PROBABILITY DISTRIBUTIONS RELATED TO RANDOM MAPPINGS

By BERNARD HARRIS

University of Nebraska

1. Introduction and Summary. A Random Mapping Space (X, 3, P) is a triplet,
where X is a finite set of elements x of cardinality =, 3 is a set of transformations
T of X into X, and P is a probability measure over 3.

In this paper, four choices of J are considered

(I) 3is the set of all transformations of X into X.
(II) 3is the set of all transformations of X into X such that for each z ¢ X
Tx # .

(IIT) 3 is the set of one-to-one mappings of X onto X.

(IV) 3 is the set of one-to-one mappings of X onto X, such that for each
zeX, Tx # .

In each case P is taken as the uniform probability distribution over 3.

If z ¢ X and T ¢ 3, we will define T*z as the kth iteration of 7' on x, where k&
is an integer, i.e. Tz = T(T* 'z), and T°% = z for all x. The reader should
note that, in general, Tz, k& < 0, may not exist or may not be uniquely de-
termined.

If for some k = 0, T*z = y, then y is said to be a kth image of x in 7. The
set of successors of z in T, Sz(x) is the set of all images of zin T, i.e.,

Sr(z) = {x, Tz, Tz, -+, T" '},

which need not be all distinct elements.
If for some k < 0, T"z = y, y is said to be a kth inverse of x in T'. The set of

all kth inverses of z in T is T%® () and

Pr(z) = ,,.Q,.‘ T (z)

is the set of predecessors of z in T.
If there exists an m > 0, such that 7™z = =z, then x is a cyclical element of

T and the set of elements z, Tz, Tz, - - - , T™ 'z is the cycle containing x, Cr(x).
If m is the smallest positive integer for which 7"z = z, then Cz(x) has cardi-
nality m.

We note further an interesting equivalence relation induced by 7. If there
exists a pair of integers k; , k2 such that

T = Thy,

then £ «~ y under 7'
It is readily seen that this is in fact an equivalence, and hence decomposes X
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1046 BERNARD HARRIS

into equivalence classes, which we shall call the components of X in T'; and
designate by Kr(xz) the component containing z.

We define sz(x) to be the number of elements in Sz(z), pr(z) to be the num-
ber of elements in Pr(z), and Ir(x) to be the number of elements in the cycle
contained in K7(z) (i.e. I(z) = the number of elements in Cr(x) if x is cyclical).
We designate by gr the number of elements of X cyclical in T, and by rr the
number of components of X in T'.

Rubin and Sitgreaves [9] in a Stanford Technical Report have obtained the
distributions of s, p, I, ¢, and have given a generating function for the distribution
of r in case I. Folkert [3], in an unpublished doctoral dissertation has obtained
the distribution of r in cases I and II. The distribution of  in case III is classical
and may be found in Feller [2], Gontcharoff [4], and Riordan [8]. In the present
paper, a number of these earlier results are rederived and extended. Specifically,
for cases I and II, we compute the probability distributions of s, p, [, ¢ and 7. In
cases IIT and IV the distributions of ! and r are given. In addition some asymp-
totic distributions and low order moments are obtained. '

For the convenience of the reader, an index of notations having a fixed meaning

is provided in the appendix to the paper.

2. Representation of T as a directed graph. It will be convenient to represent
elements of 3 as directed graphs For example, if n = 10, X = {1,2,3,4, --- , 10},
and .

T() =4, T@) =5 T(3) =9 T@#) =8 T(5) = 5,
T6) =8, . T()=9, T@)=1 T =4, T(0) =S8,
Then T has the rgpresentati_on below:

3. Probability Distribution for Case L. In case I, P(T) = 1/n"for all Te3 . We
now turn to the computation of the probability distributions of s and I, the
number of elements in Sr(z) and the number of elements in the cycle contalned
in Ky(z) respectively.

Then, for any choice of z, we have:

P(s=k1=j)=P{Tx*xz Tz, -, T 20 <r=<k —1); T'x = T" )
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Hence

(3.1) P(s=k,l=,j)=(7(:z—__151!%‘,' 1<j<h=n,
and summing over j, we have

(32) CP(s=k) = %_:—]:))l—'n’fk

(3.3) P(I=j) = Z;(“(nn——_Wl')r'ﬁ

From consideration of symmetry, we note trivially that
(34) E(l) = El(s + 1)/2].

