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1. Summary. Simple hypotheses Hr and Hyg , specifying two distinct positive
transition densities p(z | ¥) and g(z | y) and initial densities p(2) and ¢(z) with
respect to a finite Lebesgue-Stieltjes measure, are assumed for a discrete time
parameter Markov process. Let R. be the likelihood ratio static based on the
first » + 1 observations of the process, and consider the class of sequences of
likelihood ratio tests T(a, a) = {[R. > n%):n = 0, 1, 2, ---} generated by
letting @ and « vary over the real numbers. Under certain regularity assumptions
on Ki(z,y) = p (x| y)¢'(x | y) and the initial densities p and ¢, the subclass

of consistent sequences is determined, and the limiting rates at which the error

probabilities tend to zero for tests in this subclass are found.

A definition of the best asymptotic rate for distinguishing between Hp and H o
is made for the class of consistent tests. This “asymptotic rate of discrimination”
is evaluated and is shown to be attained by a certain subclass of these tests.

Some applications and extensions of the theory to infinite Lebesgue-Stieltjes
measures are given.

2. Introduction. This paper is primarily a study of the asymptotic properties
of the tail probabilities for the likelihood ratio statistic as applied to testing
simple hypotheses for discrete time parameter Markov processes. Similar in-
vestigations have been carried out by Cramér [2], Chernoff [1], and Thomasian
[6] for sums of independent random variables and from more general points of
view. In the special case that the Markov process reduces to a sequence of inde-
pendent, identically distributed random variables, most of the results proved
herein may be obtained from these papers.

Let % be the real line, ® the Borel sets, and u a Lebesgue-Stieltjes measure
defined on (%, ®). Attention is restricted to the situation in which the distribu-
tion of a Markov process 9 = {X.:n = 0,1,2, - - -} is determined by a transition
density p(z |y) (measurable in y for fixed z and a probability density with
respect to u in z for fixed y) and an initial density p(z) with respect to u.

Let H» and H, be simple hypotheses for 9 specifying transition densities
p(z | y) and g(z | y) and initial densities p and ¢. The likelihood ratio statistic
R, based on the first n + 1 observations is then

— 1oy 4X0)g(Xs | Xo) --- (X | Xna)
(11) Rn(XO, Xl, ) Xn) lOg p(XO)p(Xl I XO) .. p(X” I Xn—l) ]
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DISCRIMINATION FOR MARKOV PROCESSES 983

and a (nonrandomized) likelihood ratio test is a set [R. > k] for some k, ¢ &,
where the square bracket indicates the set in ®"** for which the inequality is
satisfied.

The error probabilities associated with [R, > k.| are P[R, > k,] and
QIR. = k] = 1 — Q[R, > k.], where P and @ are the probability distributions
induced on 9 under H and H, . For simplicity it is assumed that k., is of the
form n“s for real @ and «. The results remain valid if &, is taken to be O(n%).
The tail probabilities to be studied are the error probabilities for the consistent
members of the class of test sequences T'(a, @) = {[R. > n%a]:n =0, 1,2, ---}
for @ and a in .

Asin [1], [2], and [6], the moment-generating function, in this case the moment-
generating function M,(t) = Ex[exp (R.t)], where Epr denotes expectation with
respect to P, will play an important role in evaluating the limiting rates at which
these tail probabilities tend to zero. The possibility of expressing M ,(t) in terms
of the nth iterate of a certain integral operator to be defined later motivates the
use of operator theory in this investigation. For a complete treatment of the
linear space theory pertinent to this study, the reader is referred to Zaanen [9].

The following assumptions apply throughout the paper:

Al . Let K (z,y) = p (x| ¥)g'(x | y). There exists a set A & ®, such that

(). u(A) < oo,
(ii). Ki(z,y) > 00n A X Aand Ki(z,y) = 0on (A X A)° almost surely with
respect to u X p(a.s.(up X p)) fort = 0and 1.

Hereafter all functions and measures will be restricted to 4, its products, and
their restricted Borel sets. For integrals over the range A, no domain of integra-
tion will be indicated.

