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1.0 Introduction. A functional rela,tionship"q = g&1, &2, , &) = g is
assumed to exist between a response 7 and k continuous variables & , &, - - , & .
To elucidate certain aspects of this relationship measurements of 5 are to be
made for each of N combinations of the levels of the variables o

1£;=(£1u:£2u)"')£ku) u=1:2)"')N'

The problem of experimental design considered is the choice of the design matriz
D of N rows and k columns whose uth row is £, which specifies the levels of the
variables to be used in each of the N trials. The design matrix can be regarded
as specifying the coordinates of N experimental points in the k dimensional space
of the variables. As mentioned. for example in [1], [2], [3], and [4] a number of
distinct problems can arise. Here we suppose as in [5] that the nature of the func-
tional relationship g(¥) is unknown but that over a specific region R in the space
of the variables & , &, - - - , & & polynomial of degree d, fa(¥), adequately grad-
uates the function g(¥) and the objective is to use the polynomial to estimate %
within the region R. A design of order d is such that it allows the estimation of
the polynomial f4(£). In this paper we shall be particularly concerned with the
case of d = 2, that is with the fitting of a polynomial of second degree. Using
specifically what is called a rotatable design, we shall develop a method of ob-
taining rotatable designs of second order from those of first order. In defining
rotatable designs it may be appropriate here to discuss briefly why they are
thought to be useful.

A general design may be expressed in terms of standardized variables, for which

N
> Tw =0, i=12 -,k
u=1
and
N‘lzxfu = )2,

where \; is a convenient constaht.( In actual application therefore the levels of the
experimental variables &; are given by £ = S&w + £o where £ and S; were
suitably chosen so as to give appropriate location and spread to the design in the
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particular application. We shall suppose that the functional relationship is to be
estimated by standard least squares.
A polynomial of degree one in the z’s may be written

k
Ty = Eo Biti
=

where 7, = 1, w = 1,2, ---, N or in matrix notation = X@ where X is a
N X (k + 1) matrix :
X = [1:D]

and 1isan N X 1 column vector with all its elements unity. Whether one’s ob-
jective is to obtain minimum variance for the estimated linear ‘coefficients,
minimum volume of the confidence region for the coefficients, or minimum vol-
ume of the confidence cone for the direction of steepest ascent, one is led to the
simple conclusion that the most desirable design is orthogonal, that is, it is such
that X’X = NA where A is a diagonal matrix with its first diagonal element
equal to unity and its remaining diagonal elements equal to Az. )

Often we are not particularly interested in estimating the individual coeffi-
cients 8; but in estimating the polynomial itself. Suppose a design has been car-
ried out which allows us to fit the polynomial by least squares. Using the fitted
polynomial the estimated response at the conditions x’ = [z1, zz, - - - , @] is de-
noted by g . If a polynomial of the degree assumed can exactly represent g(x)
then

E (ﬁx) = fx

and a measure of the accuracy of our estimation over the region of interest R is
provided by V (%x).

It is easy to show that a first order orthogonal design has the property that
V(9s) is a function of x’x = _ z} and )\ alone.

V(gx) = ‘P(x"x: Az)

For such a design therefore, this variance (and hence the reciprocal of the vari-
ance which can be regarded as a measure of the information supplied by the de-
sign about the response surface) is constant on circles, spheres or hyperspheres
in the factor space, i.e., in the space of the variables 1, z2, - -+, Tk . Designs
which have the property of generating spherical variance contours are called
rotatable designs. It is easily shown for first order designs that the converse
proposition is true, that is in order to insure rotatability the design must be
orthogonal. As is pointed out in [5] the criterion of orthogonality, which has a
central place for the first order design, is not readily extendable to-designs of
higher order. We can, however, readily extend the property of rotatability to de-
signs of higher order and it is found that in general for a design of order d it is
possible to choose a design such that

V(g) = ‘P(x,X7 Az y Agy oo )\2d)

where \; are constants at our choice.
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To ensure the design is of this form it is only necessary to arrange that the
moments of the design up to order 2d shall have certain values. For the case of
second order designs with which we are specifically concerned

V(g) = ‘P(X,X, Az, )‘4)

where )\, and ), are at our choice. \; is merely a scaling factor while A, is chosen
to give a satisfactory variance profile along a radius vector.

The problems for which the designs we are discussing have particular applica-
tion are those where we are gaining knowledge of certain features of an unknown
functional relationship by a sequential process in which any one “design” is only
a single step. The results of each such step are used to more effectively plan the
next group of observations.

