j) = \binom{n-1}{j} \left(\frac{1}{n-1}\right)^{j} \left(\frac{n-2}{n-1}\right)^{n-j}$$

The distribution of r, the number of components, has been computed by Folkert [3], and shown to be

$$(4.20) P(r = k) = \frac{1}{(n-1)^n} \sum_{\mu=k}^{\lfloor n/2 \rfloor} \frac{S_{\mu}^k}{\mu!} \sum_{k_1, k_2, \dots, k_{\mu}} \frac{1}{k_1! \, k_2! \, \cdots \, k_{\mu}!} (k_1 - 1)^{k_1} (k_2 - 1)^{k_2} \cdots (k_{\mu} - 1)^{k_{\mu}},$$

where the sum over k_1, k_2, \dots, k_{μ} is over all μ -tuples with $k_i > 1$ and $\sum_{1}^{\mu} k_i = n$. We will now develop a probability generating function for the number of components, and obtain an alternate derivation of (4.20). The argument parallels the same discussion in Case I and hence will only be sketched briefly.

As in case I,

$$(4.21) P(T \varepsilon \mathfrak{I}_{k_1,k_2,\dots,k_n}) = \frac{n! I_2^{k_2} I_3^{k_3} \cdots I_n^{k_n}}{2!^{k_3} 3!^{k_3} \cdots n!^{k_n} k_2! k_3! \cdots k_n! (n-1)^n},$$

where $I_j/(j-1)^j$ is the probability that a transformation T_j on j elements X_j is indecomposable, i.e., $K_{T_j}(x) = X_j$ for all $x \in X_j$, $0 \le k_i \le n$ and $\sum_{i=2}^n ik_i = n$.

$$(4.22) \frac{I_{j}}{(j-1)^{j}} = \sum_{i=2}^{j} P(q=i, K_{T_{j}}(x) = X_{j}) = \sum_{i=2}^{j} \frac{j^{j-i-1}j!}{(j-1)^{j}(j-1)!}$$
$$= \sum_{i=0}^{j-2} \frac{(j-1)!j^{i}}{(j-1)^{j}i!}.$$

(4.22) has previously been established by Katz [7] using a somewhat different argument. Then

$$(4.23) G(x_2, x_3, \dots, x_n) = \sum_{\substack{k_2, k_3, \dots, k_n \ 2!}} \frac{n! (I_2 x_2)^{k_2} (I_3 x_3)^{k_3} \cdots (I_n x_n)^{k_n}}{2!^{k_2} 3!^{k_3} \cdots n!^{k_n} k_2! k_3! \cdots k_n! (n-1)^n}$$

is the generating function of k_2 , k_3 , \cdots , k_n in the same manner as (3.32).

Since $r = \sum_{i=1}^{n} k_i$, we obtain, after extending the definition to $G(x_2, x_3, \dots)$,

(4.24)
$$G(x_2, x_3, \cdots) = \frac{n!}{(n-1)^n} \exp \sum_{i=2}^{\infty} \frac{I_i x_i}{i!}$$

If, in (4.24), we replace x_i by x^i , we obtain

(4.25)
$$\frac{n!}{(n-1)^n} \exp \sum_{i=2}^{\infty} \frac{I_i x^i}{i!} = \frac{n!}{(n-1)^n} \sum_{i=0}^{\infty} \frac{(j-1)^i x^i}{i!}.$$

Thus

(4.26)
$$\sum_{i=2}^{\infty} \frac{I_i x^i}{i!} = \log \sum_{j=0}^{\infty} \frac{(j-1)^j x^j}{j!}.$$

Replacing x_i by $t^i x_i$ in (4.24), we obtain:

(4.27)
$$G(t^2x_2, t^3x_3, \cdots) = \frac{n!}{(n-1)^n} \exp \sum_{i=2}^{\infty} \frac{I_i t^i x_i}{i!}.$$

Then the coefficient of t^n in (4.27) gives the probability of every possible decomposition of X into components, in the same manner as (3.37). If we replace x_i by tx^i , we get

(4.28)
$$G(tx^{2}, tx^{3}, \cdots) = \frac{n!}{(n-1)^{n}} \exp \left[t \sum_{i=2}^{\infty} \frac{I_{i}x^{i}}{i!} \right]$$

or

(4.29)
$$G(tx^{2}, tx^{3}, \cdots) = \frac{n!}{(n-1)^{n}} \left[\sum_{i=0}^{\infty} \frac{(i-1)^{i}x^{i}}{i!} \right]^{i},$$

giving

coefficient of
$$t^k x^n$$
 in $G(tx^2, tx^3, \cdots) = P\{r = k\}$.

