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'1. Summary. In a previous paper [8] the author proved that the Py and Sx
matrices are the most efficient weighing designs obtainable under Kishen’s
definition of efficiency |5], when N is odd and N = 2 (mod 4) respectively, sub-
ject to the conditions :

(i) The variances of the estimated weights are equal;

(ii) The estimated weights are equally correlated.
In this paper, assuming the above conditions, it is proved that the Py matrices
are the best weighing designs under the definitions of Mood [6] and Ehrenfeld
[2] when N is odd, while the Sy matrices are the best weighing designs under the
definition of Ehrenfeld when N = 2 (mod 4). Under Mood’s definition of effi-
ciency, the best weighing design X, when N = 2 (mod 4), is shown to be that
for which X’X = (N.— 2)Ix + 2Exy , where Iy is the Nth order identity matrix
and Eyy is the Nth order square matrix with positive unit elements everywhere.
By applying the Hasse-Minkowski invariant, a necessary condition for the
existence of the Sy matrices is obtained, and the impossibilities of the Sy matrices
of orders 22, 34, 58 and 78 are shown.

~ 2. Introduction. Suppose we are given N objects to be weighed in N weighings
with a chemical balance having no bias. Let
1, if the jth object is placed in the left pan in the sth weighing;
—1, if the jth object is placed in the right pan in the sth weighing;
0, if the jth object is not weighed in the sth weighing.

X3

The Nth order matrix X = (z;;) is known as the design matrix. Also, let y;
be the result recorded in the 7th weighing; ¢; the error in this result and w; the
true weight of the jth object, so that we have the N equations

(2.1) Tawy + Towe + -0 + Tovwy = Yi + &, i=1,2---,N.

If X is non-singular, the method of Least-Squares or theory of Linear Estimation,
gives the estimated weights (%;) by the equation

(2.2) » = S X'y,
where y is the column vector of the observations, ® is the column vector of the

" estimated weights and S = X'X.
If o° is the variance of each weighing, then

(2.3) Var(d) = 87" = (Cij)d,
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where (C;;) is the inverse matrix of S. Hotelling [3] proved that the minimum
minimorum of each of the estimated weights is o*/N.

Mood considers as best that weighing design which gives the smallest corre-
sponding joint confidence region for the estimated weights. Consider a set of
confidence intervals C, for the parameter 6, typified by & , obeying the condition
that P(8,C6 | 8) = a, where we write 8,C6, that is 6 contains 6. Let C; be some
other confidence intervals for the parameter 6, typified by & , such that
P(5,06' | 8) = a. If now for every C;, we have, for any value ¢ other than the
true value, P(6,C0' | 6) < P(8:C¢' | 8), Cb is said to be the smallest confidence
intervals (cf. Neyman [7]). Hence a design will be called optimum in the sense
of Mood if the determinant of the matrix (C;;) is minimum. But we know that
the determinant |C;;| is minimum when the determinant |S| is maximum. Thus,
the efficiency of a weighing design X can be measured, in the sense of Mood, by

(24) det(S)/max.det(S).

If Amin is the minimum of the distinet characteristic roots of S, then the effi-
ciency of the weighing design X, can be measured, in the sense of Ehrenfeld, by

(2.5) Amin/N.

The conditions

(i) the variances of the estimated weights are equal;

(ii) the estimated weights are equally correlated are assumed throughout this
paper.

3. Most efficient designs when N is odd and N = 2 (mod 4) under the defi-
nitions of efficiency of Ehrenfeld and Mood. With the conditions assumed in
Section 2, the matrix S takes the form

(3.1) (7‘ - )\)IN + NEwn .
Now
(3.2) det(8) = (r — N Hr + NN — 1)}.

Since det(X) is real and non zero, we have
(3.3) r>A=0,orr=N,\= —1.

Therefore, in this paper we consider only those values of r and A satisfying (3.3).