At a particular stage we are interested in the behavior of the response function
“in the neighborhood” R of some particular point P. We have in mind that the
operability region O, that is the region in the space of the variables in which ex-
periments could be conducted, is fairly extensive and that P is not close to the
boundary of 0. We suppose that the neighborhood of interest about P is a region
R which nowhere reaches the boundary of O and that scales, metrics and trans-
formations are chosen either implicitly or explicitly such that R is very approxi-
mately spherical and is centered at P. ‘

The science of designing experiments is principally a convenient way of giving
expression to. prior information about the experimental situation which is cur-
rently in the experimenters mind and utilizing this information so as to gener-
ate further information most likely to be of value. The prior information is ex-
pressed in the choice of metrics, scales and transformations employed and is
based on the experimenter’s current feelings concerning the nature of the func-
tion under study. To the extent that the choices are poor, the extra information
obtained about the nature of the function after the next set of observations have
been completed, will be less than might otherwise have been obtained. This
would mean that a sequence of such experiments, in which the information
gained at each stage is utilized to design further more effective experiments,
would be somewhat longer when prior information was less. This of course is to
be expected and is a refleetion of the fact that the apparent indeterminacy is a
property of the experimental problem of exploring unknown functions itself,
rather than of a particular technique for solving it. To demonstrate that some
such rationale as the above is necessary one should remember that any set of
experimental points distributed through the factor space such that X is of rank
k + 1 provides a first order orthogonal design in some set of transformed 2’s.

The discussion so far has been based on the nature of the variance function
V(9:) = Elgx — E(9x)]. In practice it would seldom if ever be true that the
polynomial would provide an exact representation of the unknown function and
in a more recent paper [2] this assumption has been dropped. Designs which mini-
mize the mean square error E(§x — 7:)° are considered instead. Now

E(jgx — ﬂx)2 = V(9x) + [E(9x) — 77x]2
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where the additional term on the right hand side may be called the squared bias.
A general theorem in the above paper shows that if we are fitting a polynomial
of degree d, over a region R when a polynomial of higher degree d; is necessary
to give an exact representation, then the value of the squared bias averaged over
the region, is minimized when the moments of the design points are the same as
those of a uniform distribution over the region R. If it seems plausible in ac-
cordance with the previous discussion that the region of interest should be re-
garded as spherical then the optimum design to minimize average bias is also a
particular rotatable design. :

2.0. Outline. If we accept then that rotatable designs are of interest it be-
comes necessary to discover how they may be obtained in practice. First order
rotatable designs are readily obtained (they are simply the orthogonal designs)
but useful second order designs are less easy to derive. The method used here for
obtaining second order rotatable designs from those of first order will now be
outlined. In what follows we shall use n for the number of points in a first order
design, and NV for the size of a general or higher order derived design.

In the fitted first degree equation there are £ + 1 constants, consequently at

X2

Fic. 1b. Generated second order rotatable design for two factors
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X3

’/I‘ @,

Xy

F1a. 2b. Generated second order rotatable design for three factors

least & + 1 observations must be made if the constants are to be separately
estimable. Suppose the first order orthogonal (rotatable) design is used with the
minimum number (n.= k + 1) of experimental points. Then it is easily shown
[6] that in the space of the z’s these points lie at the vertices of a regular simplex.
For example, if k = 2 the points are at the vertices of an equilateral triangle, if
% = 3 at the corners of a regular tetrahedron. They can thus be called first order
simplex designs. Now it can be observed that certain of the useful second order
designs which have been found bear an interesting relation (illustrated for k = 2
and k = 3 in Figures 1 and 2) to the first order simplex designs. The three points
at the vertices of an equilateral triangle in Figure 1a when joined to the origin at
the center of the triangle, define three vectors. By adding these vectors two at a
time we obtain a second equilateral triangle; by adding the vectors three at a
time we obtain a center point. The original set of points plus the derived points
generate the design shown in Figure 1b. This is the so-called hexagonal design
which is known to be a second order rotatable design, [5]. The corresponding
four vectors from the origin to the vertices of a tetrahedron shown in Figure 2a
(a first order orthogonal or rotatable design) when added in all possible ways two
at a time generate six further vectors passing through the midpoints of the
edges of the tetrahedron, when added in all possible ways three at a time generate
four vectors passing through the mid points of the faces of the original tetra-
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hedron and when added four at a time generate a center point. If the lengths of
the derived vectors are suitably chosen the resulting design coincides precisely
with a previously derived second order rotatable design, namely the central
composite rotatable design [5], [7]. These derived designs will be called simplez-
sum designs.

