MIXED MODEL VARIANCE ANALYSIS WITH NORMAL ERROR
AND POSSIBLY NON-NORMAL OTHER RANDOM
EFFECTS: PART I: THE UNIVARIATE CASE'

By S. N. Roy aAnp WHitriELD COBB

University of North Carolina

0.1. Introduction and summary. The mixed model with one factor represented
by fixed effects, one factor by random effects, and a normal error, has often
stipulated that these random effects be a sample drawn from a normally dis-
tributed population. In the case of a single response (or univariate) experiment,
the variance of this normal distribution is a natural measure of the dispersion
of these random effects, and confidence bounds on the ratio of this variance to
the error variance [13], [14], [9] and simultaneous confidence bounds on both
variances (in the latter case with a confidence coefficient = a specified value)
[9] have already been found for certain classes of experimental designs. But when
a, distribution is not normal—or not assumed at the outset to be normal—the
variance may not reveal as much about the distribution as some other measure
such as interquartile range. In the present paper we seek confidence bounds on
what, in a sense to be explained presently, might be called representations of
the interquartile range and of analogous differences between higher order quan-
tiles of the population from which the random effects are drawn. The method of
obtaining these bounds involves an element of approximation comparable to
grouping continuous data into k classes, since it replaces the actual random-
effects variate by a “substitute variate” having k equally probable discrete
valués. The main idea is this. Let us assume, for simplicity of discussion, that we
have a real valued stochastic variate. One comment here might be helpful. If
the stochastic variate is observable, it seems natural to attempt to approximate
its unknown distribution by introducing unknown probabilities over a finite
set of preassigned class intervals, then trying to estimate these probabilities
and then (especially for a continuous distribution) increasing the number of
class intervals. On the other hand, if the variate is unobservable, as in the present
set-up, it seems natural to try to approximate the distribution by replacing the
stochastic variate by a ‘“‘substitute’’ variate which is supposed to take, as a first

approximation, two (unknown) values with equal probabilities, or as a second

approximation, three (unknown) values with equal probabilities, or in general &
(unknown) values with equal probabilities. We then try to estimate, in terms
of our observations, these unknown values, which may be regarded as approxi-
mations to the 1st,’3rd, - -+, (2k — 1)th quantiles of the unknown distribution.
The random effects variate postulated in our model may have either a continuous
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940 S. N. ROY AND WHITFIELD COBB

or a discrete distribution, provided in the latter case there are enough distinct
values to make these k quantiles meaningful parameters of the distribution.
From now on, for brevity, we shall refer to these unknown values as the quantiles
of the unknown distribution. It will be seen later that it is the differences between
these unknown values rather than the unknown values themselves which we can
estimate or make inferences about, and the number, k — 1, of such differences
which can be estimated is restricted by the experiment.

Turning now to the confidence bounds, we observe that in the derivation of
these bounds use is made of the same kind of sums of squares as in the normal
variance components analysis. Unlike the more familiar confidence statements
where the confidence coefficient may be specified at will, here except for the case
of two blocks, only a lower bound on the confidence coefficient is specifiable, and
this includes as a factor a decreasing function of k, the number of discrete values
of the substitute variable. For k = 2, 3, 4, 5 the geometric shape of a (k — 1)-
dimensional confidence region has been found.

It is also shown how the usual inference about the fixed effects can be made
from this model and then how the above type of confidence bounds can be found
for each of several random-effects factors in an experiment with orthogonal de-
sign. : ’

In the case of a multiresponse—usually called multivariate—experiment, the
model frequently stipulates that the random effects be samples from a multi-
variate normal population. Although the variance matrix of this distribution has
a readily available estimator, confidence bounds have presented many diffi-
culties. For the extremely restricted model in which the variance matrix of each
random-effects factor is proportional to the variance matrix of the error, Roy and
Gnanadesikan [10] obtained simultaneous confidence bounds on the characteristic
roots of this latter matrix and on the proportionality constants. In Part IT of this
paper the authors present (with a confidence coefficient greater than or equal to
a preassigned value) confidence bounds on the characteristic roots of the variance-
covariance matrix of a random-effects variate without assuming any such rela-
tion to the error matrix. The second part will also consider the p-variate exten-
sion of the univariate substitute variate and the associated confidence bounds
for the case where the p-dimensional distribution of the random effects is not
necessarily normal. This development will be only indicated in principle for
p > 2 but will be discussed in some detail for the case p = 2.

0.2. Notation and presuppositions. A general m by n matrix will be denoted
by a capital Latin letter from either end of the alphabet, say A(m X n), its
transpose by A’(n X m), but certain special letters will denote special types of
matrices. Thus I(m) denotes the m-rowed identity matrix; J(m X n) has every
element unity; K((m + 1) X m) is I(m) bordered below by a row of zeros;
O(m X n) has every element zero. Triangular matrices are denoted by T(m),
orthonormal by L(m X n). Repeated use is made of an (m — 1) X m ortho-
normal matrix (m — 1 mutually orthogonal rows of m elements) all of whose
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rows are orthogonal to a row of m identical elements. A (but by no means the
only) matrix having these properties is readily obtained by removing the row
of identical elements from the matrix of the Helmert Transformation [Kendall
and Buckland, A Dictionary of Statistical Terms, p. 126]. For this reason we de-
note any such matrix by H((m — 1) X m). The maximum and minimum
characteristic roots of the matrix A are denoted by chmsx(A) and chumia(A) re-
spectively. A column vector of m components is denoted by a lower case letter
such as a(m), whereas a’(m) denotes a row vector. In particular o and j denote
vectors whose components are all zero and all unity, respectively. After the
dimensions of a matrix or vector have been indicated, that part of the symbol
may be omitted in subsequent references to the same matrix or vector.