We now obtain the asymptotic probability densities of s and 1. In (3.11) let
k = v/nz,j = \/ny, and replace factorials by Stirling’s approximation. The
we have v

P(s=\/7_&f€,l=\/"_7»y)~

,nn-—\/ ;Iz-) e—\/ nz

(n . ,\/ﬁx)n—s/;ﬂ‘l

(3.5) pr—Vret SVnz
wvasth (1 — —F_ \a—vaztt K
Write

(1 — (z/v/)"V"" = expl(n —v/nz + 3)log (1 — z/+/n)),
and expand log (1 — z/4/n) in a power series, obtaining
P(s = Vnz, 1 = Vay) —ne
Thus, the asymptotic density of (s/v/n, I/ v/n) is
(3.6) flz,y) = e, 0<y=<z< .

The marg_inal distributions fi(z), fo(y) give the asymptotic densities of
s/A/n, I/\/n respectively and are easily obtained by integration. ,

(3.7) filz) = ze™, . 0<ug,
(3.8) fo(y) = Vor (1 — 2(y)), 0<y,

where ®(y) = [ Y (2r) ¢ da.
In numerical computations, the cumulative distribution function Fa(y) is
probably more useful than the density function f2(y) and is therefore given below:

(3.9) Fay) = P(Y £ 9) = 1 — ¢ + y4/2x(1 — 3(y))-
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We note further that

P 1 P fr42
(3.10) Ey-r+1EX’_r+1r( 5 )
Hence
(3.11) EQ) «~1(2m)Y, o «~nl(2/3) — (2n/16)).

Formulas (3.1), (3.2), (3.3), and (3.7) have been obtained by Rubin and
Sitgreaves [9].
Rubin and Sitgreaves have also shown that

_a_ (=113 .
We now prove this using a partition argument due to Katz [7].

Consider the directed graph representation of 7' and partition X as follows.
Let Mo(T) be those elements of X cyclical under 7'. Define M1(T) to be those
elements of X whose images are cyclical under 7', but are not themselves cyclical.
Let M4(T) be those elements of X whose images under 7' are in:M;(7T'). Con-
tinuing in this manner until X is exhausted, the n — j non-cyclical elements
of X are partitioned into m(T) sets each non-empty for j £ n. Designate the

cardinality of M;(T) by ni(T),j = 1,2, -+, m(T).
The number of decompositions of X for ny, ne, «++ , Nx fixed is
n!

(3.13) - T AN AR oW

j! 7!4! ‘n2! e
where D> _nin; = n — j. Hence

n!
nl!nzl ......

(3.14) Plg=j) =n"2

where the sum is taken over all non-empty m-part partitions of n — j.
Katz [7] has shown that -

g, n n .
IJ ‘nlg"'nnﬂly J #m,
(™

n! iy ne . r. n!n'l—).—l
B18) X mrand S e

from which we obtain (3.12) for j # n. We have j = n, if and only if T is one-
to-one and onto; hence
(3.16) P(g = n) = nl/n"

which coincides with (3.12) for j = n.
It is curious to note that this is exactly the same as the distribution of s
given in (3.2), and hence has the same asymptotic distribution and asymptotic

moments.
The distribution of p has been obtained by Rubin and Sitgreaves [9],

o (=) =™
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We establish this as follows:

Let X1 be j — 1 specified elements of X say 21, 5, -+, z;_1. Let z be
a distinguished element of X not in X;_; . Then define 3, as those transforma-
tions 7' in J such that T'(X — (X,4, U %)) = X — (X;4 U z). Define 3, as
those transformations in 3 such that T(X;) = X;; U «, and T*z; = z for
some k > O0and ¢ = 1,2, ---,5 — 1. We further define 3* = 3, N 3,. Then

(318) (32 res =P =5,
and

(3.19) P(T e3*) = P(T ¢ 5,)P(T ¢ 3y).
We readily see that

(3.20) P(Te3) = [(n — ) /n]""

Hence we have only to compute P(T ¢ 3;). For any T ¢ 3, , we can, by restrict-
ing attention to X ;_; define an associated transformation T7_, which has T¥ ,z; =
Tzi,i=1,2,+-+,7— 1,and Tiyz = z. Let N;_; be the member of distinct
transformations which can be constructed in this manner from 7T ¢ 3, . Since,
in 3, z has n equally likely images under T, we have

(3.21) P(T ¢3) = N;/n"?

and N;_, is readily obtained by Katz’s Lemma and the partition argument used
in (3.13). Hence
_ 1 j ! n n . N, __ 2 .
(3.22) Nj—l*;Zmllnlz. ’nm—l_J ) ]>1,
and, trivially, No = 1. ,
In (3.22), the sum is over all non-empty m-part partitions of j — 1, and the
factor (1/7) is obtained by distinguishing the element z. Hence

_a_(n—1\7 =\
o= - (IS
and (3.17) is established.