Clearly, Part (ii) could equivalently be stated for the range 0 = ¢ < 1.

A2. There exists & > 0, such that the functions p*~*(2)q' () are in £, = Ly(A, p)
fO’I‘—51§t§l+8l. '

A3. There exists 62 > 0, such that

©

1 n
2 ;{'HIKMHI% <

n=0

fort = 0,1, where K. n(z,y) = {log lg(z | y)/p(z | 1)1} "K (=, y) and ||| ||| is the
double norm defined for (possibly complex valued) p X u measurable functions

6wl @l ={ [ 166, ) ) auta))

This assumption is a specialization of a condition imposed by Wolf in [8] for
analyticity of operators in Banach space.
LemMma 2.1. Assumption A3 implies the following conditions:

(C1). K|l < © for 0<¢t=<1.

(C2). Eﬂ% N Eenlll 82 < © for 0<t= 1.
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Proor. (C1) is an immediate consequence of (C2). (C2) follows from A3 by
two applications of Holder’s inequality: if [ |f|d¢ < « and [|g|'d¢ < =,
where 7" 4 s = 1, then [ |fg|dy =< [f | f"d¥]""[f | g |'d¢]"* with strict in-
equality unless f = kg except on a ¥ null set for some constant k. First apply the
inequality to f(z, y) = [fa(z, ¥)p(z | NI, g(z, ¥) = [fulz, v)a(z | I,
r=(1=87s=¢"andy = u X uwherefu(z,y) = {loglg(z | y)/p(z | »)]}"
This results in the inequality ||| ke,n ||| < ||| Ko,n ||[*™ ||| K1 |||*. Next apply
Hoélder’s inequality tof(n) = {n!™ ||| Ko,a ||| 63}, g(n) = {nI™ ||| Ku.. ||| 63},
r=(1—17"and s = {7, and to ¢, the measure which assigns mass one to the
integers 0, 1, 2, - - -, and is zero otherwise. Then for

® . ) 1 . =t ( . ¢
081515 LK lla s 3 (L Kol ) {41 ol 3}

1—-¢
n

= {5 L Kol a8}

n=0 N

0 1 n t
& Limans) <«

n=0

The following lemma, which is proved in Zaanen [9], pages 496498, is a con-
sequence of the above conditions. -

Lemma 2.2. For 0 < t < 1 the integral operator A , with kernel K (z, Y) possesses
a posttive eigenvalue N(t) which is strictly larger in modulus than any other eigen-
value of A .. Furthermore, every eigenfunction corresponding to \(¢) is of the form
¥ = ko, for some constant k, where ¢, is an a.s. (u) positive function belonging to
£L2.

3. The Class of Consistent Likelihood Ratio Tests.

LemuMa 3.1. There ewist unique stationary densities wy and m for I under Hp
and Hq, respectively, which are positive a.s. (n).

Proor. By Lemma 2.2, there exist numbers A(#) > 0 and functions ¢, positive
a.8. () such that A(t)¢«(x) = A, ¢(2) = [Ku(x, y)¢:(y)du(y). Taking &
(= Ly(A, 1)) norm on both sides of this expression, one obtains A(¢) || ¢: [, =
Jou){ JK (2, y)du(@)}du(y) = | ¢: 1 for ¢ = 0, 1; hence, A(0) = A(1) = 1.
The proof is concluded by taking 7, = ¢./|| ¢« |, .

Lemma 3.2. There exist numbers v» and vq independent of the initial densities
p and q such that

(i) lim R,/n = yr  as. (P)

n-»00

when Hp 18 true and
lim R,/n = 44 a.s. (@)

when H g is true, where P and Q are the probability distributions induced on 9N by
the densities specified by Hp and H g ,
(ii) vr = 0 = 7o with strict inequality unless p(z | y) = q(z | y) a.s. (u X u).
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ProoF. 9, with the distribution P, generated by K(z, y) and m , is a metri-
" cally transitive stationary stochastic process for ¢ = 0, 1. If E. denotes expecta-
tion with respect to P, and B, is the integral operator with kernel

|log [g(z | ) /p(x | 9)]| K«(=, ¥),

then the inequality E | log [¢(X | Y)/p(X | Y)]| < e« for ¢ = 0, 1 follows from
the inequalities (1, Bir;) =< |[1| || Ber|| (Schwarz inequality) and