Existence theorems for triangular matrix factors of certain matrices are
proved in [12].

The direct sum of A(m X n) and B(p X ¢) is defined to be

[A(m X n), 0(m X Q)]
O(p X n),B(p X q)

and is denoted by A B. The left direct product (Kronecker product) of
A(m X n) and B(p X ¢) is defined to be

(buA, bA, -, biAT
buA, bnpA, -+, byA
-bplA, .bp?A; ] bqu—'

and is denoted by A - X B. Both the notation and the properties of direct sums
and products may be found in [5]. Inverses of partitioned and patterned matrices
will be found by the methods of [1] and [11].

Some properties of special matrices are listed in Appendix A and referred to by
number, e.g. (A.4), when specifically used.

1. Random Effects in a Two-Factor Mixed Model Uniresponse Problem.

1.1. The two-factor model and its structure matriz. We start with a general two-
factor model in which each observation is assumed to be the sum of three terms,
the first two corresponding to the two factors or criteria by which the experi-
mental units are classified and the third term being of the nature of an error.
Included in this model is the postulate that the n errors, in a set of n observa-
tions, are independently and identically distributed normal deviates, each with
distribution denoted by N (0, ¢°). We shall suppose that there are ¢ categories
in the first classification and s in the second. The unobservable terms or ele-
ments of the model we denote by a;,7 = 1,2, --- ,t,and b;,j = 1,2, :-+,8
For convenience we shall refer to these a’s and b’s as treatment effects and block
effects respectively, but this designation should not limit the application or



942 S8. N. ROY AND WHITFIELD COBB

prejudice the interpretation of the model. The important distinction is that
whereas the a’s are regarded as unknown but fixed constants, the b’s are as-
sumed to be a sample of size s from some unknown (but presumably continu-
ous) distribution, which may or may not be normal but is postulated to be inde-
pendent of the normal error.

In any planned experiment there will be n experimental units, say one from
each block-treatment cell. This is before we have made any observations at all
on any unit. Now according as we make one or several types of observations on
each unit, it is a univariate or multivariate (that is, a uniresponse or a multi-
response) problem. The response from each experimental unit would presum-
ably depend on the block-treatment cell the unit came from. For a uniresponse
problem we have n observations on the n experimental units. If the observations,
treatment effects, block effects, and errors are respectively ordered and written
as column vectors—y(n), a(t), b(s), e(n)—then the two-factor model described
above can be represented by

(1.11) y() = M0 X s+ 0) [ 52 | + eto),
where ‘
(1.1.2) M(n X (s +t)) = [Mi(n X t), Ml(n X 8)].

That M is partitioned into two submatrices and that the rank(M) < s 4+ ¢ — 1
result from the basic assumptions of the two-factor mixed model as stated above.
Hence M may with some justification be called the ‘“model matrix” for the
observations y. On the other hand, the actual elements of M are not determined
until a specific experimental design has been selected and each experimental
unit uniquely classified according to a field plan consistent with this design.
Hence M has frequently been called the ‘“‘design matrix.” Throughout this in-
vestigation, both the particular field plan and the type of design will be left un-
specified, but the general pattern or structure of M will be known. For these
reasons we shall call M by the less specific name, “structure matrix.” -

We require that the design be connected, but we do not at present specify
whether complete or incomplete, balanced or partially balanced. In any of these
cases an experimental unit will belong to one and only one category of each
factor, and hence each row of each submatrix, M, and M, , will consist of zeros
except for unity in some one column. Thus for a two-factor model the structure
matrix will always be such that

(1.13) M(n X (s + 1)) [ _Jgg)] - Mij — Mj = o.

In what follows we shall consider this to be the only independent linear relation
‘among the columns of M. Since any useful design will have n Z s + ¢, it fol-
lows from (1.1.3) that rank(M) = s 4 ¢ — 1 = r*, and hence any. * columns
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of M would constitute a basis for M. We agree to use the first 7* columns and
to denote this basis by M;(n X r*). Thus, by (A.4),
M;(n X r*) = M(n X ‘(s +))K((s+1t) X (s+t—1))

= [Mo(n X t), Mi(n X $)K(s X (s — 1))],

where K is the special matrix defined in Section 0.2. Then M is express1ble in
terms of its basis,

(1.1.5) M(n X (s +t)) = M;(n X r*)[I(r*),' £(r*)],
where f'(r*) = [j'(¢), — j'(s — 1)].

1.2. Three orthonormal transformations and the resulting statistics. Whether the
ultimate purpose is estimation, testing hypotheses, or confidence bounds, sta-
tistical inference about the block effects will require a set of statistics whose
distribution depends upon b and not upon a; and statistical inference about the
treatment effects will require a set of statistics whose distribution depends upon
a and not upon b. To this end we define u and v by the following transformation
on the observations y:

[u(t - 1)]
(121) L¥G—D
= [To°(t — DH((t — 1) X ) + T7'(s — DH((s — 1) X s)
‘K(s X (s — 1))] [MM,]"'Myy,
where T, and T, are lower triangular matrices defined by
ToTo = [H((t — 1) X 1), 0((t — 1) X (s — 1))]IM;M,]™

(122) _ [ CH(EX (t— 1)) ]
O((s—1) X (t—1))

(1.1.4)

and
T.T; = [0((s — 1) X 1), H((s — 1) X $)K(s X (s —.1))IM'M]™
(123) [ S0 X (s—1)) ]
K'((s—1) Xs)H'(s X (s = 1)) |

A convention as to sign makes T, and T; unique.
Although (1.2.1) was Just used to define the statlstlcs u and v, it may be

combined with
[ Ll = 1) x'n)]
(124) [v] = [m((s ~Dxn]?
to define the matrices Lo and L, . For any M meetmg the spemﬁcatlons of Sec-

tion 1.1, Ly and L; are individually orthonormal, that is, LyL, = I and LlLl =1
However, it is only under additional restrictions to be discussed later (defining
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What are called orthogonal designs) that L, would be orthogonal to L, , that is,

L,L; = O.
By (A.3.11) of [12], the basis M; of the structure matrix M determines an

orthonormal matrix Ly such that
(1.2.5) M; = T(r*)Le(r* X n).

