MIXED MODEL VARIANCE ANALYSIS WITH NORMAL ERROR AND
POSSIBLY NON-NORMAL OTHER RANDOM EFFECTS: PART II:
THE MULTIVARIATE CASE!

By S. N. Roy axp WrIrFiELp CoBB

University of North Carolina

3.0. Introduction and summary. The present paper is a continuation of another
with similar title and the same overall objectives—confidence bounds on appro-
priate measures of the dispersion of the distribution from which random (block)
effects are drawn in an experiment where fixed (treatment) effects are also under
investigation. Specifically, confidence bounds are obtained on the maximum and
minimum characteristic roots of the variance matrix of the block effects when the
latter are assumed to come from a p-variate normal distribution (without the
assumption made in [1], [5] that this variance matrix is proportional to ‘that of
the error). When the random block effects are not assumed to be normal, con-
sideration is given to the approximation of an unknown multivariate distribution
by means of marginal and conditional quantiles. Then for a rather restricted
~ bivariate case, simultaneous confidence bounds are found for the two inter-
quartile ranges.

Since the ideas and notation of the first paper are presupposed by this one,
much duplication is avoided by reference to appropriate sections or steps in the
previous article. To facilitate such reference, the numbering is consecutive

through both parts.

3.1. The multiresponse model and its statistics. In the previous sections we
have-considered models in which the observed response was regarded as the sum
of a normally distributed error and two or more effects due to treatments and
blocks, but- only one type of observation was to be made on each experimental
unit. Now suppose that these several factors—whether called treatments or
blocks and whether represented by fixed effects or random effects—are regarded
as influencing more than one observable characteristic of the experimental units.
This is the situation sometimes called a multivariate analysis of variance model,
but perhaps:a better expression would be “multiresponse analysis of variance,
model.” We shall suppose that the response is determined, in a particular experi-
ment, by observing p distinct (but presumably related) charactéris__tics of each
experimental unit. Such observations are conveniently arranged as elements of
the matrix Y (n X p). The experiment might indicate that the observations on

one or more of these p characteristics provided no additional information, .in'

which case such characteristics could be dropped from the model. But regardless

of how many or which characteristics are to be observed, the structure matrix,
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as made specific by a chosen design and field plan, tells how the n experimental
units are distributed among the cells of the cross classification, ie., among the
s blocks and ¢ treatments. The p columns of Y are related to corresponding col-
umns of postulated treatment-effects and block-effects matrices by the same
structure matrix, since the different characteristics observed belong to the same
experimental units. Thus analogous to (1.1.1), we have for a two-factor multi-
response model

@BLl)  Y(n Xp) = Mn X (s + 1)) [A“ X p)

B(s X p)

where the structure matrix M is exactly the same as in Section 1.1. The ele-
ments of E are assumed to be normally distributed and of the nature of errors.
As with the components of ¢ in Section 1.1, the rows of E are assumed to be
uncorrelated, but we do allow and expect correlation between elements in the
same row. We further postulate that every row of E have a common variance
matrix, =(p). Then the sth column of E has as its variance matrix ¢;I(n),
where o;; is the 7th element in the principal diagonal of =(p). As in the uni-
response model already considered, we regard the treatment effects A(¢ X p)
as fixed and the block effects B(s X p) as random, but not necessarily normal,
and independent of E.

Because the structure matrix M of (3.1.1) is the same as the structure matrix
M of (1.1.2), the motivation and the actual derivation presented in Section 1.2

are just as relevant here. ,
The same three orthonormal matrices Lo, Ly, and L, (we recall that LoL, =
I(t—-1), LL =I(s—1), LL' =I(n —r*), LL’' =0, LL =0, but
LoL: # 0 in general) are now used for defining three matrices of statistics in
terms of the matrix of multiresponse observations:
U((t—1) X p) = Lo((t — 1) X n)Y(n X p),
(3.1.2) V((s—1) X p) = Li((s — 1) X n)Y(n X p),
W((n —r*) X p) = L((n — r*) X n)Y(n X p).
The immediate consequence of these definitions is the desired relation of sta-
tistics to unobservables of the model:
U = T;'HA + LE,
(3.1.3) - V = T{'HB + LE,
W = LE.