[ Berell < [l e [l 1] Kealll-

The last expression is finite by A3. The absence of a subscript on the norm
symbol indicates £, norm. Under these conditions Birkhoff’s ergodic theorem
applies to the function log [g(z | ¥)/p(z | ¥)] yielding the result

q(Xk | Xe1) (X |Y)
(3.1) limm o~ Zl s apenia E, log X (Py)
when the distribution of 9 is P,, ¢t = 0, 1.
Now

R, 1 m1(Xo) ¢( Xy | Xi—1)

fn _ 21 NAk | Ao)

w0 Xy T n,; 85X [ Xi)
and m and m, are a.s. positive; hence lim R./n = E log (X |Y)/p(X| )]
a.s. (P:) when P, is the distribution of 9m, ¢ = 0, 1. If we let v» =
Eolog [¢(X | Y)/p(X | Y)] and vo = Ey log [g(X | Y)/p(Xl Y)], Part (i) is
proved for the case P = Ppand @ = P;.

To see that this result is valid for any pair of initial densities p and ¢ for which
log [¢/p) is finite a.s. (u), let S; be the set in the range of the process for which
(3.1) holds. Then Birkhoff’s ergodic theorem implies P¢(S.) = 1for¢ = 0, 1.
Write

P8 = [PuS,| Xo = 2)m(a) dua),

where P (S, | X,) is the conditional probability of S, relative to the sigma field
of events generated by Xo. Since =, > 0 a.s. (1), P«(S:| Xo) = 1 as. (u).
Thus, for arbitrary densities p and g, P(So) = JPo(So | Xo = z)p(2)du(z) =1
and Q(S)) = [Pi(8:| Xo = 2)g(x)du(z) = 1. The proof of Part (i) is com-
pleted by notmg that Condition A2 implies log [g/p] is finite a.s. ().

Because log z is concave, E(log X) = log E(X) and Part (ii) follows.

To avoid the case y» = v¢ = 0, it is assumed that p(z | y) and g(z | y) differ
on a set of positive 4 X u measure.

THEOREM 1. Among the class of tests T'(a, a), the consistent ones are:

(i) T(0, ) for o > 1,
(ii) T(a, 1) for v» < a < v (and possibly a = ver),
(iii) T(a, a) fora < land —» <a < .
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Proor. Part (ii) is an immediate consequence of Lemma 3.2. Write
PR, > n°a] = P[R./n > n*a] fora > 1.

Then for a < 0 and € > 0, n°'a < v» — ¢ for n sufficiently large, which by
Part (ii) implies lim, P[R, > n%)] = lim, P[R./n > yr — € = 1. Similarly,
lim, Q[R. < n°a] = 1 for a > 0; hence, the only consistent test when a > 1
is T(0, «).

For a < 1, write P[R, > n%)] = P[R./n > a/n'"®]. Let ¢ > 0 satisfy
vp + € < 0. Then for arbitrary a, a/n*~* > v + ¢ for sufficiently large n. Hence,
lim, P[R., > n%)] £ lim, P[R./n > vr + €] = 0. A similar argument applies
to lim, Q[R, < n®a], which completes the proof.

4. Properties of the Sequence of Moment Generating Functions. Let M, (f)
be the moment generating function of R, under the hypothesis Hp . Then M,(t)
is the real restriction of the bilateral Laplace transform M,(z) = 2 e“dF.(x),
where F,(z) = P[R. =< z]. Hence, as is well known from the theory of the
bilateral Laplace transform, M,(z) is convergent and analytic in an infinite
Strip {z = ¢ + is:0 < £ < B} asis [M,(2)]'". Since M,(0) = Ma(1) = 1,2, <0
and 8, = 1. The following lemma strengthens this property.