By a convention of sign, both T and Lsx can be made unique. Then any (not
unique) orthonormal matrix L((n — r*) X n) such that

(126) 1] -[s7]

is used to define a third set of statistics
(1.2.7) ' w(n — r*) = Ly.
Under the Same general specifications of Section 1.1, the matrix
L((n —r*) X n),

which has been defined in (1.2.6) as the orthogonal completlon of L , 1s easily
shown to be orthogonal to both L, and L,. That is, LL; = O and LL; = O.
Thus w is a stochastic variate independent of both u and v whether or not the
stochastic variates u and v are mutually independent. When (1.2.5), (1.1.5),
and (1.1.1) are appropriately substituted into (1.2.7), the mutual orthogonality
of L and Lx permits the simplification

(128) w=L {L;T([I, fl [g] + e}

= L g,
which shows that w is entirely free of both treatment effects and block effects.

Similarly when (1.1.5), (1.1.1) and (1.2.4) are appropriately substituted
into ¢1.2.1), the following simplification is made possible by (A.1) and (A.7)

" T;'H,0 - :

[:] = _O, OTIIHK] [M;MI] IM; {MI[I’ f] [;] + 8}
[ To'H,0 a Lo
= o, Tr‘HK] I £ [b] + [Ll] :
_ ‘T;‘H,o] LO,j a:l_l_ Lo
(129) o, 7'k ]| 0,1, —i )] |1 ]*

- [ T9'H,00 a] (L
= Lo, T{'HK, —T:'HKj | b L |®
_[To'H, 0 a 4 [Do
Lo, TT'H b L.]®
(T7'Ha + Los] ’
| TT'Hb + Lie |
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Thus (1.2.9) shows both the general relevance of the statistics u and v to the
unobservable effects a and b postulated in the model and also the simple form
of this relationship.

The particular merits of u, v, and w are (1) the orthonormality of L, Ly, and
L, has preserved for w and the error terms of u and v the same independent
normal distribution postulated for e; (2) the number of components in u, v,
and w, is the number of degrees of freedom belonging to a, b, and error respec-
tively; (3) any estimable contrast among the components of a or b can be ex-
pressed easily in terms of u or v; (4) in a two-factor fixed-effects model the
vanishing of &(u) or &(v) is a necessary and sufficient condition for the equality
of all fixed components of a or b respectively—the condition usually described
as ‘“no treatment effect” or “no block effect”’; (5) sums of squares for testing
such null hypotheses on the assumption of fixed effects may be obtained as inner
products, u’u and v'v, or the same sums of squares may be obtained without
ever finding T, and T; explicitly; (6) any other testable hypothesis about the
components of a or b ean be tested using sums of squares easily obtained from
u, v, and w, or expressible in terms of them even when obtained differently. But
the chief use to which v and w will be put in the present paper is making some
inferences about an unknown population on the assumption that b consists of s
independent and identically distributed random samples from that population.

1.3. Quasi-confidence bounds. Since Lie and w are both N (o, ¢’I), ¢’LiLie/c*
and w'w/o” are both central chi square variates with s — 1 and n — r* d.f. re-
spectively. Moreover, since these two chi squares are independent,

(n — r*)e'Lile/(s — 1)W'w
has the variance ratio distribution. Thus for a chosen oy < 1, there is a con-
stant F., such that

(1.3.1) Pr{ (n — r*)e'Lilee

M T T)ElalaE o =1
(s — Dw'w =F"‘} 1= o

It is important to note that (1.3.1) is true regardless of the population from
which b is a sample and regardless of the computed values of v.

We now proceed from the probability statement (1.3.1), which involves only
normal error components, to a confidence-type statement about the unobserv-
able block effects. First the error vector L;e is expressed as the difference between
the computable statistic v and the postulated random vector Ti'Hb. Thus the
inequality in (1.3.1) becomes

‘ [v — T{'Hb]'[v — Tr'Hb] £ (s — 1)WWFe,/(n — r*)
or ‘
(1.3.2) v — TO'Hb | £ ((s — 1)WWFa,/(n — r*))L

For s = 2, » and Ty "Hb are scalars such that
v — ((s = YWWF./(n — 1*))* < TT'Hb

(1.3.2a) 3
< v+ ((s = DWWFa/(n — 1%))
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with the same probability, 1 — a;, as in (1.3.1). For s = 2, (1.3.2) implies,
but is not implied by,

vl = ((s = )WWFa/(n — )} < |TT' Hb |
2lv]l+ (s = 1)WwFa/(n — )%,

Hence (1.3.3) is true with probability no less than 1 — «; and possibly greater.
Since the middle member of (1.3.3) is necessarily non-negative, the left member
may be replaced by a suitably defined non-negative bound. Thus we let

(1.3.4) L= —[(s — DWWFa/(n — ™)} if > 0,

L=0 otherwise,

(1.3.3)

and
L=V} + [(s — )WWFq/(n — )]

The confidence-type statement obtained from (1.3.1) is
(1.3.5) Prih < pH(T,T)HbE S b} 21 — .