We now employ the generating function to obtain an alternate form of Folkert's formula (4.20). From (4.28) we have

(4.30) coefficient of
$$t^k = \frac{n!}{(n-1)^n k!} \left[\sum_{i=2}^{\infty} \frac{I_i x^i}{i!} \right]^k$$
,

and from (4.26) we have

(4.31) coefficient of
$$t^k = \frac{n!}{(n-1)^n k!} \left[\log \left(1 + \sum_{i=1}^{\infty} \frac{(i-1)^i x^i}{i!} \right) \right]^k$$
.

Hence

$$\text{coefficient of } t^k = \frac{n!}{(n-1)^n k!} \sum_{\mu=k}^{\infty} \frac{k!}{\mu!} S^k_{\mu} \left[\sum_{i=1}^{\infty} \frac{(i-1)^i}{i!} x^i \right]^{\mu},$$

and, as in (3.43), we get

To find the coefficient of x^n in (4.32), it is sufficient to restrict the second sum to non-negative *n*-tupules (k_1, k_2, \dots, k_r) with $\sum_{i=1}^n k_i = \mu$ and $\sum_{i=1}^n ik_i = n$. Thus, we have

$$(4.33) \quad \frac{n!}{(n-1)^n} \sum_{\mu=k}^{\lfloor n/2 \rfloor} S_{\mu}^k \sum_{k_2, k_3, \dots, k_n} \frac{1}{k_2! \ k_3! \cdots k_n!} \left(\frac{1^2}{2!}\right)^{k_2} \left(\frac{2^3}{3!}\right)^{k_3} \cdots \left(\frac{(n-1)^n}{n!}\right)^{k_n},$$

with the second sum restricted to k_2 , k_3 , \cdots , $k_n \ge 0$, $\sum_{i=2}^n k_i = \mu$, and $\sum_{i=2}^n ik_i = n$ by the deletion of zero terms, and thus we have an alternate form of Folkert's formula.

5. Probability Distributions for Cases III and IV. In case III, we have $P(T) = n!^{-1}$, and in case IV, we have $P(T) = D_n^{-1}$. In both cases, every $x \in X$ is cyclic, since 3 is a collection of mappings which are one-to-one and onto in each case. As a consequence

(5.1)
$$S_T(x) = P_T(x) = C_T(x) = K_T(x).$$

Therefore, many of the probability distributions considered for cases I and II coincide in cases III and IV. Hence, we consider only the distributions of l and r. Then, in case III, we have

(5.2)
$$P(l=j) = \left[\binom{n}{j} (j-1)! j(n-j)! \right] / nn! = 1/n.$$

Gontcharoff [4] has shown that the probability that the number of components r of T is k is given by

(5.3)
$$P(r=k) = \text{coefficient of } t^k \text{ in } \frac{t(t+1)\cdots(t+n-1)}{n!},$$

and therefore is given by the well-known result,

(5.4)
$$P(r = k) = |S_n^k|/n!,$$

which may be found in Riordan [8]. Gontcharoff [4] has also shown that the distribution of $(r - Er)/\sigma_r$ is asymptotically normally distributed with mean 0 and variance 1. Feller [2] and Greenwood [5] have also computed Er and σ_r^2 . We show an alternative computation using (5.2).

Let m_j be the number of components of T with exactly j elements. Then

(5.5)
$$Er = E \sum_{j=1}^{n} m_j = \sum_{j=1}^{n} E m_j.$$

From (5.2) we note that $Em_j = 1/j$, and hence

(5.6)
$$Er = \sum_{j=1}^{n} \frac{1}{j} \sim \log n + \gamma,$$

where γ is Euler's constant.