Lemma 4.1, Let 6 = min (8;, 6;) where 6, and 8; are specified in Al and A2.
Then there exists a constant M < o such that |[M.(2)]"" | < M for —8 < ®(z) <
1 4 8, where R (2) denotes the real part of z.

Proor. Let A, be the (complex-valued) integral operator with kernel
K.z, y) = p (x| y)¢’(x|y). It is easily verified that M.(z) = (1, A7k.)
where k, = p'"*¢". Let A... be the integral operator with kernel K, .(z, y)
defined as in A3 with z replacing ¢. Then || A, || < ||| Ko |l| = ||| Ke.a ||| for
t = ®(z) and, as a consequence of C3,

Zo”AsomIHz"‘zO'”< o for 0= ®(2) =1

and any z satisfying | z — 2o | < & . This implies (see Wolf [8]) that the defini-
tion of the operator 4, may be extended to —d; < ®(2) = 1 + 8 by the equation

4, = EoAto.n(z —2)" with [[4,[ =L = EOIIIKm ez,

where ¢ = ®(2). But as was shown in Lemma 2.1, L, < Li'Lt £ L = max
(Lo, Ly); hence, for —8; < ®(2) < 1 + &, || 4. || is uniformly bounded by L.
Now |M.(2) | = | (1, AZk.) | S [[ 1] [ .l | 4. [|"; hence, setting

C=sup{lk[:-a S @) <148}, [Ma(]| =L 1]O)"
for —8 < ®(2) < 1 + 4. The proof is completed by letting
M = Lsup. (]| 1] )"
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COROLLARY. e, < —6 and, B, = 1 + 8; hence [M,(2)]"" is analytic for —8 <
R(z)<14+4n=12---.

Lemma 4.2. Let A,(0 < ¢ < 1) be the integral operator with kernel K .(x, y)
and let o(A ;) denote the set of nonzero eigenvalues of A; . Then

(i). there exist integral operators T, and B, with kernels of finite double norm
such that

Ai =\(O)T. + BY

forn = 1,2, --- | where \(t), the largest eigenvalue of A, , is positive,
(ii). T+f > O for every nonnegative function f € £, that is positive on a set of
positive p measure, and

(iii). a(Bs) = {v: v = (), v € a(4y)].

Proor. The index ¢ will be omitted in the proof of this and the next lemma.

(i) The kernel K*(z, y) of the adjoint operator A* is K(y, x); hence, both
K(z, y) and K*(z, y) satisfy the condition of Lemma 2.2. This implies that the
largest eigenvalues of A and A* are positive and, as is well known, are identical.
The eigenfunctions ¢ and ¢* corresponding to this eigenvalue for 4 and A* are
positive and unique up to constant multiples. Since (¢, *) > 0, ¢ and ¢* may
be chosen so that (¢, $*) = 1. Define the operator T by Tf = (f, $*)¢ for f & £2
and let B = A — AT. Then it is easily seen by induction on B" = (4 — A\ T)"
that A" = A\"T + B", provided

(4.1) TA = AT = \T
and
(4.2) T =T.
To prove (4.2), let f ¢ £2. Then
Tf = (Tf, 6*)6 = ((f, $*)9, *)¢ = (f, $*) (9, $*)0¢ = TJ.

A similar computation proves (4.1).

The operators T' and B have kernels Kr(z, y) = ¢*(y)¢(z) and Kp(z, y) =
K(z,y) — MKr(2, y). These kernels are of finite double norm since ||| Kr ||| =
le* [l ¢l and [|| Kz ||| < [I| K (Il + M| Kz []].

(ii) The fact that T'.f > 0 is clearly a consequence of the positiveness of
¢ and o*.

(iii) Tt remains to be shown that ¢(B) = ¢(A) ~ {\} where ~ denotes set
theoretic difference. Let » 5= 0, » 5 \ satisfy Af = »f for some nonzero f £ £, .
Then vTf = »(f, ¢*)p = (4f, ¢*)¢ = (f, A**)¢ = ATf which implies
(v = N)Tf = 0or Tf = 0, since » % \. Thus Bf = »f, from which it follows that
a(A) C o(B) ~ {\.