The bounds /; and I, are determined by the computable statistics v and w and
the chosen oy . But since [b/H’(T,T;) "Hb)! is not a parameter of a distribution,
(1.3.5) is not a genuine confidence statement. It is here called a ‘“quasi-confi-
dence”’ statement. Because it may be used to obtain a confidence statement
ultimately, (1.3.5) may also be called a “preliminary’ confidence statement.

Since in practice a; would be chosen to be small, the increase in the prob-
ability of (1.3.5) over the probability of (1.3.1) will be very small in comparison
with 1 — a; . This increase, by itself, need not be disturbing. What is disturb-
ing is that the quasi-confidence interval, from I; to l,, may be too wide. It is
quite possible that even in the near future quasi-confidence intervals narrower
than that of (1.3.5) may be found by others if not by us. In the meantime, in
an application the interval of (1.3.5) may not be too wide from a practical
standpoint. We have not tried to improve upon (1.3.5) since the main emphasis
of this paper is on the inferences which can be made without assuming a distri-
bution for b, but working in terms of the substitute variate in the sense briefly
explained in the introduction and to be developed in Section 1.5. For s = 2,
that is, for the case of two blocks, it is always open to us to go back to (1.3.2a)
and use, instead of (1.3.5),

(1.36) Priif <TrHb =0} =1 — o,

where If and Iy are the left and right sides respectively of the inequality (1.3.2a).
It is also open to us to-make corresponding changes at all subsequent stages,
keeping in mind the limitations stated after (1.5.2) and (1.6.1) imposed by an
s so small. We believe that the idea of a substitute variate and the kind of use
which will be made of it in this paper could have much wider application, es-
pecially when dealing with unobservable stochastic variates with distributions
about which it might be wise to make as few assumptions as possible.
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1.4. Simplifications and restrictions. Although T; appears in the formal defi-
nition of v, (1.2.2) and (1.2.1) may be combined to obtain the sum of squares

v'v = yM,[M;M,]™ [Kgl’:l {[0, HK][M;M A

(14.1) .
X [K%,]} [0, HKI[M/M "M}y

in which T; no longer appears explicitly. Moreover, T; enters into the middle
member of (1.3.5) only in the symmetric matrix
(1.4.2) H/(T,T:)"H.
Using the definition of Ty in (1.2.2), (1.4.2) can be expressed in terms of M;.
Also M;M; can by means of (1.1.4) be expressed as

MyM,, MM;K
[K'M{Mo, K’M{MlK:l’
and then by (A.9) the mversé of this (s 4+ ¢ — 1)th order matrix can be ex-

pressed as a partitioned matrix whose submatrices’ involve inverses of only {th
order and (s — 1)th order matrices. Using this result, (1.4.1) reduces to

v'v = y'{I — MMM "Mo}M;K{K'M;M;K — K'M;M,
X MM~ “M¢M;K} *K’M;{I — M[MM] "M}y

(143)

(1.4.4)

and (1.4.2) becomes

(14.5)  H/KH]K/({MM, — M MMM, "M,M,} K[HK] H.

By means of (A.8), whose conditions are satisfied, (1.4.5) is further reduced to
(1.4.6) MM, — M;M MM, MM, .

These simplifications have not required any more restrictive assumptions
about the structure matrix than those set forth in Section 1.1 above. But even
greater simplification is possible for certain types of experimental design.

Suppose (1) every treatment is applied to r experimental units (in r distinct
blocks). Suppose (2) every block contains ¢ experimental units (to which ¢
distinct treatments are applied). Then, for any design satisfying these two speci-
fications, (1.4.6) reduces to

(1.4.7) dl(s) - MMy’ MM, .

As a further restriction, suppose (3) for every pair of blocks the number of treat-
ments-in-common is g(r — 1)/(s — 1); then (1.4.7) becomes

(14.8) FlI(s) — s7J()],

where 8 = gs(r — 1)/r(s — 1). The & is thus a positive, rational number de-
termined by the size of the experiment and the type of experimental design. It
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is accordingly called the “design constant” for a particular experiment. Designs
which satisfy all three of these restrictions have been called ‘linked block” by
Youden [16]. They include randomized block (for which 8 = ¢ = ¢), symmetric
balanced incomplete block designs, and those partially balanced incomplete
block designs which are duals of balanced incomplete block designs. Henceforth
it is to be understood that the experimental design is one of these types which
satisfy the linked block conditions.

The underlying motivation for these three restrictions on the design is to re-
duce (1.4.2) to (1.4.8) or, in other words to make b’H’(T,T;) "Hb, which ap-
pears in the quasi-confidence statement (1.3.5), proportional to the corrected
sum of squares of the block effects,

(1.4.9) Z b — s“<i b,~>2.

t==1 =1
But when these three restrictions do hold, (1.4.4) can be further simplified to
(14.10) v'v = 57%'[I — r MM MK[I + JIK'Mi[I — r"MM,ly,

which requires no matrix inversion whatever. Moreover, when (1.4.8) is set
equal to (1.4.2), it follows by (A.2) and (A.1) that

(1.4.11) T, = 671,

where the positive root of 8 will make T; agree with the convention of having
positive diagonal terms.