In this paper we first demonstrate that the method suggested by these two
examples for generating simplex-sum second order rotatable designs containing
2" — 1 points, from the first order rotatable simplex design containing & + 1
points, is a general one. For k = 5 the number of points required by this method
becomes large compared to the number of constants to be determined. A method
is given for generating ‘“fractions” and “replicated fractions’ of the derived
designs which have all the required properties and hence overcome this difficulty.
Finally it is shown how the designs may be arranged in blocks so that they may
be utilized in circumstances where ‘insufficient homogeneous experimental
material is available to complete the full quota of experimental runs.

To illustrate the method a second order rotatable design for seven variables
is obtained, requiring only 66 experimental runs and only using three levels of
each variable.

3.0. General Theory.
3.1. Conditions for Rotatability. We now define the design matrix D for the k&
standardized factors z;, x2, ---, zx as an N X k matrix whose uth row

x:‘ = (xm Loy *** xku)

defines the coded factor levels to be used in the uth of N experiments called for
by the design. The general moment of the design will be denoted by

[172% .. Ic"’"] =N Z TRt - gk,

and @ = ) a; will be called the order of the moment. The problem of finding
rotatable designs is in essence one of finding configurations of points possessing
the proper moments. It is in fact shown in [5] that when fitting the model

7 =08+ Zﬁ,x, + Z Z Bz + Z Z Z Binwizizy + -

=1 j=1% t=1 j=t l=j

including all terms through degree d, a rotatable design will be obtained when the
moments through order 2d are of the form

k

II (et

=1
Ag —F—— all a; even

(3,1) [1a12a2 - kak] = 2“/2 III (a,/2)! .

0, any a; odd,

where A, is a constant for any design and a.
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3.2. Notation and Definition. Consider a first order orthogonal (simplex) de-
sign in k = n — 1 variables with design matrix D, and with > xh. setequal ton
so that

v ‘ |
It is conjectured that a second order rotatable design may be generated by using
as design points the vectors obtained by taking all possible sums of the n rows of

’
X1
/
X2

D, = ;;
: /
Xn
taken s at a time where s = 1, 2, ---, k. The problem thus reduces to one of

finding the moments of a design matrix D derived in this way. We allow the
vectors obtained by taking sums of s rows to be multiplied by a constant a, = 0.
The constants a; , as, - - - , ax will be called radius multipliers. Then the N by &k
matrix D for the derived design is

D
E

D=|-"-
a.D, |’

| ax Dy |

where N = 2" — 2. Each D, is an (?) by k matrix whose rows consist of all

possible sums of the rows of D, taken s at a time. We omit for the moment the
center point corresponding to Dy, obtained when all n vectors are added to-
gether simultaneously. Since the columns of D; are orthogonal to a vector of ones
it follows that each vector obtained by summing rows s at a time is the negative
of one obtained by summing rows n — s at a time. The points in the factor space
represented by D, are, therefore, reflections through the origin of those repre-
sented by D, . (Of course, when n is even, n — n/2 = n/2 and half the rows of
D, are reflections of the other half.)

- Let us define the moment component [1%*, 2%, - - - | k“"], as (Z') N7" times the
specified moment of D,, i.e.,

[199% ... k™, = & > (g + Ty F e T)™

- N g, 5w, <uzgn

(Zouy + Touy + 0 T2u)  (Bhy F Thwy + 0 F Tha,) ™
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Then the corresponding moment for the entire design can be written
k
[1912%2 ... k] = > (a,) *[1%12°% -+ - k], .
8=1

3.3. Analogy to Sampling from a Finite Population. The problem of finding
expressions for [1%2% ... k¥, in terms of either the moments of D; or of
[1412°% ... £*¥; corresponds to that of finding the sampling moments of means
(or totals) of samples of s drawn from a k-variate finite population of # elements.
These moments can be derived by a method due to Tukey [8] and elaborated by
Wishart [9], Hooke [10] and Robson [11]. The necessary derivations are given in
[12], [13] and the results utilized for our purposes here.