We now note an interesting relationship,

(3.23) E(S) = E(p)!

This is established at once by symmetry. For any T ¢ 3 such that y is a suc-
cessor of x, there is a corresponding T ¢ 3 with x a predecessor of y; the cor-
respondence is accomplished by interchanging = and y in the directed graphs.

We may also note an interesting physical property of directed graphs of this
type, which holds for every T ¢ 3. For any T ¢ 3, let r; be the number of ele-

1 This was pointed out by D. Blackwell in a private conversation with the author.
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ments z for which 7'z has j elements. Then,

(3.24) ]Z_:,)jr,- = n.
Also,

(3.25) Sri=n
Thus,

(3.26) ro = :2—:].7'1‘4.1 .

From this it follows at once that
(3.27) E(®Y) =1,

where p® is the number of elements in 77'(z).
The distribution of p® is readily seen to be

o e (O

. We proceed now to the question of the probability distribution of r, the num-
ber of components of X in 7. Folkert [3] has obtained the distribution and
has shown

__I”S:‘ \ n! ki pka 1.k
(329) P{T = .7} = E "7 kl.kg,z-;-,k“ m—' kit k2 ky,
where S; are Stirling’s Numbers of the First Kind, and the sum over
ki, ks, -+, kuis overall choices of &y , ke, -+« , kuwithk; > 00 = 1,2, -+ ,p).
and D % k; = n.

In this paper we obtain a probability generating function for the number of
components, which has a good deal of intrinsic interest because of its relation
to Faa de Bruno’s formula (Jordan [6]) and the exponential polynomials of
Bell [1].

Let k; denote the number of components with exactly ¢ elements. Then every
T ¢ 3 determines an n-tuple (ki , ka2, - - - , k.). Hence, for every specification of
(K1, koy -+, ka) we have a set of transformations 3y, k,,... .k, iR 3.

Then

nl I Ik ... Ik
1R 202 .ooptn kil oo Bl ™

(3.30) P(T &3y, gyeees k) =

where I,/7%(j = 1,2, --+, n) is the probability that a transformation T; on j
elements X ; is indecomposable, i.e. Kr,(z) = X;forallz e X;, where0 < k; < n



RANDOM MAPPINGS 1051
and Z?,l tk; = n. We have

4 (j-l)!i(i—l)!
;P(q—i,Kr,(x)—X) ‘:"’1 (G —otjiet

.7]
Hence
j—1 — |
(3.31) = U=y 1)
=0
This result has been obtained earlier by both Katz [7] and Rubin and Sitgreaves
[9]. Then, the generating function of k;, k2, - - - , k. is given by
Z ! (Liz)" (Ls)™ -+ - (Tnwa)*®
bk ke 1112072 o okl - ol

since the coefficient of z;"'2,*2 - -+ #,** = P(T & Bpy by, b,) fOr Doyt = 7
Since r = > 0 ks,

(832) G(zy, g, -+, %,) =

nlrl(12:)" (1o 22)™ - -+ (Tnma)*
kudiareeikn TP Ky Kg) - o Kool 11F120F2 Lo ppfn

G(xly T2, ""xn) = )

and

I R L ]

7 rins n!

We can extend the definition to G(z1, 2, ---) with no loss of generality,
since this will in no way affect the coefficient of z;*'x,* - - - z,*". Hence
: ! LI S
(334) Gar, 2, ) = Dexp 3 L,
n" =1 !
If in (3.34), we replace z; by z*, the coefficient of z” in G(z, %, -- ) is 1 for
all n. Thus, we have

and

(3.36) ; L;z'/i! = log Z /i)',
Replacing z; by t*z; in (3.34) we obtain:

(3.37) G(tzy, s, +++) =%,—Eexp‘zi;l'+;x".