Moreover, the same interrelations among the vectors of (1.2.9) are preserved
among the matrices of (3.1.3): U is independent of B though not of V; V is
independent of A though not of U; W is independent of A, B, U, and V. But
(8.1.3) has another feature which may be worth pointing out: (1) each column
of U depends upon only the corresponding column of the treatment effects and

]+ E(n X p),
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the (normal) errors associated with observing that characteristic of the experi-
mental unit; (2) each column of V depends upon only the corresponding column
of the block effects and the (normal) errors associated with observing that
characteristic; (3) each column of W depends upon only the column of (normal)
errors associated with observing that characteristic. Here also we require that
the experimental design satisfy the linked block conditions which, in Section 1.4,
were shown to be sufficient to reduce T; to the scalar matrix 6 L.

3.2. Quasi-confidence bounds. In obtaining the quasi-confidence bounds

for the uniresponse situation, we wanted I:Iil] orthonormal in order to preserve

for the s — 1 4+ n — r* components of [I;s] the same independent normal
distribution postulated for e. Similarly here a consequence of the orthonormality
of [II:I] is that [LVIVE] consists of s'— 1 4 n — r* mutually independent rows,
each row having the same p-variate normal distribution postulated for every
row of E. One way of demonstrating this is given in Appendix C. Thus it follows
that §{E'LiLE/(s — 1)} = &W'W/(n — r*)} = &{E'E/n}. Whereas w'w
was a positive scalar and w'w/¢” had the central chi square distribution, W'W
is (a.e.) a positive definite symmetric matrix and W/'W/(n — r*) has the central
Wishart distribution with n — »* d.f., provided n — r* = p. If s — 1 = p,
similar statements can be made about E’'L;L;E. Moreover, when the above
conditions are satisfied, the distribution of the characteristic roots of
E LiLlE(W'W)“1 is known (cf. pp. 34-35 of [6]) and known to depend only
upon the constants s — 1, n — r*, and p. The distribution of the maximum of
such characteristic roots is now tabulated (cf. [2], [3], [4]). Hence for a chosen
a < 1 it is possible to find a constant ¢, such that

(3.2.1) Pr{chmex [ELILE(WW) | S ¢ =1 — o

This probability statement corresponds to (1.3.1) for the univariate case. It is
true regardless of the computed values of V and regardless of the distribution
from which B is a sample.

Using (3.1.2) to eliminate L;E, the inequality within (3.2.1) becomes

(3.2.2) ¢hmex [(V — TT'HB)'(V — TrHB)(W'W) 7] < ca.

Since for positive definite M and at least positive semidefinite N, chmia(M)
“Chpin (N) = ¢h (MN) = ch max (M) chmax (N) (cf. A.1.22 of [6]), (3.2.2)
implies

(32.3) Chimax [(V — TT'HB)’(V — TT'HB)] £ ca chuex (W/W).

Then by Lemma 1.2e of [1], (3.2.3) is equivalent to

(3.2.4) | d’(V — TT'HB)e | £ [ca Chmex (WW)]
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for all unit vectors d and e. Whence
(3.2.5) d’Ve — [ca Chmax (WW)]! < d’TT'HBe < d’Ve + [co Chmex (W/'W)]!