The sampling analogy is readily seen if we consider a k-variate vector of means
obtained by averaging a random sample of s k-variate vectors chosen from a pop-
ulation of 7 such vectors,

- _ 1<
'(xly T2, “'7xk) = ;ZI (xluy Loy o “',xlcu)-
w=

Then the joint sampling moments of these multivariate means are
Ave {7123 - -+ T4,

Ave denoting the average value of the indicated power product over all combina-
tions of samples of s. These expressions can be used to obtain the moment com-
ponents of any submatrix D, since

[1912%2 ... k%], = N %" (?:) Ave {1352 - -+ T},

Using this equality and the results in [12] (recalling X w1 2% = n, 1 =
1, 2, .-+, k here) the expressions for the required moment components are
readily obtained and are shown in Table 1a for n = «. Table 1b gives the one
case required here for n < a not covered by Table la.-

3.4. Form of Moment Components. Tables 1a and 1b show the moment com-
ponents in terms of a notation designed to simplify their use and to make clear
their general pattern. Certain of the coefficients C'(s) have single subscripts
while the remainder have double subscripts. The former are not multiplied by
unrestricted moment components of D; and hence are constant terms in the
moment component equations for a given n and s. The latter however, are multi-
~ plied by D, moment components such as [¢ 7], , or' combinations of D, moment
components and are therefore coefficients of quantities which will not in general
be constant for different choices of <, j, &, I, m.

The values taken on by any coefficient function C(s), when « is held constant,
possess a symmetry with respect to s as a result of the reflection relationship be-
tween vectors in D, and D,_, . Since one matrix is the negative of the other their
respective components must differ only by the factor (—1) or

(17122 o ], = (—1)°[1712%% -+ K™y .
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TABLE 1b
Fourth order moment components of D, forn = 3, (n < a)
General Formula Abbreviation
(6% - Cal®)ligh Culs) = ;—l(i’) [2—7( — 1]
’ ’ o s ’ s {3 9
[, Ci(s) + Cu(®)le%h Ci(s) = 3-,( ) (s—1D—
I\s N
(4, 3Ci(s) + Ca(®)lih

From Tables 1a and 1b we see that in general
[1712%% ... k%], = boCa(8) + Car(s)[17127% - - k™,
+ buaCla(8)L72% -+ B | 2k + -+ + buyClap(8)[172% -+ k| Pk,

where the b, values are zero or positive constants varying with the particular
partition of @ = (a2 * - az).

It is readily shown in general [13] and can be confirmed by direct substitution
 that Cas(s) = (—1)Cai(n — s).

4.0. Radius Multipliers and Rotatability. Having general formulas for the
moment components contributed by each submatrix D, of a derived design
matrix D, we now seek a suitable set of radius multipliers such that the moments
of D

(34)

' k
(4.1) [172% - k™) = 2 af[12% - k™,
. =1

will fulfill the requirements for rotatability listed under (3.1). ,

By even-order moments we mean those for which a = > a;is even and by odd-
order moments we mean those for which « is odd. In addition we call those mo-
ments for which any a; is odd, odd moments and those for which all «; are even,
even moments. For rotatability all odd moments must be zero and all even
moments of the same order must be specified multiples of each other.

From Table 1a we see that the moments [3], [¢j] and [*] of D, will satisfy the
rotatability requirements for any choice of radius multipliers since the corre-
sponding odd moment components [¢], and [47], are identically zero and [%), is con-
stant for all 7. The other moments however all involve ‘“variable terms’”
C.i(s)[ 1 and only in the case of the even moments is the constant term b.C «(8)
added to this variable function. The moment requirements will be generally satis-
fied only if the radius multipliers are so chosen that each “variable term” sums
to zero in the expression for all [1*2° - - - k*¥]. For odd moments this is obviously
required. For the even moments it would otherwise be impossible to attain the
required constant ratio between moments of the same order since the quantities
[ ], in general change in their relationships, from one moment to another. The
only further requirement for rotatability is that the constant terms, b.Ca(s), are
in the required ratios.
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Using the general form of [1712%? ... k*], from (3.4) in (4.1) we have

k
[192% o k%) = 3 (a) T2 - k%,
8=
k

= ba;__l (@) *Cal(s) + [192° - E*1- D (@0) *Caa(s)

8=1
k

+ bua1712° -« - k% | 2)i- 3 (@) “Clas(s)

=1

. % :
+ oo A bep[172% - -« k% | ply- Z,(a,)a(}@(s),

8=1

where b.C.(s) does not appear unless the moment is even and we require

k
> (4,)Cai(s) = 0, 1=12---p.
8=1
Since we have seen previously that C(s) = (—1)“C(n — s), then for all odd-
order moments Coi(s) = —Cai(n — s). We can say further, because of the

factor (n — 2s) in all such odd order moment coefficients, (Table 1a) that when
a and k are both odd, Cui(n/2) = Cai(k + 1/2) = 0. Therefore as long as
radius multipliers are selected such that a, = @,_, all the odd-order moments
will sum to zero for any value of a, . Setting m = k/2 when % is even and m =
(k — 1)/2when & is odd it then follows, for such a choice of radius multipliers,
that

Zkl(as)aCai('g) = Zm:l (@5) *[Cai(8) + Cas(n — )] - 0 for all 4, -« odd.