If » 5 0 satisfies Bf = »f fora nonzerof ¢ £, , then Af = ATf + »f and, apply-
ing T to both sides, »Tf = ATf — ATf = 0. Thus Af = »f which implies ¢(B) C
a(4).
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But A is not an eigenvalue of B since if it were, Bf = Af for some nonzero
f e £2.8ince Bp = Ap — AT¢p = 0, f == k¢ for all k. Now Af = ATf 4 A and,
applying T to both sides, Tf = 2Tf and Tf = 0. Consequently Af = Af, but
this is impossible since f > k¢. Thus A is not in ¢(B) and the lemma is proved.

Lemma 43.  lim [|| BY [/(\"(£))] =0 for 0=¢< 1.

ProoF. Since the eigenvalues of an integral operator with kernel of finite
double norm are isolated in any region of the complex plane not containing the
origin, 75 = sup {| v |: » £ ¢(B)} is attained for some »’ ¢ ¢(B). By Lemma 4.2,
rs = |»| < A. A well-known theorem in the theory of linear operators yields .
lim, || B*||Y™ = 75 . Let ¢ > 0 satisfy 75 < rs + ¢ < . Then for n sufficiently
large, || B* |"* < r5 + ¢, which implies lim, || B ||/A" = lima[(r5 + €)/A]" = 0.

TuroREM 2. For every pair of initial densities p and q satisfying A2,

(i) lim [M,(O)]"" = A(t) for 0S¢t =1,

(ii) A(¢) 7s convex and continuous and has a continuous first derivative for
0=st=1,

(iii) lim (d/dt)[M.(6)]"" = N(t) for 0 <t = 1.

Proor. Let f be a nonzero, nonnegative element of £, . Then
(1, A7f) = (L, N"(O)Tf + Bif) = N (1) (1, Tef + Bif/A"()).

Hence, by Lemmas 4.2 and 4.3, lim,, (1, A7f)"" = A(¢) independent of f.

If f = ¢, (1, A?f) = M,(t); hence lim, [M.(t)]'" = \(t) for 0 £ ¢t < 1.
As a consequence of this result, Lemma 4.1, and its corollary, Vitali’s theorem
(see Titchmarsh [7], page 168) implies that [M +(2)]V" tends to a limit A(2) uni-
formly in any region bounded by a contour interior to {z: —§ < ®&(2) < 1 + 8}.
But then A(2) is analytic in this region, which implies the continuity part of (ii).

Each [M,(£)]"'" is seen to be convex for 0 < ¢ < 1, since its second derivative
is positive. Because convexity is preserved under passage to the limit, A(¢) is
also convex.

Part (iii) is a consequence of the analyticity and uniformity of convergence
of [M.(z)["".

COROLLARY.

lim Ep(Ra/n) = N'(0) and lim Eq(Ra/n) = N (1),

where Ep and E o denote expectations with respect to the distributions defined on 9
by H p and H Q-

Proor. Since a bilateral Laplace transform may be differentiated under the
integral sign in its region of convergence, the corollary is an immediate conse-
quence of Part (iii) of Theorem 2.
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5. Limiting Rate of Convergence for the Tail Probabilities of Consistent Test

Sequences.
Lemma 5.1.
i) lim sup P[R. > nal’™ < inf ¢ *\(¢)
n->w0 0<t<1
and

(i) lim sup Q[R, < na]'" §0'Sitt]f51e“‘)\(l —~ 1) forallae<X.

Proor. For an arbitrary random variable X with distribution P on (%, ®),
a well-known inequality (cf. Léeve [5], page 157) is P[X = 0] < Ee* fort = 0.

Set X = R, — na and let E» denote expectation with respect to the distribu-
tion defined by Hp . Then P[R, > na] £ Ep exp[(R. — na)t] = ¢ "*'M,(t)
for ¢ = 0. Hence, by Theorem 2, lim sup, P[R, > na]'™ < ¢ lim, [M.(t)]"'" =
e *\(t) for 0 < t < 1 which implies Inequality (i). Part (ii) is proved in the
same manner by setting X = — (R, — na) and noting that Eq exp (—Rnt) =
M.(1—-1).