In (3.37) the coefficient of ¢* gives the probability of any possible decomposition
of X into components with the exponents of z; indexing the decomposition.
Finally we observe that, replacing x; by tz*, we get
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| 0 k‘ (3
(8.38) Gz, ta, -+ ) = % exp ¢ Z I—'.—'x—,
s=1 2!
or equivalently
w o 7]t
(3.39) Gz, 12, ) = [E ﬁ] ,
nt im0 ¢!

and the coefficient of 2" in G(ix, &%, ---) = P{r = k}.
We now employ the generating function given above to obtain Folkert’s
formula (3.29). From (3.38), we have

. | (& Liz'\*
A oD i
(3.40) coefficient, of ¢ T (; 0 ) ,
and from (3.36) we have
(341 ficient of & = |1 S
41) coefficient of ¢ = 5| 108 1+zl:z-!x ,
Since
k - k! k B
log (1 + u)* = 3 = Syuf
p=k M
see, for example, Jordan [6], p. 146. Employing this in (3.41), we get
(342) coefficient of ¢* = o 2“: k Sk [f_‘, ilw"]n
) nnk!n=k ﬂ! # 1 7:! ’

and, expansion by the multinomial theorem gives

! & k!
coefficient of £ = —— > Ii' Sk

n”k! p=k Mo
(343) > ! (1_1 :v)kl (2_2 x2>kz o (’Lﬂ x”)kn
kgt 20 kilkg! -+« knl \1! 2! n! ’
Z ky=n
1

To find the coefficient of z" in (3.43) it suffices to restrict the second sum to
non-negative n-tuples (ki , ks, -+, ko) with S 2ki = u, D im19k: = n; hence

o onl 1 1\* 22)’“ (M)"»‘
(3.44) P(r B k) h m—! l‘gk S” kl.kg.2~;~kn kllk2! M knl (Ti) (ﬁ m

which coincides with (3.29), except that partitions of n are enumerated without
regard to order in (3.44), and thus we have obtained an alternate form of
Folkert’s formula. Rubin and Sitgreaves [9] noted that nE(s) = E(s™"). We
remark, further, that it is even more curious that

(345) n'E(s) = P(r=1) =Pl =1) = nE(p) = nE(q).
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4. Probability Distribution for Case IL. In case II, P(T) = (n — 1)™" for all
T ¢ 3. As in case I, we first consider the probability distribution of s and I.
Computing exactly as in Section 3, we obtain

(n —2)!

(4~1) P(S=k,l=j)=(n_ l)k‘l(n—k)!’ 2§j§k§n)
and

oy (n=2)(k—1)
(4.2) P(s=k) = =D = BV’

P (n —2)! .
(43) P =) = X =it = )1 2sjsn

Comparing these results with (3.1), (3.2) and (3.3), we have
P(s=k|I,n) =P(s=k+1|1I,n+1)

(44) P(s=kl=j|I,n)=P(s=k+1l=7+1|II,n+1),

and ‘
Pl=j|I,n) =PU=j+1|I,n+1).

Hence

(4.5) EQ|IL,n+1) = E(|I,n) + 1

and

(4.6) E(s|II,n+1) = E(s|I,n) + 1.

From (3.4) we have

(4.7) 1E(s|II,n) + 1 = EQ|II, n).

Then, by analogy with (3.6), we note that the asymptotic density of
(s/v/n—1,1/4/n—1)is
(48) f(x; y) = e—%zz’ 0=yszr< «»,

giving the same marginal density functions as (3.7) and (3.8).
Now consider the probability distribution of the number of elements of X

cyclical under T. We show that
(49) P(q = j) = #'D; (’} - }) /=

where D, is the jth derangement number, i.e., D; is the nearest integer to j!/e,
j # O,Q.DdDo = 1.

The proof is identical with the proof of (3.12) except that the j! in the nu-
merator of (3.13) is replaced by D;. Hence an application of Katz’s lemma
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gives
(410) P(q =3j) = 1 > n! D; " 'nt? e npm [ #Zn
: 1=)) = D~ Tmingl - ™ m=l; ] #
the sum being taken over all hon-empty m-part partitions of n — j. Hence
. 1 nin™ ! .

and thus P(q = j) is given by (4.9). The case j = n, is given trivially by (4.9). .
The asymptotic distribution is obtained by replacing D; by j!/e, and re-
placing factorials by Stirling’s approximation. Then, letting j = 4/ny, we get

(4.12) fly) = ™, 0<y< o,

for the asymptotic density of gn~*. The agreement of (4.12) with  (3.7) can
hardly be surprising in view of the agreement of (3.2) and (3.12).
We now obtain the distribution of p,

— (n—1Un—-j5— l)ﬂ—ij:‘-—z
(j - 1)!(’", - j)!(n —_ 1),,'_1)
(413) Plp=mn—1) =0,

n—2

P(p=n)=1—j=ZlP(p=j)=

P(p = q)

n n—j;j—2

n! n
(n — )izt (n — g)!"