We will call this type of solution for the radius multipliers, where a, = a,_, , a
symmetric solution.

Having satisfied the odd-order moment requirements for rotatable designs of
‘any order we must now find which symmetric solutions will also satisfy the re-
quirements for even-order moments.

6.0. Second Order Requirements for Rotatability. For a design to be second
order rotatable the even moments must have the following general form [*] = 2, ,
[%%] = A\, ['] = 3\ where \; and )\, are constants at choice and the odd mo-
ments of order less than or equal to four must vanish.

It may be noted here that the addition of center points to a design matrix D
does not change the general form of the moments since their only effect is to in-
crease the denominator N.

5.1. Application of Moment Requiremenis. As noted previously in 4.0, the gen-
eral second order moment [+*] places no restrictions on the choices of radius mul-

tipliers since |
L 3
~21 __ 2 _ n 2 (N — 2 _
7= F e =55 @ (327 - n

a constant for all values of 7.
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From Tables 1a and 1b it can be seen that the generélized moment component
is obtained by letting the coefficient b, vanish for odd moments, and assume the
values 3 and 1 for the even partitions of e, viz., (4) and (2,2). Hence

%% *1™], = byCu(s) + Cu(s)[* k1),
so that

k k
[£%1 2] = hé (a.)'Cu(s) + [i“lj“*k“sz“]lzl(a,)“,c'u(s).

~ In the previous section we showed that, for second order rotatability, we must
have > ¢y (,)'Cu(s) = 0 making

. k
[ialjazkaslm] — b4‘2=1 (03)404(8)-

This accomplished, all odd moments of order four would vanish with b, and
v . .

B = 2 (a)'Ca(s) = M

8=1
N |
[i'] = 32" (.)*Ca(s) = M.
8==1 :
Clearly any symmetric solution for the radius muitipliers_ such that
% ’ '
2 (@)'Ca(s) = 0

will provide a rotatable deéign of the simplex-sum type. _
5.2. Standard Solution for Radius Multipliers. We will now demonstrate that
a solution holding for any % is obtained by letting

_ o\—%
a,=(:'_?) , s=1,2,---k.

This solution for the radius multipliers involving the binomial coefficients will be
denoted by B:* and referred to as the standard solution.

It is immediately evident that all odd order moments will be zero since the
choice for the a, provides a symmetric solution as defined earlier. Further

k -1 . k 3
o n—2\" (n—2\n _n n— 2\ _
L —§<s—1) (s—1>ZV_NsZ_1<s—1)_)‘2

and, for each 3, [ equals n/N times the sum of the square roots of the bi-
nomial coefficients of order n — 2.

coon S (n =2\t (n—25)(n —3s) —n(s—1) (n—2\..

ikl =2 (s - 1) w =2 =3 (s - 1)[” ot
S —6sn+ 65+ _ ikl _
=L aoom—y = aogmog @ =0
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Since the zero quantity in brackets i is the expressmn > aiCuls), common to
all fourth order moments, we have

ik =[] =0

2 _ 2fn—-2\"(n—-4 nz_nz(n—l)_
71 §<s,—1> (s—2)]7~T_>‘4’

n—1 —1 2 2
w“ n— n—4\3n _n(n—1)
k1= Z‘l<s —1> <s —2)1_\7‘ =Ty~ 3M
5.3. Second Order Rotatability for the Case n = 3. For k = 2 (n = 3) the above
demonstration does not apply since the fourth order moment formulas hold only

for n = 4 as noted previously. However by using the formulas in Table 1b, we
can show that the above solution also applies here.

2 -1
6=, 2 0) () e -7 - 0l = 65 - sl
s=1 \S 1 3!
Although apparently inconsistent with previous results this expression is zero
because of a property of 3 X 3 matrices of the type [1 x; X;] with orthogonal
columns of equal vector length. Since we have already shown that a matrix of all
rows taken s-at a time is the negative of the matrix of sums taken n — s at a
time we have D; = —D, and [7j ]1 = [{ 7]z . From the general moment formula
for n = 3 we have [i5°], = —5[¢;°; and hence [{ ;° h = —5[4 7%}, must vanish.
The moment

ea=2(2 ) fa(G)e-76- v+ e-n 2

g=1
=l =~ 5L+ 5

However since [i* %}, = [* ;% and [* %] = —5[ 7 + 9/N we have [¢* /], =
3/2N, a constant for any matrix of this type. It then follows that [ ;%] =
2[4’ = 3/N = A\ and similarly [*] = 3\;. Thus the moments are those of
a rotatable design.