The variance has been shown to be

(5.7)
$$\sigma_r^2 = \sum_{j=1}^n \frac{1}{j} - \left(\sum_{j=1}^n \frac{1}{j^2}\right) \backsim \log n + \gamma - \frac{\pi^2}{6}.$$

In case IV, we have

(5.8)
$$P(l=j) = \left[\binom{n}{j} (j-1)! j D_{n-j} \right] / [n D_n] = \frac{(n-1)! D_{n-j}}{(n-j)! D_n}.$$

For large n; and $j \geq 2$ and sufficiently small compared to n,

$$(5.9) P(l=j) \backsim 1/n, 2 \leq j.$$

Furthermore

$$P(l = n) \backsim e/n$$

$$P(l = n - 1) = 0$$

$$P(l = n - 2) \backsim e/2n$$

$$P(l = n - 3) \backsim e/3n.$$

To get the probability distribution of the number of components, we employ the same type of generating function used earlier. First we note that

(5.10)
$$P(K_T(x) = X) = (n-1)!/D_n$$

since all (n-1)! n-cycles belong to 3. From this, we obtain:

(5.11)
$$P(T \varepsilon \, 3_{k_1,k_2,\dots,k_n}) = \frac{n! \, 1!^{k_2} \, 2!^{k_3} \, \cdots \, (n-1)!^{k_n}}{D_n \, 2!^{k_2} \, 3!^{k_3} \, \cdots \, n!^{k_n} \, k_2! \, k_3! \, \cdots \, k_n!} = \frac{n!}{D_n \, 2^{k_2} \, 3^{k_3} \, \cdots \, n^{k_n} \, k_2! \, \cdots \, k_n!}$$

where $0 \le k_i \le n$ and $\sum_{i=2}^n ik_i = n$. Then

(5.12)
$$G(x_2, x_3, \dots, x_n) = \sum_{k_2, k_3, \dots, k_n} \frac{n!}{D_n} \left(\frac{x_2}{2}\right)^{k_2} \left(\frac{x_3}{3}\right)^{k_3} \dots \left(\frac{x_n}{n}\right)^{k_n} \frac{1}{k_2! k_3! \dots k_n!} = \sum_{r} \frac{n!}{D_n} \left(\frac{x_2}{2} + \frac{x_3}{3} + \dots + \frac{x_n}{n}\right)^r / r!,$$

where $r = \sum_{i=2}^{n} k_i$. Proceeding as before, we have

(5.13)
$$G(x_2, x_3, \cdots) = \frac{n!}{D_n} \exp \sum_{i=2}^{\infty} \frac{x_i}{i}.$$

Replacing x_i by x^i , we have

(5.14)
$$\frac{n!}{D_n} \exp \sum_{i=2}^{\infty} \frac{x_i}{i} = \frac{n!}{D_n} \sum_{j=0}^{\infty} \frac{D_j}{j!} x^j.$$

If we replace x_i by tx^i in (5.13), we obtain

(5.15)
$$G(tx^{2}, tx^{3}, \cdots) = \frac{n!}{D_{n}} \exp t \sum_{i=2}^{\infty} \frac{x^{i}}{i} = \frac{n!}{D_{n}} \left[\sum_{j=0}^{\infty} \frac{D_{j}}{j!} x^{j} \right]^{t}.$$

Since

$$\sum_{i=2}^{\infty} \frac{x^i}{i} = -\log(1-x) - x,$$

we have

(5.16)
$$G(tx^{2}, tx^{3}, \cdots) = \frac{n!}{D_{n}} \exp^{-t [\log(1-x)+x]}$$
$$= \frac{n!}{D_{n}} \frac{e^{-tx}}{(1-x)^{t}}.$$

Then

(5.17) coefficient of
$$t^k x^n$$
 in $G(tx^2, tx^3, \cdots) = P(r = k)$.