This is established as follows. Define X, 31, 32, and 3*, as in case L. Let z
be a distinguished element of X. Then, as before,

(414) Po=3) = (32 ]) PTes,

and

(4.15) P(T e3*) = P(T e 5)P(T € 3).

Then

(4.16) P(Ted) =[(n—j—1)/(n— 1],
Exactly as in (3.22), we can employ Katz’s Lemma to obtain

(4.17) P(T e3) =77/ (n — 1)

Combining these we have

Py = 1) = (’} _ i) (" 3 I)H @ fi)f-l'.
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The condition Tz % z for all z ¢ X, precludes the possibility of p = n — 1.
There remains the case p =

P@=nM)=§P@=L&M)=XCNﬂ¢®

(4.18) .
= n"'D;n! G—-D1g

THG-DG-Dm=7 D n
Inasmuch as (3.23) depends only on invariance under the symmetric group
operating on X and (3.26) is a property of the directed graphs in general, both

of these apply in II.
The distribution of p is obtained trivially,

wn o= (7) (LY G

The distribution of », the number of components, has been computed by
Folkert [3], and shown to be

1 [n/2] S‘I:
(’n - 1)" =k -;I kl,kz,}...,k“
. nl E k Ky
’m(kl—l)l(kz—l)z‘” (b — 1™,
where the sum over %, ks, - - ,k,is overall u-tuples with k; > 1and >_4 k; = n.
We will now develop a probability generating function for the number of com-
ponents, and obtain an alternate derivation of (4.20). The argument parallels
the same discussion in Case I and hence will only be sketched briefly.
Asin case I,

P(r=k) =
(4.20)

nl I35 - -« I
223k Py ksl - s Ral(n — 1)

where I,/(j — 1)’ is the probability that a transformation 7', on j elements X;
is indecomposable, i.e., Kr;(x) = X forallze X;,0 < k; < nand St s ik = n.

(421)  P(T &€ Bpy g k) =

I; _ _ _ _ T lj'
G=1 3Pl = i Kno) = ) .Z-zo—no—n'
(422) =
_S G-y
=G — DRl

(4.22) has previously been established by Katz [7] using a somewhat different
argument. Then

_ n(L25)" (Lzzs)™ - -+ (Inwa)"
kakar ook 21723158 o Pl sl - K l(n — 1)

(4.23) Gy, a3, -+, @a) =

is the generating function of ks, ks, ---, k. in the same manner as (3.32).
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Since r = D_r, k;, we obtain, after extending the deﬁnition to G(x2, %3, +++),

n! I
4.24 RN = —— ‘—L—l
( ) G (e, xs, ) (n — 1) €xp ,E=2 2!

If, in (4.24), we replace x; by z°, we obtain

I; ! (.7 - 1)
(4.25) "(‘ﬁ“——_ Z o (n — 1)":2_;)
Thus
(426) I T og > £z;l_>__

Replacing x; by t'z; in (4.24), we obtain:

2 3 _ n! = I; t‘x;
(4.27) G(txz,txs, ”’) _mexpiz_zT.
Then the coefficient of ¢* in (4.27) gives the probability of every possible de-
composition of X into components, in the same manner as (3.37). If we replace

z; by tz°, we get

2 3 .. —
(4.28) Gz’ ta’, -+ -) —(n — exp[ ;2 o J
or
(4.29) Gt ) = [2‘”: (i — 1%
- T (n — 1)Lz 2! AN
giving

coefficient of t*z" in G(t2%, tz°, - --) = P{r = k}.

We now employ the generating function to obtain an alternate form of Folkert’s
formula (4.20). From (4.28) we have

. k n! = I,; .’L‘l k
(430) coefficient of ¢ (_—————].)"k' I:E g :| )

= !

and from (4.26) we have
. ko n! (z — 1)'x'>:|
(4.31) . coefficient of t" = W = Dl [log (1 + ; ~ 77 }].