The remainder of this section is devoted to showing that the limits lim,
P[R, > na]'" and lim, Q[R, < na]’" exist and are given by the expressions in
- Lemma 5.1. The method of proof will depend upon a modification of an inequality
due to Thomasian [6].

To simplify the notation in the proofs of Lemmas 5.2 and 5.3, let

pn = p(20)p(21 | %0) -+ P(Tn | Tna),
and

gn = q(%0)q(21 | 20) *++ q(@n | Tna).
Integrals for which no measure is indicated are taken with respect to du™t
where u" ' is the n 4+ 1 dimensional product of u.

LemMma 5.2. Foreverya e X,t (0 < t < 1),andn(n =1,2, --+),

(i) PR, > na] = ¢ ™ M,(t)P..la < (Ra/n) < b
for every b > a,
and
(ii) QIR. < na] Z ™'Ma(1 — )Prsalb < (Ra/n) <
for every b < a,
where

1 - n
P,.(4) = W L p}. tqi fOTA e ",

Proor. To prove Part (i), let
A, = [R. > na] and B, = [a < (R./n) = bl
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Then 4. O B, and

-t
PR, > na] = f P = Ma(t) L (%_) dP,.,

= M0 [

B

—t
<%._> dPt.n g e_”thn(t)Pt,‘n(Bn)~
Part (ii) is obtained by altering this proof slightly.

Lemma 5.3. For every a € X, 8(0 < t < 1), 8(0 < s < min (¢, 1 — %)), and

n(n = 1’ 2: "')a
6] PR, > nal = 6™ M.(t) [1 — M.t (—-t) s) _ e M’Z‘é,t(; s):l

for every b > a, and
_ enbc Mn(]- —1 + 8)

~nas Mn(l -t - 8)
—e M1 — 1) ]

() QIR, < na] = ™M.(1 — 1) [1

for every b < a. ‘
Proor. Let C, = [R. < na] and D, = [R, > nb]. From Lemma 5.2 (i),

(5.1) PR, > na] = € ™' M,(t)[1 — P:n(Ca) — Pin(Dn)l.
But
1—¢ ¢ 1—t+c t—s8
_ nas) —nas DPn Qn <  nas pn qn nas Mn(t - 8)
Pra(Ca) = ¢ {e f ,.(t)} = )T ¢ Lo

for 0 < s < min (¢, 1 — ¢). Similarly, P, .(D,) < ¢ ™ [M.(t + 8)/M.()].
The proof of Part (i) is completed by substituting these inequalities into Ex-
pression (5.1).

Again, the proof of Part (ii) follows from the proof of Part (i) with only minor
changes.

THEOREM 3. Let mp(a, &) = lim, P[R, > n%]"" and

me(a, @) = lim, Q[R, < n%]'™.

Then

(i) me(a, 1) = info<i<t e_‘")\(t) and me(a, 1) = infocic1 €A1 — t)
Jor N(0) < a < N(1),

(ii) me(a, @) = mo(a, a) = infoci<1 A(E) fora < 1 and all a £ X.

Proor. To prove the first part of (i), it suffices to show that for every a and b
for which A’(0) < a = b =< N(1), there exists £¥*(0 < t* < 1) such that for all
sufficiently small s > 0,

(5.2)  lim ™M (t* — 5)/(Ma(t*))] = lim ¢ IMa(t* + )/ (Ma(t*))] = 0.
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For then by Lemma 5.3, lim inf, P[R, > na]"" = e **\(t*) 2= info<i<1 € “A(E)
for every b > a, which implies lim inf, P[R, > na]'™ = infog.<1 € *A(f).