for all unit vectors d and e. It is easily seen that d’Ve < sup (d’Ve) for all
unit vectors d and e including that pair which maximizes d’T~"HBe. Similarly
inf (d’Ve) = d’Ve for all unit vectors d and e including that pair which mini-
mizes d’TT'HBe. Applying these arguments to the right and left inequalities,
respectively, of (3.2.5) yields
inf (d'Ve) — [caChmux(W'W)]! < inf (d’TT"HBe)
< sup (d'Ty'HBe) < sup (d'Ve) + [cachumax(W/ W),

which is equivalent to
[chmia( V' V)] — [caChmex(W'W)]! < [chmiB/H(T,Ti) "HBJ*

< [chuexBH'(TiT1) "HB < [chuax( V' V)] + [CaChmax(WW)IL
This inequality, being implied by but not implying the inequality within (3.2.1),
would be true with probability not less than 1 — «. (The same remarks made
at the end of Section 1.3 would apply here.) Thus (3.2.6) is t.,he multiresponse
analog of (1.3.3). For the large class of designs for which T,T; = &I, the two
central members of (3.2.6) may be simplified. And because of the non-negative

character of these two, the extreme left member may be replaced by a non-
negative upper bound. Thus if we define

L= [0 chmin(V'V)]! — [0, Chmax(W'W)]},  when this is >0,
(3.2.7) I, = 0 otherwise,

b = [67 chmax(V'V)I! + [0 % chumax(W/'W)
then we have
(328)  Pr{li £ chni(B'H'HB) < chyu(B'H'HB) < 5} 21— a.

(3.2.6)

This (3.2.8) is in the form of a confidence statement. The bounds, #§ and I R
are computable from the observations, Y, arid a chosen confidence coefficient,
1 — a. But the central terms are not explicit parameters or even parametric
functions. Hence we call (3.2.8) a quasi-confidence statement. In so far as
(3.2.8) is an intermediate step toward confidence bounds on certain parametric
functions, it may also be called a preliminary confideénce statement.

3.3. Multivariate normal random effects. It has already been stated that the
rows of B are independently but identically distributed. Suppose now it is
further specified that this common distribution be a p-variate normal with
(unknown) variance matrix denoted by =;(p). Then regardless of &(B), HB
has zero expectation, and §(B'H'HB) = (s — 1)X,;. Moreover the distribution
of ch(B’H’'BHXT") is known to depend only on the constants s — 1 and p.
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Thus for a chosen a; < 1 we can find two constants ¢; and ¢; such that
(3.3.1) Pr{ci S chuin(BH'HBET') £ chuex(BHHBET") S ¢} = 1 — o.

Since the non-zero roots, ch(M;M3"), are the stationary values of e’M;e/e’Me,
(A.2.1 of [6]), chmex(B'H'HBET") = ¢, is equivalent to e/B’H’HBe/c; < e'Z.e
for all vectors e. Moreover inf(e’'B’'H’HBe) =< e¢’B’H’HBe for all e including
that choice which minimizes e’E;e. Thus chmin(B’'H'HB)/c; < chmia( £1), and
similar argument leads to chumax(E;) = chmex(B'H'HB)/c; .- Thus the proba-
bility statement (3.3.1) leads to

(3.3.2) Pr{chum(B'HHB)/c; < chnia(E1) < chmas(E1) < chmex(B'H'HB) /c1}
g 1- a1,

which is in the form of a confidence statement. What keeps (3.3.2) from being
a bona fide confidence statement is that its bounds are not actually computable
from observations. However, we do have bounds (quasi-confidence bounds) on
these bounds. Combining (3.2.8) and (3.3.2) gives

(333) Pr{ii/es S chnin(E1) S ohnax(E1) S B/e} 2 (1= 0)(1 — a).

Because of the postulated independence of E and B, the respective confidence
coefficients of (3.2.8) and (3.3.2) may be multiplied as in (3.3.3).

Confidence bounds on ch(=) and on o} where it was assumed that £, = o} X
have been obtained previously [1], [5]. But (3.3.3) requires no such restrictive
assumption. Of course the characteristic roots of a variance matrix are not in
themselves easily interpreted parameters like standard deviations of the several
variates, but they do constitute a measure of dispersion.