1.5. Class marks and “substitute variates.” The model specifies that each com-
ponent of b is a sample from an unknown distribution that is presumably either
continuous or discrete with a sufficient number of values. Some measure of the
dispersion of that distribution is sought, but the variance, however suitable
for this purpose in the case of normal distributions, may be inappropriate for
other distributions. However, any continuous distribution has uniquely deter-
mined quantiles, for which we introduce the following notation: »8. will denote
the nth m-tile of the distribution of the variate b. Thus »8; denotes the median;
81 and ,8; denote the odd quartiles, etc. These quantiles may be used as class
boundaries and class marks for approximating the unknown continuous distribu-
tion by a discrete distribution as follows. Suppose the quartiles of b were known:
Bo, 481, B2, 483, 484 . The even quartiles 480, 482 , and 48, used as class bound-
aries would lump all possible values of b into two classes. Instead of the mid-
range of each class, the median of each class could be used as the class mark, and
a new variate taking on only these discrete class marks as its values would be a
rough approximation to the original variate b. Since this new variate in a sense
replaces the original, it will be called the “substitute variate” and -will be de-
noted by 4b if its two possible values are the odd quartiles of b. The same remarks
would apply roughly for a discrete distribution with a sufficient number of values.

This example of the quartiles may be extended to sextiles, octiles, --- , or
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2k-tiles. The even quantiles—auB0, 262, - - - , auBz—could be made class bound-
aries, and the odd quantiles—uB1, %8s, -+ + , aBx-1—taken as the class marks.
These k discrete values would thus be the only values of a substitute variate
denoted by xb. Since these class boundaries are not arbitrarily chosen but are
the even 2k-tiles of the population of b, each class has the same a prior: proba-
bility, viz., 1/k, regardless of the shape of the density curve of b. Thus the sub-
stitute variate 50 has k equally-probable values no matter what the unknown
distribution of b. In other words,

(1.5.1) Priab = abma} = 1/k, n=12 -,k
Of course we are not interested in the probabilities 1/k, which are known, but in
the unknown values o82.-1 . The actual values of the quantiles of b would cer-
tainly be desirable but seem no more inferable than the actual block effects or
treatment effects. On the other hand, just as contrasts among fixed effects may
be estimated and confidence bounds placed on them, so may differences between
values of the substitute variate be estimated and have confidence bounds placed
on them. The interquartile range, 485481, is one such difference. And for k an
integer greater than 2, '

(1.52) 2Ioﬁ2m+1 - 2kﬂ2m——1: m = 17 29 *t k- 17

constitute a set of k¥ — 1 interquantile differences, which would reveal more
and more about the distribution of b as k is increased. But it seems reasonable
and is also easy to check that from s blocks we cannot estimate these &k — 1
differences unless k < s.

1.6. Bounding loct in the space of 2k-tile differences. The quasi-confidence
statement (1.3.5) contained a quadratic form in the components of b, a quad-
ratic form whose matrix was expressible as (1.4.2) or (1.4.6) and then for a
large class of useful designs was further simplified to (1.4.8). Temporarily ig-
noring the scalar design constant, 8°, we shall now investigate the quadratic form
(1.6.1) [b]'[I(s) — s~ J(s)]lasb].

In this expression the s (unknown) values of the original variate b have been
replaced by the & (unknown) values of the substitute variate xb. For s >k,
some of these discrete values must occur more than once. Hence we denote by
san the frequency of the value uf82.—1, forn = 1,2, --- , k, among the s com-
ponents of 5b. Of course D, * | ;.1 = s. Using (A.10), where y; is replaced by
kB2n—1 and z; by Sz,—1 with summation running from n = 1 to n = k, and using
(A.11), where 2, = wfom1 — 24Bam—1, We can express (1.6.1) as the quadratic
form

(1.6.2) [2d]' G[zd],
where the vector 5d has its ¥ — 1 components defined by

(1.6.3) oln = tBont1 — 2Bona forn=1,2,---,k—1,
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and where the symmetric matrix G has in its ¢th row and jth column for 7 = j,

(1.6.4) Gii=s" (Z szn_l)( f) szn_l).

n=1 n=4+1

In terms of the original model, the vector xd consists of parameter-like un-
known constants, viz., interquantile differences of the distribution from which
the components of b are a sample. The set of integers s;, 85, **, Sx-1, here-
after denoted by s, represents the hypothetical frequencies of the distinct values
of the substitute variate b corresponding to the s (different) values of the
original ‘variate b. But for the purpose of obtaining confidence bounds on the
components of »d, we shall think of the components of s as given (constants)
and of the components of »d as (variable) coordinates of a point in a (k — 1)-.
dimensional parameter space. When (1.6.1) is thus regarded as a function of the
k — 1 components of xd, a function whose coefficients are determined by a
given partition of s into s(k), (1.6.1) will be denoted by A,(d). Under this
interpretation

(1.6.5) " A,(d) = constant

determines a locus in the (kK — 1)-dimensiona] space whose coordinates are the
components of zd. For a given ‘constant term and all possible partitions of a
given s, (1.6.5) would determine a discrete family of such loci. The several loci
in the family may be classified as bounding or not according to whether they
would inclose a bounded region of points having non-negative coordinates. (In
all subsequent use of ‘“bounded region” it will be understood to exclude points
with any negative coordinate. Thus the bounded region has for its boundary not
only the locus of (1.6.5) but also, for £ = 2, the origin; for ¥ = 3, thed; = 0
and d» = 0 axes; for k = 4, the d = 0, d» = 0, d; = 0 planes; for k¥ = 5, the
di = 0,d; = 0,d; = 0,d, = 0 hyperplanes.) For a given k, a given s, and given
positive constant, there is a locus, denoted by A:(d) = constant, such that it
incloses a region which is the union of the regions inclosed by all the bounding
loci in the family determined by (1.6.5). This locus is called the outer boundary.
Similarly there is an inner boundary, denoted by A;(d) = constant, which in-
closes a region which is the intersection of all regions inclosed by the bounding
loci. For some values of %, the outer boundary and the inner boundary are them-
selves members of the family determined by (1.6.5), whereas for other values of
k, these two boundaries are composites of more than one bounding locus.