Replacing r in (3.1) by (r — z) and equating the value of det(S) to zero,
we get (r — \) and {r 4+ M(V — 1)} as the distinct characteristic roots of S
with multiplicities (N — 1) and 1 respectively when A 5 0. If A = 0, r is the
only distinct characteristic root and it has multiplicity N. In either case, among
the distinct characteristic roots, (r — \) is always minimum except when r = N,
A = —1, in which case 1 is the minimum characteristic root. Hence from (2.5),
we measure the efficiency of a weighing design X, satisfying (3.1) under the



880 DAMARAJU RAGHAVARAO

definition of efficiency of Ehrenfeld, by
(r — A)/N, r>N20;
1/N, r =N, A= —1

Using the method and Lemma 2.1 of [8] we can easily prove the following two
theor‘ems

TreEOREM 3.1. For Ehrenfeld’s definition of efficiency the best weighing design X,
when N is odd, vs that for which

(3.5) . 8= (N—=1)Iy+ Exxy.

THEOREM 3.2. For Ehrenfeld’s definition of efficiency, the best wezghmg design X,
when N = 2 (mod 4) and N = 2, is that for which

(3.6) = (N = 1)Iy.

If we let fo(r, N) be the value of det(S), we have the following Lemma.

Limma 3.1. Forr > A = 0,

(1) fa(r, N) 1s a monotonic increasing function in r for a fixed \, and

(i) fa(r, N) s a monotonic decreasing function in \ for fized r.

The Lemma can be easily proved by partially differentiating fa(r, A) with
respect to r and ), and examining the signs of the derivatives.

We now prove '

TreEOREM 3.3. For Mood’s definition of efficiency, the best weighing design X,
when N is odd, is that whose S is (3.5).

Proor. Since max. det(S) is not known, we prove that det(S), where S is
given by (3.5), is greater than det(.S) for all other possible S. Now,

(3.7) fo(N, 1) — fo(N — 1,0) = N(N — )™ > 0.
Again
f2(N, 1) — fou(N, — 1)
=(N-1D"'2N -1) - (N + D)™

=2N(N — )" — 2{N”" + (N 9 1) N7 4 ... + 1}

fl(r> )‘) = {

=2:(N— 1){N”-1+(N2‘ 1>NN-3+ _|_1}

a0 —{(TT (V5 D (V2 2)]
. =2:NN_3{(N_1)<N2—1)_<N3—1)}

wv{or-n (V) - (V5)

+ ~--,+N2{<N— 1) (fv’j;)—@:;)}HN— 1)].-
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But
' N-1 N -1
(39) (N—1)< - )><¢+1)'
Hence the last expression of (3.8) is greater than zero and we have
(3.10) Fo(N, 1) > fo(N, —1).

Also, we know from Lemma 2.1 of [8] that A cannot be zero, since N is odd.
Therefore from the inequalities (3.7), (3.10) and Lemma 3.1, we see that det(S)
is maximum when 8 is given by (3.5). This completes the proof.

THEOREM 3.4 For Mood’s definition of efficiency, the best weighing design X, -
when N = 2(mod 4) and N 5 2 is that for which

(3.11) 8 = (N — 2)Iy + 2Bxx.
Proor.
fo(N,2) — fo(N — 1,0)
(3.12) ={(N —2)"*(8N —2) — (N — 1)"}

= (¥ = D1 — (V= D3 + 1/(V — 1)) — 1.

Considering the inequality

(3.13) t < —log(l —1t) <t/(1—1t), 0<t<l,
and substituting ¢ = 1/(V — 1), we can easily show that

(3.14) {1 — 1/ — 1)} > BExp{—(N — 1)/(N — 2)}.
Making use of (3.14), (3.12) is greater than zero, if

(3.15) 3Exp{—(N —1)/(N—-2)} —1>0.

We easily see that (3.15) is true for N > 11. We also see that fz(N, 2) >
Jo(N — 1,0) for N = 5,6, 7,8, 9, 10, 11 by actual substitution. Thus, we have

(3.16) foa(N,2) > fo(N — 1,0) for N = 5.

The only value of N < 4 and = 2(mod 4) is 2, and in this case we know that
the Hadamard matrix provides the optimum weighing design. Hence, if we delete
this case we see that f2(N, 2) > fo(N — 1, 0) when N = 2(mod 4).