We have thus demonstrated that for k = 2 a second order rotatable design can
always be derived from the first order simplex design. It is possible to show how-
ever [13] that this method in its present form does not generate third order rota-
table designs.

5.4. Radius of Experimental Points. As is illustrated in figures 1a and 1b for
the case k = 2 and k = 3 the simplex-sum designs consist of subsets of vectors of
experimental points corresponding to the rows of the submatrices a;D;, a2Dz,

-, @Dy . Geometrically these subsets are symmetrically oriented one to
another in that the vectors for a.D; bisect the edges of the simplex defined by
a:D; , the vectors of a;D; pass symmetrically through the faces of the simplex
defined by a,D; and so on. We can readily obtain an expression for 7, , the radius
of the points in the sth subset. Denoting the uth row of D, by Xs, , s = 2,8, -+ , k
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7 ’ ! ’ 7 . -
we have Xq, = i X, , where X, , Xy,, -+ , X,, is the uth set of s rows of the
first order design matrix D; . Now since '

[Ix{
1Dy = l:xé
I;I:,J
and [1 DyJ[1 D;J’ = n I, we have
Yy o n—1=k, i=3
i Xy -1, iy

The square of the length of the row vector x., is therefore
x:uxau = (x:q + x;z + cet + x;,)(xu‘ + xuz + cee + xu.)

=s(n — 1) + 2(3)(-—1) = s(n —s).

Thus the radius of the experimental points in any submatrix a,D, is given by
7, = afs(n — )}, and since in a symmetric solution @, = Gn_s, s = 7.

For th_e; particular set of radius multipliers of the standard solution r, =
(Z’ : f) [s(n — s)]. A summary of the radii for k = 2 through 8 of the standard
solution rotatable designs is given in Table 2.

TABLE 2

Radii of experimental points for standard solution rotatable designs
k rn ra 3 . 7 s 76 7 8
2 1.41 1.41
3 1.73 1.68 1.73
4 2.00 1.86 1.86 2.00
5 2.24 2.00 1.92 2.00 2.24
6 2.45 2.11 1.95 1.95 2.11 2.45
7 2.65 2.21 1.97 1.89 1.97 2.21 2.65
8 2.83 2.30 1.98 1.84 1.84 1.98 2.30 2.83

5.5. Singularity and Near Singularity of Moment Matrices. A set of points can
have the moments of s rotatable design but be impractical as a design since it
leads to a singular moment matrix. The singularity arises from a dependency
between the columns in the X matrix for the by and quadratic terms, by , be
-+« , bi . The situation is easily remedied, however, by the addition of center
points to the design matrix. The moment matrix is singular [5] when the stand-
ardized fourth moment constant A achieves the value A; = A/ (A2)? = k/(k + 2),
implying that the design points all lie on the same hypersphere [14]. For the
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TABLE 3
Comparison of s to its singular value for standard solution designs

' 3 ,
k E+D M
2 .500 : .500
3 .600 .601
4 .667 .670
5 714 724
6 .750 ) .769
7 778 .811
8 .800 .850

designs arising from the standard solution for a, we have

)
N _n(n— 1)[” m\s —1 :I _ (n—l)(-?”—2})2
6N N n=l n—2
o[ (2]
where we have used N = 2" — 2, i.e., no center points having been added. The
value for \; is equal to the singular value k/(k + 2) when k& = 2 and remains
close to the singular value as k increases, as is shown in Table 3.

Since the addition of center points has no effect on the moments except to
change N we see that the addition of Ny center points will change A1 by a factor
of (2" — 2 + No)/(2" — 2). In practice sufficient center points were added to
provide a satisfactory profile for the variance function V(#x) taken along a
radius vector. Denoting the distance from the center of the design by p = (x’x)s
it is suggested in general in [5] that sufficient points be added so that V(7:) at
p = 01is equal to that at p = (A;)*. Such an arrangement causes the variance to

be approximately uniform over the important range p = 0 to p = (A2)*. These
designs will be said to attain “uniform variance’.