From (1.6.4) and (A.12) it follows that if sy = O foralln = 1,2,::-- , k,
then (1.6.2) is positive definite, and the locus of (1.6.5) would be two points
if k =2, an ellipse if k = 3, and ellipsoid if k¥ = 4, etc.,—all bounding loci.
But if s; = 0 or sy—; = 0, the coefficient of %8: or 2821 is zero in (1.6.1), and
hence, by (A.10), ud; or udy—, vanishes from the quadratic form (1.6.2). When
such is the case, the locus of (1.6.5) provides no bound on the corresponding
coordinate.

On the other hand if Sgmy = O for 1 3£ m # k, then gB2m—1 vanishes from
the quadratic form (1.6.1), and it might seem that both dm and d,, would



MIXED MODEL VARIANCE ANALYSIS: PART I 951

vanish from the quadratic form (1.6.2), so that neither d,,—; nor d,, would be
bounded by the locus of (1.6.5). However, if s2n+1 % 0 and sem—s = 0, we know
by (A.10) that (1.6.1) can be expressed in terms of

(2485 — 24P1), (gkﬁs — aBs), *+* (2Bomir — wBom—s), *** (2nBok—1 — 2Ber—s),
and by (1.6.3) these are
oy y ke, oy dmaa + %dm, o0y i .

Note that here the sum gdn— + adn , rather than ud,—1 and ud. separately,
appears in (1.6.1). Hence the locus of (1.6.5) is “flattened” if sem—y = O but is
still bounding. By an obvious extension of this argument, it follows that the
locus of (1.6.5) will be bounding when $ym—; = 0 for more than one value of m,
provided only that s; 0 and sy_; > 0. This is seen to be plausible even on
the rough consideration that a bound on (zB:—1 — 281) necessarily imposes
bounds on all intermediate 2k-tile differences, and basically this is what is for-
malized in the above argument. "

From the set of bounding loci for each value of &, an inner and outer boundary
must be found. As defined above, “inner’’ and “outer’” are designations applied
to loci by virtue of extreme properties of the matrix of coefficients regardless of
the constant term in the equation. In Appendix B the matrices of the quadratic
forms A;(d) and A;(d) are derived from the matrix G. For any £k,

2 .
18 4_8 1 Coadn)? for sodd ,
(1.6.6) A(d) = : '
E (2 endn)’ for s even ;
(167) 8a(@) = = T o) + T T (da) )

Thus the inner boundary is a point for &k = 2, a straight line for £ = 3, a plane
fork .= 4, and a hyperplane for k¥ = 5. The outer boundary is a point for k = 2,
an ellipse for & = 3, an ellipsoid for £ = 4, and a hyperellipsoid for k = 5.

Since, for 2 £ k < s, the k non-negative integers into which s is partitioned
are hypothetical frequencies of the % equiprobable values s82.—1 , each partition
of s has an a prior: probability

(1.6.8) !

—‘—T‘—— .
kc II]. (821;—1) ! .
But all that is needed now is the a priori probability, say v, that a locus ob-
tained from (1.6.5) be bounding. Since s; # 0 and sy, # 0 are necessary and
sufficient ‘conditions for bounding loci,

Y = 1-— Pl‘{81 = 0} - Pr{s«,»kl = 0} + Pl‘{81 = 8gf-1 = }

(169 =f1—-2"=-2"4+0=1-2" , fork = 2,
: 1 — 2[(k — 1)/k} + [(k — 2)/k]° for k > 2.
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This v is thus the a priori probability that a point whose Cartesian coordinates
are the components of d should lie on any one of the bounding loci. Hence the
probability is not less than v that such a point should lie between the inner and
outer boundaries or on one of these.

1.7. The final confidence statement. The quasi-confidence statement (1.3.5)
asserts that with probability =1 — a; two computable quantities, 3 and [ , are
bounds for a certain quadratic form in the unobservable random effects b, which
form can be reduced, for many designs, to 8°b’[I — s~'J]b. In Section 1.6 it has
been shown that with the same degree of approximation which results from
grouping continuous data into k classes, the continuous variate b may be re-
placed by the k-valued substitute variate b. Thus, the quasi-confidence bounds
would apply to 6°[ub]’[I — s 'J][zb] or the equivalent form, 6*[%d]’ G[xd]. With
a priori probability =y given by (1.6.9), the points whose coordinates, xd,
satisfy the equation [»d]’G[xd] = ¢ lie in a region bounded by A;(d) = ¢ and
Ay(d) = c. Because of the postulated independence of b and e, we can combine
this a priori probability statement about A;(d) and A;(d) with the quasi-confi-
dence statement (1.3.5) to state with confidence coefficient = (1 — ay)y, that
the £ — 1 differences between successive odd 2k-tiles of the distribution of b
are coordinates of a point lying in the region bounded by 6°A;(d) = I and
oAy(d) =I5 A

To make these final confidence bounds more explicit, let us consider in detail
k =2and k = 3. For k = 2, we refer to (1.6.6) and (1.6.7), supposing s even.
Combining the two equations giving inner and outer boundaries, we obtain a
confidence interval for the interquartile range:

(17.1) 57H4/s) i = s — 4By < 675/ (s — D).

For k = 3, we refer to (1.6.6) and (1.6.7), again supposing s to be even. This
time we obtain simultaneous confidence bounds on two interquantile ranges,
o8 — oB1 and ¢8s — 8. If these two parameters are represented respectively
by the abscissa and ordinate of a point, then the confidence region is given by

(s — 1) +2ey + (s — 1)) =670,
z+y 287 (4/8),
z =0,
y = 0.