We know from Lemma 2.1 of [8] that A cannot be equal to 41 when r =
N = 2 (mod 4). Also, as no Hadamard matrix exists in this case, A cannot be
equal to zero when r = N. Thus, from Lemma 3.1 and the inequality (3.16) we
see that the det(S) is maximum when § is given by (3.11). Thus the theorem is
proved. :

The proof of the following theorem is similar to that of Theorem 3.1 of [8].

THEOREM 3.5. A necessary condition for the existence of a weighing design X
satisfying (3.11) s that ’

(3.17) N={4+ (3f2 + 4)%/3,

where f is an inieger.
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An application of the above theorem shows that the weighing design X satis-
fying (3.11) exists only for N = 6 and N = 66 out of all N < 200
and = 2 (mod 4).

For N = 6, the best weighing design X satisfying (3 11) is

1 -1 =1 -1 -1 -1
1 -1 1 1 1 1
1 1 -1 1 1 1
1 1 1 -1 1 1
1 1 1 1 -1 1
11 1 1 1 -1

If we adopt the above design to weigh 6 objects,

(3.18)

(3.19) Variance of each estimated weight = 75°/32, and
' Covariance of each pair of estimated weights = —¢"/32.

4. Some known results about the Legendre symbol, the Hilbert norm residue
symbol and the Hasse-Minkowski invariant. The Legendre symbol (a/p) is
defined for odd primes p as

+1, if a is a quadratic residue of p;
(4.1) (a/p) = { . L.
, —1, if @ is a non quadratic residue of p.
A slight generalisation of the Legendre symbol is the Hilbert norm residue symbol
(a, b), . If @ and b are non zero rational numbers, we define (a, b), to have the
value 41 or —1 according as the congruence,

4.2) a2’ + by’ = 1(mod p"),

has or has not for every value of r, rational solutions z. and y. . Here p is any
prime, including the conventional prime p., = . Many properties of (a, b),
are given by Jones [4] and Shrikhande [9).

Let A = (a;;) be any n X n symmetrical matrix with rational elements. The
matrix B is said to be rationally congruent to 4, written A ~ B, provided there
exists a non singular matrix €' with rational elements such that A = CBC(’,
where C” is the transpose of C. If D; (2 = 1, 2, - - - , n) denotes theleading princi-
pal minor determinant of order ¢ in the matrix A4, then, if none of the D; vanish,
the quantity

n—1

(43) Co = Cp(4) = (=1, =D.), [T (Ds, =Disa),

is invariant for all matrices rationally congruent to 4. C, is known as the Hasse-
Minkowski invariant.
The following Lemma, glven by Bose and Connor [1], will be of use for the

next section.
LemMma 4.1, If ¢ is a rational number and A,, = tI,, , then,

(44) Co(Am) = (=1, =1),(t, =1)5"",
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B. On the impossibilities of the Sy matrices. Since the Sy matrix is a square
matrix with rational elements and Det(Sx) 5 0, its inverse exists and is also
a matrix with rational elements. Thus, Iy = (S¥”)(SySw)(S¥"). From the
last section, we see that Iy and SySy are rationally congruent and they can be
written SySy ~ Iy . Hence

(5.1) ’ Co(Sx8n) = Co(In) = (—1, —1),.

But

(5.2) © 8i8w = (N = ).

From Lemma 4.1, we see that .

(5.3) Cp(SySy) = (=1, —1),(N — 1, —1)F®+2,

But, as N = 2 (mod 4), N(N 4+ 1)/2 is odd and (5.3) reduces.to

(5.4) Co(SuSx) = (=1, =1),(N — 1, —1),,.

Equating the right hand sides of (5.1) and (5.4), we have for all primes p,
(5.5) (N =1, 1), = +L. |

This result can be stated in the form of the following theorem.

THEOREM 5.1. A necessary condition for the existence of the Sy matriz where
N = 2 (mod 4) s that (N — 1, —1), = 1, for all primes p.

IivustrATION 5.1.1. When N = 22,

(N -1, _1):0 = (21’ _1):0 = (3’ —l)p(7’ _1)7
= —1, for p = 3.

The Theorem 5.1 is violated and Sy does not exist.
The non existence of Ss, Sgs and Sz can also be easily shown by applying
Theorem 5.1.
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