6.0. Additional Second Order Rotatable Simplex-Sum Designs. The standard
solution for a, affords a set of rotatable designs for all ¥ = 2. When £ = 5 how-
ever, the number of experiments required by the standard solution becomes
excessive. Fortunately, for such values of k smaller reduced designs are possible.

6.1. Solution Space of Radius Multipliers. We have shown in Section 4 that
for second order rotatability we must find values fora,,s = 1,2, -+ - , k, such
that 2 a3Csu(s) = 0 and 2 asCu(s) = O where Cyu(s) and Cu(s) are the
coefficients of the moment components of D; (Tables 1a and 1b). When those
values are found it was shown that the other moment requirements were auto-
matically satisfied.

To state these requirements in a more c¢onvenient form for our present prob-
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lem let us define the vectors
a = (aiaz Sy e a),
a = (@lad-- - ab),
ai = (ala3 - a5+ ap),
Cat = (Cu(1) Cu(2) --- Ca(s) -+ - Cu(k)),
Cia = (Cu(1) Cu(2) -+ Cu(s) -+ Cu(k)).

The requirements for second order rotatability are therefore Csja; = 0-~and
Cuas = 0. If we choose values of a, , such that a, = an_, , we have shown previ-
ously that Cs;a5 = 0. Therefore, calling any vectors a; and a, which are derived
from symmetric solutions, symmetric vectors, we may further simplify our prob-

-lem to that of finding all symmetric vectors a, such that Ciia, = 0. We must
also add the restrictions of course, that all the elements of a, are greater than
Zero.

The restriction of symmetry on the vector a, has the effect of confining its
~ values to an m dimensional subspace for which m = k/2, if k is even and m =
(k 4+ 1)/2, if k is odd. This is evident since a4 has exactly m elements which can
be varied independently, the remaining ¥ — m elements then being determined
by the relationship a, = @,—,. The elements of Cy are symmetric in a correspond-
ing way as was shown earlier. Hence for convenience we might consider a, and Cy
a8 two m-dimensional vectors and use the fact that m — 1 independent vectors
can be found orthogonal to any vector in m-space. Thus if we find m — 1 inde-
pendent solutions to the equation Cuas = 0 they will form a basis for the solu-
tion space of all possible vectors satisfying this equation, that is of all vectors in
the m — 1 space orthogonal to Cy . Since the elements of Cy are of mixed sign
it is clear that solution vectors can be found which fall in the positive 2*-drant.

6.2. Specific Solutions. We will now obtain the m — 1 basis vectors Xy, Y,
<o+ Ymafork = 3,4, --- 8, selecting them to. contain the maximum number of
zero elements possible. Where zero’s can be introduced, the equivalent designs
will involve fewer points than the standard solution since any submatrix with a
zero radius multiplier, may be eliminated from D without altering the moments.
All other designs, resulting from the orthogonality relationship, can be derived
from these basis vectors by taking linear combinations

a4 = dY + deYe + -0 + duaYma ,

where the d.’s are any constants such that a, = 0.

It will be recalled from the discussion of the standard solution that the two
factor design is an anomaly in that its rotatability does not result from the
orthogonality relationship. For k¥ = 2, Cyas 5 0 and hence a specific solution
does not follow in the usual way. When k¥ = 3, m = 2 and hence only one solu-
tion, the standard solution, is available, (X = a4). Similarly when k = 4, m =
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2 so that for k < 4 the standard solution is unique. When & = 5 however then
= 3 and two independent solutions Y7 and Y are possible. Specifically
C41T,- = (1 -2 —6 -2 1)T; = 0,

and here for the first time we can obtain reduced designs. Two suitable basis
vectors are

o

= (1

0 1),
T = (1 3

D),

o™
S wie

whence
=1 0 3% o0 1),
a =1 2% o 2% 1),

The arrangement employing X' omits a;D; and a.Ds while that employing Y%
omits a;Ds from the design.
When k& = 6, then m = 8 and the relationship

ChY;=(1 -1 -8 —8 —1 1)¥;=0,
is satisfied by
=(1 100 1 1),
=1 0% % 0 1)
When k = 7, then m = 4 and
CaY:;=(1 0 —9 —16 —9 0 1)Y; =0

is satisfied by
rYi=(1 0 3% 0 % 0 1),
T;=(1 00 % 0 0 1),
TS=(0 1 0 0 0 1 0).