(1.7.2)

2. The General Uniresponse Mixed-Model Problem with Two or More
Factors.

2.1. Fized effects in a two-factor mized model. The previous sections have been
almost exclusively concerned with the random effects in a uniresponse model
with one factor represented by fixed effects and one factor by random effects;
but the fixed effects may be of greater interest to the experimenter. With this
in mind, we pointed out that the statistic u defined in (1.2.1), is entirely inde-
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pendent of the random effects b (though not of the statistic v) and is quite
simply related to the fixed effects a. Suppose now it is desired to estimate a
particular contrast among the fixed effects, say c’a where ¢’j = 0. Then

(2.1.1) ¢’H'Tou

is an unbiased estimator of c’a. Just as T; did not need to be determined ex-
plicitly in order to obtain v'v, so here (2.1.1) can be computed without finding
T explicitly. Now regardless of whether b (hence also y) is normally distributed,
u is normal and hence (2.1.1) is also. The variance of (2.1.1) is the same whether
b consists of fixed effects or random effects. Thus if ¢, is the upper e point of
the ¢-distribution with n — r* d.f., we can assert with confidence coefficient
1 — « that

¢H'Tqu — tJc’'Rew'w/(n — )]} < ¢'a < ¢'H'Tqu

(2.1.2) .
=+ tu[c’Rew'w/(n — r*)],

where

(2.1.3) R = [M¢M, — MM;K(K'M;MK) *K'M;M,]™.

For neither the point estimate (2.1.1) nor the confidence interval (2.1.2) is any
further restriction on design necessary. But for some designs, especially ran-
domized block, R will be somewhat simpler than (2.1.3).

Suppose now that the hypothesis of equality of all fixed effects a is to be
tested. Then the test statistic, [u’u/(¢ — 1)]/[w'w/(n — r*)], has the central
F distribution if and only if this hypothesis is true, quite irrespective of the
distribution of b. On the other hand, it may be desired to test a more general
hypothesis, Ca = o, where C(g X t) is of rank g < ¢ — 1. The hypothesis is

! ’
untestable if the rank of [M (’)C }is g + n — r*. The hypothesis is said to be
’ ’

completely testable or weakly testable according as the rank of [M (’)C :| is
equal to or greater than n — r* (and less than g + n — 7*). In either testable
case the test statistic, (u’TéHC'[CRC']“ICH’Tou/g)/ (w'w/(n — r*)), has the
central F distribution, with g and n — r* d.f., if and only if Ca = o. But if the
hypothesis is weakly testable, the test will have the same power for a possibly
weaker hypothesis as for the hypothesis being tested.

2.2. A mized model with more than two factors. From the two-factor mixed
model of Section 1.1, it is an easy extension to a multifactor mixed model in
which the observed response of each experimental unit is the sum of one (fixed)
treatment effect, m (random) block effects, and a normally distributed error.
Instead of a random sample of size s from a single distribution of block effects,
we now postulate m distributions of block effects, mutually independent and
independent of the normal error. The formal relation of the observations y to
these unobservables of the model may still be expressed as in (1.1.1), but now
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the structure matrix has m + 1 submatrices instead of just two, each consist-
ing of all zero elements except for a single unity in each row. Thus

M(n X (s + ) = [Mo(n X t), Mi(n X g1), Ma(n X g2), =+, Mu(n X gn)]
and

b'(s) = [bi(g1), ba(ga), ++* » blgm)],

where b; is a sample of size g; from the ¢th distribution of block effects.
Although this is a stronger restriction than is necessary, when m > 1 we have

restricted our investigation to orthogonal designs of two well-known types—

the complete factorial type in thch n =t-g1-gs -+ gm and the Latin Square

type in which { = g, = ¢g; = = gn and n = . For both types the struc-
ture nmtnx will have a bas1s M;(n X (s + t — m)) such that M:M; and
[M,M;] are formally expressible in terms of 7, £, g1, - , gm . Then premulti-

plying [M;M.] M1y by

[ PH((E— 1) X 0) +( ) H((g — 1) X 90K X (1 — 1)) +

3 a
4 %) H((gn — 1) X gn) K(gn X (g2 = 1) |

effects an orthonormal transformation on the observations y and defines m + 1
vectors of statistics, which vectors are mutually independent, each vector in-
volving the effects of only one of the m + 1 factors and, of course, the normal
error. Thus analogous to (1.2.9) we now have

u(t — 1) = PH((t — 1) X t)a(t) + Le,
vi(gp — 1) = 5H((g1 — 1) X gu)bi(g1) + Lue,

Vu(gm — 1) = 0.H((gn — 1) X gn)bm(gm) + Lume,

where 82 = rt/g; and Li((g: — 1) X n) is orthonormal. There is also a sta-
tistic w(n — r*), relevant to error only, defined as in (1. 2.7) except that r*,
the rank of the structure matrix, is now s + ¢ — m. Each v; can be used, just
as v was used in Section 1.3 and Section 1.7, with w to obtain quasi-confidence
bounds and then final confidence bounds on the 2k-tile differences of each ran-
dom-effects factor. Analogous extension to a model with more than one fixed-
effects factor is also possible.

APPENDIX A
Miscellaneous Lemmas
Proofs will not be given where direct verification is straightforward.