If en(t) = (1, Aiwi/N"(2)), then M,(t) = ¢.(¢)A"(¢) and, by Lemmas 4.2
and 4.3, lim, ¢,(t) > 0for 0 < ¢t < 1. Thus, if we write

" IMA(t — 8)/(Ma())] = [ealt — )/ (ea(®))HIN(E — 8)/(A())]e"™}"
and
e " IMA(t + 8)/(Ma)1))] = [ealt + 8)/(cal) NN + 8)/ (M (1))},
a sufficient condition for Equation (5.2) to hold is
[log A(t*) — log A(t* — 8)]/s > a and [log A(t* + s) — log A(t*)]/s <b

for some #*(0 < t* < 1) and sufficiently small s > 0. But by Theorem 2(ii),
dlog A(¢)/dt = N (¢)/A(¢) is continuous for 0 < ¢ < 1; hence, this condition can
always be met for @ and b in the specified range. The second part of (i) follows
by a similar argument.

From the inequality quoted in the proof of Lemma 5.1, P[R, > n%)] =
exp (—n%at) M,(t) for ¢ = 0. Hence for & < 1, lim sup, P[R, > n%]'" =
lim, exp(—n*""at) lim,[M.(t)]'" = A(t) for 0 = t < 1 and all a £ %. This
implies lim sup, P[R, > n%a]'" < info<i<1 A(2).

Now for every ¢ > 0, n°'a < e for sufficiently large n whatever be a. Hence
lim inf, P[R, > n%]'" = lim, P[R, > ne"", and the first part of (ii) follows
from (i). Again, a similar proof holds for the second part of (ii).

It is not yet clear that the exponential rate of convergence embraces all con-
sistent tests. It is easy to show that v, < A (0) and X' (1) < ve, but the in-
equalities may be strict. The following theorem resolves this point.

THEOREM 4. vr = N(0), and vyo = N(1).

Proor. The proof will be carried out only for the first equality smce the proof
of the second equality is quite similar.

By means of the inequality P[X > 0] < Ee™, t = 0 1t is seen by the method
of proof of Lemma 5.1 that for all k = 0, P[R./n > k] < ¢ "*. The same inequal-
ity yields P[R,/n < a] < e"™M,(—t) for t = 0 where it will be as-
sumed ¢ < yp < 0. From the proof of Theorem 2(1) lim, [M,(—8/2)1V" =
A(—8/2). Hence for ¢ > 0 and n sufficiently large,

P[R./n < a] = e™IN(—8/2) + €™

~ Select a so small that e *[\(—5/2) + €] < 1 and let b be any positive integer.
Define the sequence of bounded random variables Z, by Z, = R./n for
a £ R,/n £ band Z, = 0 otherwise. Then, since lim, R,/n = v a.s. (P) and
a <vp<b,lim, Z, = vpa.s. (P). Hence by the bounded convergence theorem,
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lim, EzZ, = vp. Now
|EP(Rn/n) —"YPI é IEPZn _"YPI + iEP (Rn/n) _EPZnI

éIEvZ»_—w|+§0(Ia|+k+1)
~P[a——k—1§&<a—k]
n
L Rn
+E(k+1)P[—>k]
k=b n
nda 5 n
§|EPZn—’YP|+€2 I:A(—E)'f‘f]

’ nd\ —2 —nb —n
-5 1- 1
Jlot+(1=7%) |+ bz 21,
and this upper bound tends to zero with n. Hence lim, ErR./n = vp as was to
be shown.

6. Definition and Evaluation of the Asymptotic Rate of Discrimination. A
possible criterion for selecting a ‘“‘best”” test from the class of consistent tests is
the minimax principle based on a loss function involving the asymptotic values
mz(a, o) and m(a, «). Since the asymptotic behavior of the sequences T'(a, )
for @ < 1 is equivalent to that of the sequence T'(0, 1), it suffices to restrict
attention to T'(a, 1) for y» < a < v¢ . The asymptotic rate of discrimination of
the class of consistent likelihood ratio tests is defined to be the minimax rate

P(P’ Q) = inf max {mP(a, 1)) mo(a, 1)}’

v p<a<lyQ

THEOREM 5. o(P, @) = inf A(Z).
0<t<1

Proor. mg(a, 1) = inf &*A(1 —¢) = ¢"inf e™'A(t) = €'ms(a, 1).
0<t<1 0<t<1

Thus me(0, 1) = mp(0, 1) = info<:<1 A(¢). The theorem now follows from the
fact that me(a, 1) is nondecreasing and mg(a, 1) is nonincreasing in a.