3.4. Marginal and conditional m-tiles. In Section 1 we proposed to replace the -
unobservable nonnormal (or not-necessarily-normal) block effects variate by a
substitute variate taking £ unknown values with equal probabilities. We then
proceeded to obtain simultaneous confidence bounds on the differences between
these successive unknown values and to interpret these ¥ — 1 differences as
estimates of the differences between the successive odd 2k-tiles of the population
of block effects. In the present section we propose a similar procedure for the
multiresponse mixed model. In a practical approach to a multiresponse experi-

-ment, the p characteristics to be observed are apt to be selected, one at a time,
in the order of their interest or presumed relevance to the factors being studied.
Accordingly we adopt the convention that in all multiresponse models, the sub-
seripts 1, 2, - -+, p on column vectors from Y, A, B, E, U, V, or W will indicate
respectively the most important, the next most important, --- , the least im-
portant characteristic. Consistent with the notation introduced in Section 1.5,
in a multiresponse model ,,8,, will denote the n;th m-tile of the marginal distri-
bution of the first variate or first characteristic of the block-effects factor. The
symbol 8., Will denote the n,th m-tile of the conditional distribution of the
second variate or second characteristic given that the first variate lies below the
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(m + 1)th and not below the (n; — 1)th m-tile of its marginal distribution.
Similarly 8n,nsn; Will denote the nsth m-tile of the conditional distribution of
the third variate given that the first variate lies below the (n; + 1)th m-tile
and not below the (n; — 1)th m-tile of its marginal distribution and given that
the second variate lies below the (n; + 1)th m-tile and not below the (n: — 1)th
m-tile of its conditional distribution, etc. As in Section 1.5 we consider only even
values of m, say 2k, and only odd values for n;. Using b; for any element in
the 7th column of B(s X p), then no matter what the distribution of b;

Pr{sBn1 < by < s} = 1/k,

Pr{osiBngn—1 < b2 < aBuyngtt | 26Bm— < b1 < aBmya} = 1/,

Pr{sBngngns—1 < b3 < aiBningngir | 28— S b < wBmn and
#Bagng—t < by < afmingrs} = 1/k;  ete.

(34.1)

Combining p such probability statement yields

Pr{Zanl—l =h < 2];3"14.1 ; %ﬁnlnz—l b < 2kﬁ“1”2+1 HERE
'2kﬁ?‘]'-'1‘p—l _S_ bp < 2]:6151.-.»’4.1} = l/kp.

In Section 1.5 the presumably continuous but unknown distribution of the
random block effects was approximated by the discrete distribution whose
equally probable values were the odd 2k-tiles of the unknown distribution. It
was as if the data were classified into % classes with class boundaries at the even
2k-tiles and with the odd 2k-tiles used as class marks. This scheme may be ex-
tended to bivariate and even p-variate distributions. The data of a bivariate
distribution may be classified into k* classes where the class boundaries are the
even 2k-tiles of the marginal distribution of the first variate and the conditional
distributions of the second variate given the class of the first variate. E.g., there
might be four classes defined as follows: (1) 8o < b1 < 482, 4B10 = bz < 4Bz ;
(2) Bo £ b1 < 4B, 4Bz < be < 4Buu; (3) 482 = b1 < 4By, B0 = b2 < B2 5 (4)
B < by < 4By, B2 < b2 < (Bus . As class marks for these classes we would take

(34.2)

the following pairs: (1) b = B, by = Bu; (2) b= B, bz = 4f1s ; (3) b=

B3, b = Ba; (4) by = 4B, by = 4Bss . A bivariate which takes on just these

four pairs of values we denote by (481, 43:), and when it .is used in place of the

presumably continuous bivariate (b;, by), we call the former the “‘substitute-
variate”. Similarly (zb:, xb:) will denote a substitute variate which takes on
k* equally probable pairs of values, viz.,