(A1) H((m — 1) X m)j(m) = o(m — 1).
(A2) H((m — 1) X m)H'(m X (m — 1)) = I(m — 1).
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(A3) H'(m X (m — 1))H((m — 1) X m) = I(m) — m™J(m).
(A.4) Postmultiplying A(m X n) by K(n X (n — 1)) removes the nth col-
umn of A. .
Premultiplying A(m X n) by K’((m — 1) X m) removes the mth row
of A.
(A.5) Postmultiplying A(m X n) by K'(n X (n + 1)) adjoins o(m) as an
(n 4+ 1)th column.
Premultiplying A(m X n) by K((m + 1) X m) adjoins o’(n) as an
. (m 4+ 1)th row. '
(A.6) Any matrix A can be partitioned into [AK, (A — AKK')j].
(A7) If Aj = o, A = [AK, —AK]].
(A.8) If Cj = o where C(m) is symmetric and of rank m — 1, then
C = H'{HK[K'CK|'K'H’}'H = H/(K’'H’)"'K'CK(HK) "H.
(A.9) If A(m) and D(n) are both nonsingular,
A BT [ (A—BD'C)? (BD'C—A)"BD ]
C, D (CA"B—-D)CA? (D—CAB)? |

This is stated as an exercise in [1]. It may be derived by solving four simul-
taneous matrix equations or simply verified by postmultiplying the two mem-

bers by [é’ g] and then factoring each of the four combinations so obtained.

m m 2 m m t1—1 m
(A.10) gx: zah — (‘; zgy,-) ?;1 T = ;2 ]Z.a zxi(y: — y)? ; z; .

Proor: For Y 1y z; # 0, the above is equivalent to

(Xm: x,)(ﬁ; x,-y?) = (i xi?_/s')z + i S s (ys — v5)%,

=1 3 1=2 j=1

1=

whose right member can be rearranged as follows

m 2 m 1—1
(Z x.‘y;) + . ziw; (yF — 2y + ¥3)

i1 =2 =
m 2 m m m m
= (Z xil/i) + 222 (1= s)magys — 2 2 (1 — 8)awayiy;
1=1 =1 j=1 i=1 j=1
m 2 m m m m m m
= (; 1 :v.ey.-) + 2 ; 2} — 2 i — 2 s ; 25 + 2 iy}

m
2 N
Ti Z TiYi
[} j=1

which is obviously the same as the left member. (The Kronecker delta 6;; = 1
if ¢ = j and 0 otherwise.)

(A11) X7y DTt mai( 200y 24)% is a quadratic formin 2y, « -+, 2w Whose
(symmetric) matrix has, for p = ¢, (2= z:) (D7 »+12;) as the element in
the pth row and ¢th column.

I
M=
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Proor: The (;n) terms of the given double sum can be arranged in a triangu-

lar array, and for a given n, 1 < n < m — 1, 24 will occur in a rectangular
subarray of the first n columns (say) and nth through (m — 1)th rows. The
sum of these n(m — n) terms is

m—1 n n m

Z Tig1 E 17,'23. = (E 17,)( Z: $j> 23, .

i=n Jj=1 7=1 J=n+1
Also from the same triangular array it is apparent that for a given n and I,

1 =n =1=m— 1, the factor 2z.2; occurs in n(m — 1) terms in the first n
columns and the Ith through (m — 1)th rows. The sum of these terms is

m—1 n n m
2> Ty Y Tizaty = <E a;.)( > a;j) 22,21.

=] j=1 i=1 J=l+1
These same two sums would be obtained from the diagonal and the off-diagonal
elements respectively of the quadratic form whose matrix is defined above.
(A12) If > ;mia > 0 and no z; < 0, the real symmetric (m — 1)th order
matrix whose element in the pth row and g¢th column, p = ¢, is ( Z}'ﬁ_gl ) X
(3 iep+1 72) is at least positive semidefinite with its vacuity equal to the num-
ber of values of & for which z; = 0.

Proor: z; % 0 for at least one k. Without loss of generality suppose 2 = 0
fork=1,---,nandz =0fork =n+ 1, ---, m. Adding (D ;41 ) /21
times the first column to the jth column makes > g ; a common factor of all
elements in the jth column for j = 2, 3, --- , m — 1. Then subtracting the jth
row from the (j — 1)th row forj = 2,3, -.- , m — 1 leaves only zeros above
the principal diagonal. The elements in this diagonal are z;z, in the first row and
(2_ia @k)Ti4 in the jth row for j = 2,3, ---, m — 1. Considering the se-
quence of lower triangular submatrices consisting of the first k rows, for k =
2, -+, n — 1, each is nonsingular with determinant equal to

m k—1 k+1
(Z xi) H xj .
t=1 j=1
For k& = n, each is singular. It follows from this and Gundelﬁnger’s rule [2] that
the original matrix has n — 1 positive characteristic roots and m — n zeros.
APPENDIX B
Inner and Outer Boundaries

Either to pick out the outer boundary from the family of loci given by (1.6.5)
or, failing that, to construct an outer boundary for the family, we consider the
matrix G defined by (1.6.4) with the restriction that s; 0 and sy < 0. If
g:; denotes the element in the matrix of the outer boundary, corresponding to
G;in (1.6.4), then, since ydz,—1 = 0 for all n, it is sufficient that

(Bl) g,-,-gG;,- forallz’-,j=1,---,k—1.
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From (B.1) and (1.6.4) it follows that
(s —=1)/s forz = j,

(B.2) gi; =
1/s for ¢ # j.

For k = 2, 3,5 the outer boundary thus determined belongs to the family
(1.6.5) ; for k = 4, it does not.

On the other hand, to pick out the inner boundary from the family of loci, we
want the largest possible G;; for all Z, 5. Inspection of (1.6.4) leads to the con-
clusion that for the inner boundary

(8 — 1)/4s for s odd,

(B.3) G =
' s/4 for s even,

for-all %, j. Thus it appearé that for all values of k, the inner boundary is that
member of the family of (1.6.5) which is completely flat, i.e., with only one non-
vanishing characteristic root.
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