From (5.15) we have

(5.18) coefficient of
$$t^k = \frac{n!}{D_n k!} \left(\sum_{i=2}^{\infty} \frac{x^i}{i} \right)^k$$
,

and, expanding by the multinomial theorem, we get

coefficient of t^k

$$= n!/D_n k! \sum_{\substack{k_2,k_3,\cdots,k_n \geq 0 \\ \frac{n}{2}k_i = k}} \frac{k!}{k_2! \ k_3! \cdots k_n!} \left(\frac{x^2}{2}\right)^{k_2} \left(\frac{x^3}{3}\right)^{k_3} \cdots \left(\frac{x^n}{x}\right)^{k_n},$$

and thus

$$(5.20) P(r=k) = \frac{n!}{D_n} \sum_{k_2, k_3, \dots, k_n} [k_2! \ k_3! \ \cdots \ k_n! \ 2^{k_2} \ 3^{k_3} \ \cdots \ n^{k_n}]^{-1},$$

the sum over all non negative n-1 tuples k_2 , k_3 , \cdots , k_n with $\sum_{i=2}^n k_i = k$ and $\sum_{i=2}^n ik_i = n$. Another form of the same result is obtained from (5.16). Here we have

(5.21) coefficient of
$$x^n = n!/D_n \sum_{j=0}^n \frac{(-1)^{n-j}t^{n-j}}{(n-j)!} \frac{(-1)^{2j}t(t+1)\cdots(t+j-1)}{j!}$$
.

Hence, we find that the coefficient of $t^k x^n$ is

(5.22)
$$P(r=k) = n!/D_n \sum_{j=0}^n \frac{(-1)^{n+j} |S_j^{k-n+j}|}{(n-j)! j!},$$

or

(5.23)
$$P(r=k) = n!/D_n \sum_{j=0}^{n} \frac{(-1)^j |S_{n-j}^{k-j}|}{(n-j)! j!}.$$

Since

(5.24)
$$Er = \text{coefficient of } x^n \text{ in } (d/dt)G(tx^2, tx^3, \cdots)|_{t=1}$$

and

$$(5.25) \quad Er(r-1) = \text{coefficient of } x^n \text{ in } (d^2/dt^2)G(tx^2, \, tx^3, \, \cdots)|_{t=1} \, ,$$

then

(5.26)
$$Er = \text{coefficient of } x^n \text{ in } (n!/D_n)(e^{-x}/(1-x))(-\log(1-x)-x),$$

(5.27)
$$Er(r-1) = \text{coefficient of } x^n \text{ in } (n!/D_n)(e^{-x}/(1-x))(\log(1-x)+x)^2$$
.

Expanding (5.26) and (5.27) in a power series we obtain

(5.28)
$$Er = \frac{n!}{D_n} \sum_{s=2}^n \frac{D_{n-s}}{s(n-s)!},$$

(5.29)
$$Er(r-1) = \frac{n!}{D_n} \sum_{s=4}^n \frac{D_{n-s}}{(n-s)!} \sum_{\substack{j,k \ge 2 \\ j+k=s}} \frac{1}{jk}$$

$$= \frac{n!}{D_n} \sum_{s=4}^n \frac{D_{n-s}}{(n-s)!} \sum_{j=2}^{s-2} \frac{1}{j(s-j)}.$$

Since $D_j = (j!/e) + O(1)$,

$$Er \sim e \sum_{s=2}^{n} \frac{\frac{(n-s)!}{e} + O(1)}{s(n-s)!} \sim \sum_{s=2}^{n} \frac{1}{s} + O(1).$$