(3.4.3) Pr{ubs = wBam1 ; abz = 9Bom—1,20a} = 1/K

form=1,2,---,kandn = 1,2, --- , k. For a trivariate situation the distri-
bution of the substitute variate would be defined by

(34.4) Priub, = uBem—1; ub2 = uBem1201; ubs = wBem1,2m1,01} = 1/ K,
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for m, n, ¢ = 1, 2, - -+, k. The extension to a larger number of characteristics
is now obvious and need not be written. ‘

These marginal and conditional m-tiles provide a means of distinguishing
different kinds of interrelatedness or dependence in a multivariate distribution.
For simplicity of discussion, we shall consider p = 2 and k¥ = 2. Then it is
possible to classify bivariate distributions into four types, the first being the
most general and including all distributions not qualifying for the other types.
We call type 2. those distributions in which conditional distributions of the sec-
ond variate, given different values of the first variate, all have the same disper-
sion as measured by the interquartile difference; but the variates are “dependent”
in the sense (i) that medians of the conditional distributions of the second
variate are different for different values of the first variate. In type 3, on the
other hand, conditional distributions of the second variate, given different values
of the first variate, all have the same median; but the variates are “dependent”
in the sense (ii) that conditional distributions of the second variate have dif-
ferent dispersions as measured by the interquartile difference. In type 4 the
variates are not ‘“dependent” in either sense (i) or sense (ii). A bivariate normal
of type 4 would consist of two independent normal distributions.

3.6. Confidence bounds in a simple bivariate case. In Section 3.2 we obtained
preliminary or quasi-confidence bounds on ch(B’H’HB) regardless of the dis-
tribution of B, and then in Section 3.3 we used these quasi-confidence bounds
as a preliminary stage in finding genuine confidence bounds on ch(X;) when B
was assumed to be normal, each row of B having X, as its variance matrix. But
if B is not normal, or not assumed to be normal prior to the experiment, is it
possible to use the quasi-confidence bounds to obtain a confidence statement
about the marginal and conditional m-tiles described in Section 3.4? The answer
is yes. At least for the simplest multiresponse model—p = 2, k = 2, type 4—
perhaps also for others, it is feasible as well as possible.

For p = 2, the quadratic formula may be used to find explicitly

Chumin(BH'HB) = A and chu(B'HHB) =\, :

N = $(biH'Hb; + b;H'Hb,)
= 3{(b:H'Hb; — b:H'Hb,)" + 4(b;H'Hb,)"
Next we set the two \; of (3.5.1) equal respectively to & of (3.2.7) to obtain

the two extreme conditions permitted by the quasi-confidence statement (3.2.8).
Algebraic simplification results in

(byH’Hb,)? — (biH’Hb,) (b;H’Hb,)
+ L(biH'Hb, + b,H'Hb,) — I} = 0.
For type 4 there are no regression-like parameters to-be found—only the sepa-

rate measures of dispersion. For k = 2 there are merely 48; — 481 and 4815 — 4Bui
since 48 = sBu and 48:; = 4513 . Now replacing the unknown variate (b, bs)

(3.5.1)

(3.5.2)
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by the substitute variate (4b;, ¢b2) means that the s rows of B are replaced by
so many, say s, rows equal to (481, 48u), S0 many, say si, rows equal to
(61, 4B1s), etc., where sy + sis + sa + sz = s. When these replacements are
made in the quadratic and bilinear forms occurring in (3.5.2), Lemma A.10
may be used, and (3.5.2) becomes

s [(su + 81) (s + 8as) (su + su) (813 + 8:) — (Susss — S15801)°]
(3-5-3) X (Lﬂa - ¢31)2(¢31s - 4,[311)2 - lf 8_‘1[(811 + 813) (831 + 833) (4.38 - ¢31)2
+ (su + su) (813 + 85) (B1s — Bu)’] + Ui = 0.