Hence

‘ . ¥k k! k (1 - 1) ]
coefficient of t* = w 1)%'“2_; S. [Z
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and, as in (3.43), we get

i ) DL
coefficient of ¢ = D ‘;c o Sy

k1,kg,e o kn 20
n
Zki=n
1

) Bl [(1 — D' [ = D% [ — D)%
b lea! - - - Keal 1 21 nl '

"To find the coefficient of z" in (4.32), it is sufficient to restrict the second sum
to non-negative n-tupules (k;, ks, - -+ , k) with > ey k; = pand >ty ik; = n.
Thus, we have

(4.32)

P(r=k) =
(4.33)
n! [n/2] . 12\*2 /2%\* )" kn
,(—D"Zskzk;knkz'ks' ()()( n! )’
with the second sum restricted to ks, ks, -+, k. = O, S taoki = p, and

> r 4ik; = n by the deletion of zero terms, and thus we have an alternate form
of Folkert’s formula. :

6. Probability Distributions for Cases III and IV. In case III, we have P(T) =
n!™, and in case IV, we have P(T) = D;'. In both cases, every = ¢ X is
cyeclic, since J is a collection of mappings which are one-to-one and onto in each
case. As a consequence

(5.1) Sr(z) = Pr(x) = Cr(x) = Kr(2).

Therefore, many of the probability distributions considered for cases I and II
coincide in cases III and IV. Hence, we consider only the distributions of [
and r. Then, in case III, we have

(5.2) Pl =7 = [(’J‘) G — 1)jn —j)!]/nn! = 1/n.

Gontcharoff [4] has shown that the probability that the number of components
r of T is k is given by
t(t+41) - (t+n—1)

n!

(5.3) P(r = k) = coefficient of ¢ in

and therefore is given by the well-known result,
(5.4) ~ P(r=k) =|Sl/n!,.

which may be found in Riordan [8]. Gontcharoff [4] has also shown that the
distribution of (r — Er)/e, is asymptotically normally distributed with mean 0
and variance 1. Feller [2] and Greenwood [5] have also computed Er and oF .
We show an alternative computation using (5.2).
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Let m; be the number of components of T with exactly j elements. Then

(5.5) Er=EY mj;= ZEm,

Jj=1 =1

From (5.2) we note that Em; = 1/4, and hence

(5.6) Z} logn + v,

j=1

where v is Euler’s constant.
The variance has been shown to be

(5.7) - =2 = (
In case IV, we have

PU=]) = [(’;) G- Dn.j]/[n D]

2

) logn+7—%.

||[V]=
Sl

.%l’—‘

(5.8)
_(n=1)! D,,_,
(m—5tD
For large n; and j = 2 and sufficiently small compared to n,
(5.9) P(l =j) «1/n, 2=
Furthermore '

P(l=mn)—e/n
Pl=n—-1)=0
‘P(l=n—2)—e/2n
P(l=n—3)—e/3n.

To get the probability distribution of the number of components, we employ
the same type of generating function used earlier. First we note that

(5.10) ' P(Ky(z) = X) = (n — 1)!/D,
since all (n — 1)! n-cycles belong to 3. From this, we obtain:

nl11%221% ... (n — 1)1%

PT & Siptgeen) = D, 2152315 .l Fn Iyl ol - k!

(5.11)

_ n!
- kg ok &
D, 2% 3% oo Iyl e ke
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where 0 < k; < n and Z?.z tk; = n. Then

1 ko k3 by 1
(@2, 20, -, 2n) kzkaz.;.k,‘p (2) (3 n) ikl Fal
' ! r .
—E”(’”2+ + - +’§§>/r!,

where 7 = > 2o k;. Proceeding as before, we have

(5.12)

(5-13) G(x27x3; )= —eXPZ -

=2

Replacing z; by 2°, we have

n! = .
(5.14) exp E L Z& z.
=2 1/ n j=0 J!
If we replace z; by £2° in (5.13), we obtain
e =S £ L m 50
(5.15) G(tr’, t”, ---) . expt ;2 T = Do []EO 7 x|,
Since
52-27 —log (1 — ) — =,
we have
!
G( txz’ txa, .. ) — %ﬂ exp —t[log(1—2z)+z]
(5.16) ¢
_nl €
DA -2
Then
(5.17) coefficient of ‘2" in G(t2?, ta®, ---) = P(r = k).
From (5.15) we have
. o onl (&)
(518) DAl (2:; 7) ’

and, expanding by the multinomial theorem, we get

coefficient of ¢

(519) _ | | k' ) <£)k,(x_3>k3 e (x”)k",
a n‘/D”k’f kakS'ZﬁkngO k2! k3! tee k”! 2 3 ) ?