The asymptotic rate p(P, @) is achieved by the sequences T'(a, &) for @ <1
and —® < a < o, so the “best” test is actually an equivalence class of tests
which are indistinguishable on the basis of the asymptotic rates at which their
error probabilities tend to zero. .

7. Application of the Theory and Extensions to Infinite Measures.
A. A class of processes for which the theory is immediately applicable is the
one whose members possess densities bounded from above and away from zero

2 The referee points out for those adverse to using the minimax principle that the general
use of p may be justified by its relevance for any Bayes strategy corresponding to fixed
nonzero a priori probabilities and fixed nonzero costs of error.
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on a set of finite measure. More precisely, if there exists a constant C; > 1 such
thatfort =0,1,1/C1 < K(z,y) < Cion A X Aand K,(z,y) = Oon (A X A)°
where p(A) < o, then for p and ¢ satisfying 1/C> < p < C:and 1/C; < ¢ = C
on A for constants C» > 1 and C; > 1, Conditions Al, A2, A3 are satisfied.
Condition A3 follows from the inequality

Z N Ko ll] 8 < w(a) G Zo (alog om

Important members of this class are finite Markov chain_s for which Hp and
H 4 specify transition matrices composed of positive elements. In this case, A
consists of a finite set of numbers, and u is the measure assigning mass one to the
elements of A and zero otherwise.

B. Many processes for which u(A) = o can be brought under the restrictions
of Assumptions Al through A3 by truncation. If there exists a subset A’ of A
and a constant ¢ > 1 such that 1/C = Ky(z,y) £ Con A’ X A" and 0 <
p(A’) < o, then by defining K;(z, y) = K«(z, y)/fa’ K+(z, y)du(z) on A’ X A’
and zero on (A’ X A’) for t = 0 and 1, the process restricted to A’ with transi-
tion densities K (z, y) and initial dens1t1es p’ and ¢’ constructed by truncating
the original initial densities satisfies all three conditions.

The truncation of a process is reasonable in many instances. For example, if a
Markov process with densities defined on a set of infinite measure is used to
approximate a real system for which observations outside a bounded interval
are physically impossible, the restriction of the process to this interval by trunca-
tion may yield a more appropriate model.

C. Let u be Lebesgue measure, A any interval, and A’ a subinterval of A for
which u(A’) < . Let ¢ be a one-to-one mapping of A onto A’ such that ¢ = ¢
has a derivative bounded away from zero on A a.s. (x) by some positive constant.
Then if the Markov process for which hypotheses Hr and H ¢ specify K(z, y)
on A X A is replaced by a process for which new hypotheses A, and H, define
Ki(u, v) = Ki(é(u), $(v))¢’'(u) on A’ X A’ for t = 0, 1, and if Assumptions
A1, A2, and A3 are satisfied by K:(u, v), #(u) = p(é(u))¢’(u) and §(u) =
q(éd(u))¢’(u), then all the results of Theorems 1 through 5 apply to the original
process as well as its replacement. This follows from the fact that the prob-
abilities P[R, > n%a] and Q[R, < n°a] generated under Hr and H g are equal,
respectively, to P[R, > n"a] and Q[R, < n“a], defined in terms of the original
process.

D. Another way of handling the case u(A) = « is to impose additional
restrictions on the transition densities to compensate for the fact that L;(A, u)
no longer properly contains L.(A, p) and that the function which is identically
1 is no longer integrable. The details of the theory have been catried out by
Koopmans [4] for equal initial densities using slightly different methods, and
the results coincide with those for u(A) < « except that it is not known whether
the inequalities y» =< N (0) and N (1) = v¢ can always be strengthened to
equalities as was done in Theorem 4.
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