Hence

$$(5.30) Er \sim \log n + O(1).$$

Similarly

$$Er(r-1) = \frac{n!}{D_n} \sum_{s=4}^n \frac{D_{n-s}}{(n-s)!} \frac{1}{s} \sum_{j=2}^{s-2} \left[\frac{1}{j} + \frac{1}{s-j} \right]$$

$$(5.31) \qquad \qquad e \sum_{s=4}^n \left[\frac{(n-s)!}{e} + O(1) - \frac{1}{s} \right] \frac{2}{s} \left[\log s - 1 - \frac{1}{s-1} - \frac{1}{s} + \gamma + O\left(\frac{1}{s}\right) \right]$$

where γ is Euler's constant. Hence

$$Er(r-1) \sim \sum_{s=4}^{n} \frac{2}{s} \left[\log s - 1 - \frac{1}{s-1} - \frac{1}{s} + \gamma + O\left(\frac{1}{s}\right) \right] + O(1),$$

and

(5.32)
$$Er(r-1) \backsim \log^2 n + 2(\gamma - 1) \log n + O(1).$$

Thus

(5.33)
$$\sigma_r^2 \backsim (2\gamma - 1) \log n + O(1).$$

6. Miscellaneous Remarks. The problem of random mappings is of interest in various studies of human behaviors. We produce one such example. If we ask each of n individuals in a group to name his best friend from among the members of the group, the individual asked is the element x, and his choice Tx. In this case we have $Tx \neq x$, and the hypothesis of "randomness" leads to case II.

APPENDIX

Index of Notations Having a Fixed Meaning

 (X, \mathfrak{I}, P) -random mapping space

X-a finite set of n elements

 \mathfrak{I} -a set of transformations T of X into X

P-a probability measure over 3

Case I-is set of all transformations of X into X, $P(T) = n^{-n}$ for each $T \in \mathfrak{I}$ Case II-is set of all transformations of X into X with $Tx \neq x$ for each $x \in X$, $P(T) = (n-1)^{-n}$ for each $T \in \mathfrak{I}$

Case III–is set of all one-to-one mappings of X onto X, $P(T)=n!^{-1}$ for each $T \in \mathfrak{I}$

Case IV-is set of all one-to-one mappings of X onto X with $Tx \neq x$ for each $x \in X$, $P(T) = D_n^{-1}$, D_n is the *n*th derangement number for each $T \in \mathfrak{I}$ $S_T(x)$ -the set of all images of x in T.

 $P_{\tau}(x)$ -the set of predecessors of X in T.

 $C_T(x)$ -the cycle containing x.

 $K_{T}(x)$ -the component containing x.

- $s_T(x)$, s-the number of elements in $S_T(x)$.
- $p_T(x)$, p-the number of elements in $P_T(x)$.
- $l_T(x)$, l-the number of elements in cycle contained in $K_T(x)$.
- $q_T(x)$, q-the number of cyclical elements of X in T.
- r_T , r-the number of components of T.
- S_n^k -Stirling's Numbers of the First Kind.
- $\mathfrak{I}_{k_1,k_2,\ldots,k_n}$ the subset of 3 with k_i components with exactly i elements, $i=1,2,\cdots,n$.

REFERENCES

- [1] E. T. Bell, "Exponential polynomials," Ann. Math., Vol. 35 (1934), pp. 258-277.
- [2] WILLIAM FELLER, An Introduction to Probability Theory and its Applications, 1st ed., John Wiley and Sons, New York, 1950.
- [3] JAY E. FOLKERT, "The distribution of the number of components of a random mapping function," Unpublished Ph.D. Dissertation, Michigan State University, 1955.
- [4] W. Gontcharoff, "On the field of combinatory analysis," Bull. de l'Academie des Sciences de U.R.S.S., (in Russian, with a French Summary), Serie Mathematique, Vol. 8 (1944), pp. 1-48.
- [5] R. E. Greenwood, "The number of cycles associated with the elements of a permutation group," Amer. Math. Monthly, Vol. 60 (1953), pp. 407-409.
- [6] CHARLES JORDAN, Calculus of Finite Differences, Chelsea Publishing Company, New York, 1950.
- [7] Leo Katz, "Probability of indecomposability of a random mapping function," Ann. Math. Stat., Vol. 26 (1955), pp. 512-517.
- [8] JOHN RIORDAN, An Introduction to Combinatorial Analysis, John Wiley and Sons, New York, 1958.
- [9] H. Rubin and R. Sitgreaves, "Probability distributions related to random transformations on a finite set," Tech. Rept. No. 19A, Applied Mathematics and Statistics Laboratory, Stanford University, 1954.