Zki=k
1
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and thus

(520) Plr=k =" 3 lhlksl - ka! 235 o pb 7

Dn koikgs e kn

the sum over all non negative n — 1 tuples ks, ks, - - - , -k, with Z};z k; =k
and Y ¢ ,ik; = n. Another form of the same result is obtained from (5.16).
Here we have

kid 7"_. "—j — 2' . o @ y —
(5.21) coefficient of 2" = n!/D, X (=1) J.t (1)t + 1). t+j—1) )
= (n—=! il

Hence, we find that the coefficient of ‘2" is

’ n (_1)n+j | Sl]g-n+.1’|
= == '
(5.22) P(r=k) n./Dan% T
or
(=17 87|
= = ! -_——
(5.23) P(r = k) = n!/D, ; CR=I¥
Since _ ,
(5.24) Er = coefficient of z" in (d/dt)G(ia’, ta®, - - )| 1=
and

(5.25) Er(r — 1) = coefficient of " in (&/d) Gt t2°, - )| 11,

then |

(5.26) Er = coefficient of 2" in (n!/D,)(e”*/(1 — z))(— log (1 — z) — 2),
(5.27) Er(r — 1) = coefficient of " in (n!/D,)(¢”"/(1 — x)) (log(1 — z) + z).
Expanding (5.26) and (5.27) in a power series we obtain

n!l ~~ D.

(5.28) Er = D, & —————-s(n —91
n! ~~ Dy, 1
Brir—1) = 5;.;1 (n — 8)! jx22 ik
(5.29) k=

_niy D 571
D.Si(n—9)'i=j(s—3)°

Since D; = (j!/e) + O(1),

”M+0(1) -
Er~ey —2 ~2 <+ o).

8=2 _S(’ﬂ - S)' 8=2
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Hence
(5.30) Er —~logn + 0O(1).
Similarly
_nl~s D, 181 I
Brr = 1) =, B = s>!'5,~=2[3'+s —j]
(5.31)

(n — s)! :
n | —= 4+ 0(1) ‘
e 2 1 1 1
meé[ (n — s)! ]E[logs—l—s—1—§+7+0<§>]

where v is Euler’s constant. Hence

n

Er(r—l)ng[logs—‘l——l—— 1+‘Y+0'(:sl~)]+‘0(1),

=4 s—1 s
and ,
(5.32) Er(r — 1) «~log’n + 2(y — 1) logn + O(1).
Thus
(5.33) o2 (2y — 1) logn + O(1).

6. Miscellaneous Remarks. The problem of random mappings is of interest in
various studies of human behaviors. We produce one such example. If we ask each
of n individuals in a group to name his best friend from among the members of
the group, the individual asked is the element z, and his choice Tz. In this case
we have Tr > x, and the hypothesis of “randomness” leads to case II.

APPENDIX
Index of Notations Having a Fized Meaning

(X, 3, P)-random mapping space

X-a finite set of n elements

g-a set of transformations T of X into X

P-a probability measure over 3

Case I-is set of all transformations of X into X, P(T) = n™" for each T ¢ 3

Case I1-is set of all transformations of X into X with Tz = z for each z ¢ X,
P(T) = (n— 1)"foreach T ¢ 3 '

Case ITI-is set of all one-to-one mappings of X onto X, P(T) = n!™" for each
Tes ' :

Case IV-is set of all one-to-one mappings of X onto X with Tz # x for each
z ¢ X, P(T) = D;', D, is the nth derangement number for each T ¢ 3

Sr(x)-the set of all images of z in 7.

Pr(x)-the set of predecessors of X in T'.

Cr(x)-the cycle containing z.

K r(z)-the component containing x.
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sr(z), s-the number of elements in Sr(x).

pr(x), p—the number of elements.in Pr(z).

lr(z), I-the number of elements in cycle contained in Kr(x).

gr(x), g¢-the number of cyclical elements of X in 7.

rr , r—the number of components of 7.

S*—Stirling’s Numbers of the First Kind.

Shyka- -k, the subset of 3 with k; components with exactly ¢ -elements,
1=12 - n
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