For a given partition of s and for a given Il;, (3.5.3) may be regarded as
determining a locus in the plane of (485 — «81)° and (B1s — 48u)°. Note that
the coordinates to be used are the squares of these interquartile differences. All
possible partitions of s thus determine a finite family of conics for each value
of ;. As in Section 1.6 some of these loci are called bounding because they
(together with the two coordinate axes) would inclose a region of the first
quadrant. If s is so partitioned that any three components are zero, (3.5.3)
becomes a contradiction. If sy and s;3 or sy and ss; , are zero and no other com-
ponent is, the locus of (3.5.3) is a line parallel to one coordinate axis. These
are the cases in which (3.5.3) does not correspond to bounding loci. But if sy
and sg or si3 and sy are zero and no other component is, the locus of (3.5.3)
is a line through the first quadrant making equal intercepts. If s;183 = s138s = 0,
the locus of (3.5.3) is two lines parallel to the coordinate axes and intersecting
‘in the first quadrant. For all other possible partitions of s, the locus of (3.5.3)
is a rectangular hyperbola whose asymptotes are parallel to the coordinate axes
and whose center is in the first quadrant. The inner boundary of this set of
bounding loci is itself a locus of (3.5.3), viz., the straight line whose equation is

(83 — 431)2 + (b1 — Bu)’ = 4sli/ (& — 1) or
(Bs — B1)* + (B — Bu)’ = 41i/s,

depending upon whether s is odd or even. But there is no unique outer boundary
among the bounding loci of (3.5.3). By comparing the various types of bounding
loci enumerated above, it is easy to pick out the four segments of three members
of the family (3.5.3) which constitute the outer boundary. Thus the confidence
region is given by
(i) (Bs— 4B1)" + (P — Bu)” S slb/(s — 1)
for 0= (Bs—4b1)" = s(s — 3)b/2(s — 1)(s — 2)
and for sl3/2(s — 2) < (Bs — 81)" = sly/(s — 1),
(ii) 0 = (Bis — Bu)’ < sl3/2(s.— 2) for
s(s — 3)b/2(s — 1)(s — 2) £ (s — B1)” < sla/2(s — 2);
(iil) (B2 — )" + (B — B8u)* Z 4sli/(s — 1) for s odd,
or

(V) (Bs — B1)° + (Bis — Bu)’ = 4li/s for s even,

(3.5.4)

(3.5.5) «
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where (i) and (ii) exhibit the outer boundary, (iii) or (iv), the inner bound-
ary. . ‘
Associated with each partition of s is the a prior: probability

s!
2258y 18131831 833! )

(3.5.6)

In the present case the total a priori probability associated with all bounding
loci is easily found by subtracting from unity the probability of the non-bounding
loci:
4 2°—2 22-2 1—s

(3.5.7) y=1 ol T ol 1-2"",
It is interesting to note that here for p = 2 and k = 2 (where there are 4 equi-
probable values) v is exactly the same as in the uniresponse case with £ = 2
(where there were 2 equiprobable values).

Now since B and E are independent by hypothesis, we may multiply the
1 — « of the quasi-confidence statement (3.2.8) by the vy of (3.5.7) to obtain
a lower bound on the final confidence coefficient. The final confidence statement
says that with probability =(1 — «)y, the interquartile differences 48; — 481
and 4815 — «Bu are positive square roots of the coordinates of some point lying
in the first quadrant region defined by (3.5.5) and the (48;. — $1)? = 0 and
(B1s — Bu)® = 0 axes. Of course here, as in the uniresponse model, there is
an element of approximation due to replacing the unknown variate by the
K’-valued substitute variate. But presumably here too the degree of approxima-
tion can be improved by increasing k.

APPENDIX C :
Variances and Covariances for a Matriz of Normal Variates

It is a well established custom to exhibit the n variances and (g') covariances
of a set of n normal variates as elements of an n X n matrix, displaying each
covariance twice. Thus we say a stochastic vector has a variance-covariance
matrix. If the elements of an m X n matrix were first written as components
of a single vector, then the mn variances and (n;n) covariances of those elements
could be displayed as elements of an mn X mn symmetric matrix. But it would
certainly be desirable to arrange these variances and covariances in such a way
that properties of the rows (or columns) of the original matrix are readily ap-
parent from this larger matrix. To facilitate this systematization we define
ad hoc a special vector and list its properties.

(C1) h'(4) = (1,0,0, 1), h’'(9) = (1,0,0,0, 1,0, 0, 0, 1), and for
any positive integer m, h(m?®) will denote a column vector with m’* components,
m of which (including the first and last components) are unity with m zeros
between successive unities.
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(C2) b'(m")h(m’) = W (m )J(mz)

(C3)h(m)h'(m) =h(m)- X h’ (m?), where X indicates the left direct product
as in Section 0.2.

(C4) [A(m X n)-XI(n)lh(n’) = a(mn), where the m elements in the jth
column of A become respectively the (jm — m + 1)th through jmth components
ofaforj =1, 2

(C.5) [I(m)- Xh’( )][a(mn) XI(n)] = A(m X n),where the (jm — m + 1)th
through jmth components of a become respectively the elements of the jth
column of Aforj=1,2,---,m.

Now starting with a matrix A(m X n) of normal variates we collapse it into
the vector a(mn), defined as in (C.4), which separates the elements in the same
row of A but keeps consecutive the elements in the same column. Hence the
covariance matrix X(mn) will have the following pattern. The variances of the
consecutive elements in the jth column of A will be consecutive elements along
the principal diagonal of = from the (jm — m =+ 1)th through the jmth row

forj =1,2,---, n. The (g") covariances of elements in the jth column of A
will appear (twice) as the nondiagonal elements of the m X m principal sub-
matrix in the (jm — m + 1)th thrbugh the jmth rows.of . The (g) covariances

of the ith and jth elements within the kth row will appear (twice) as the kth
diagonal element in the m X m submatrix lying in the (#m — m + 1)th through
imth rows (columns) and (jm — m + 1)th through jmth columns (rows).
The mn(m — 1)(n — 1)/2 covariances of elements not in either the same row
or same column of A will appear (twice) as the nondiagonal elements of these
nonprincipal submatrices.
(C.6) If and only if each column of A has the identical variance-covariance
matrix X.(m) and the n columns are independent, then E(mn) = Z.(m)- XI(n).
(C.7) If and only if each row of A has the identical variance-covariance
' matrix %,(n) and the m rows are independent, then E(mn) = I(m)- X Z.(n).
Now suppose we make a transformation of the original matrix A, obtaining
B(g X n) = C(¢ X m)A, and want to know the variances and covariances of
the elements of B. Applying (C.4) to B gives b(gn) = [CA -X I(n)lh(n’)
which, by a property of Kronecker products, can be written b = [C - X I(n)]
-[A - X I(n)]h(n®), which is easily recognized asb = [C - X I(n)]a. Thus pre-
multiplying the matrix A(m X n) by the matrix C(¢ X m) corresponds to
premultiplying the vector a(mn) by the matrix [C - X I(n)]. Thus the variance-
covariance matrix of B can be found as easily as that of a vector.
(C.8) If =(mn) is the variance-covariance matrix of the matrix A(m X n),
then the variance-covariance matrix of C(g X m)Ais [C - X I(n)]E[C" - X I(n)].
If the conditions of (C.6) are satisfied, the above matrix reduces to
Cx.C’ - X I(n). If the conditions of (C.7) are satisfied, the same matrix be-
comes CC’ - X X,. Comparing this latter form with (C.7) we obtain the fol-
lowing conclusion:
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(C.9) An orthonormal (or orthogonal) transformation applied to a matrix
whose rows are uncorrelated yields a new matrix whose rows are uncorrelated,
and if each row of the original matrix has a common variance-covariance matrix,
it will be the variance-covariance matrix of every row of the new matrix.
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