When k = 8, thenm = 4 and
CuY:i=(1 1 —9 —25 =25 —9 1 1)Y:=0,
which is satisfied by

Yi=( 0% 0 0% 0 1),

r;=( 00 & 0 0 1),

Yi=0 1% 0 0 % 1 0).

A fourth reduced design can be derived from the vector
aa=Y—T1+YX:s=(0 1 0 &% 45 0 1 0).
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TABLE 4
Radius multipliers for some second order rotatable designs
No. of Experimental Points®
Radius Multipliers
. Simplex- :
k | Design mll)pe:izssu ™ C]%I:sﬁgls;; ¢
al @ | oo a | a| o | o b Rl g
2 | Std. 1 1 6 3 8 5
3 | Std. 1 .8409(1 14 6 14 6
4 | Std. 1 .7598) .7598|1 30 14 24 7
5| Std. | 1 | .7071] .6389| .7071)1 62 | 4
T, 1 .8409(0 .8409(1 42 10
T 110 .7598|0 1 32 8 26 6
6 | Std. 1 .6687| .5623| .5623| .6687|1 126 | 38
b 1 /0 .5946( .5946/0 1 84 16
™ 111 0 0o (1 1 56 13 44 9
7 | Std. 1 .6389| .5081| .4729( .5081| .6389|1 254 59
b &) 1 |0 .5774/0 .5774{0 1 128 21
b & 1 /0 0 .5946(0 0 1 86 15
s 0N 0 0 0 1 0 56 10 78 14
8 | Std. 1 .6150| .4671| .4111| .4111} .4671] .6150| 1 510 90
b ) 1 |0 0 L4472 .4472/|0 0 1 270 26
s 0 1 .5774/0 0 .5774)1 0 240 0
T 1 /0 .5774/0 0 .5774/0 1 186 28 80 13

= The “Composite Design’’ values refer to the composite second order rotatable designs
derived in [5] and are included for comparative purposes. Half replicates of the cube por-
tion are used for k = 5, 6 and 7 and one quarter replicate for &k = 8.

b Number of centerpoints required for “uniform variance’ within p = (Az)%.

A summary of the radius multipliers used to obtain the standard solution
designs (B,?) and the specific solution designs derived from the basis vectors,
is given in Table 4. It can be seen that only the reduced designs will be practical
in most instances when k& > 4 since N increases rapidly. Also included in the
table are the number of center points required to attain ‘“uniform variance”.

In order to produce a design using Table 4, it is only necessary to select a
suitable matrix D; and by taking all sums of rows s at a time, for each s of the
non-zero a, values, generate the required D, matrices. Multiplication of D, by
a, will then give the coordinates of the design points. An example is given in
Section 9.
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7.0. Replication. If it should be desired to replicate certain subsets of the
derived matrices this can easily be done by making suitable adjustments to the
radius multipliers. We will only consider the case where symmetric replication is
used (i.e., D, and D,_, are replicated equally), thus ensuring that a symmetric
solution for the radius multipliers can be found.

If we replicate a particular pair of submatrices D, and D, », times, the ele-
ments Cx(s), Cu(s), Ca(n — s) and Cyu(n — s) will be multiplied by », and the
moment equations will become

ivs(as)3031(8) = 0,

k

Z "s(as)4041(8) = 0.

s=1

The first equation will still be negatively symmetric and will therefore be satisfied
by any symmetric vector. The second equation will be satisfied if the new
ve(a,)* equal the old (a,)*. Thus

a.(D, replicated », times) = a,(unreplicated)/(v,)%,

and a similar relation holds for radii.

For example, consider the standard solution for £ = 3, and various patterns
of replication. (We will always have »mai = 1, »a3 = %, va; = 1.) Table 5 shows
some results. »

TABLE 5
The standard solution with k = 3 and various replication paiterns
Replications Radius Multipliers Radii
Pattern
123 v vs a az as 71 r2 r3
1 1 1 1 1 2% 1 1.73 1.68 1.73
2 2 1 2 2% 2-% 21 1.45 1.68 1.45
3 1 8 1 1 271 1 1.73 1.00 1.73

8.0. Blocking. When an experiment cannot be run under homogeneous
conditions it is usually desirable to block the trials in such a way that the coeffi-
cients can be estimated efficiently while the error is confined to the magnitude of
variation within blocks. We will assume that under the experimental conditions
peculiar to any block the relationship of the response to the factors remains
unchanged with the exception of a shift in level. Following the development in
[5] then we assume the expected value of the uth experimental observation is
represented by the model

k k k m
Nu = ﬁO + ; Bixiu + 1Z=1 éiﬁijxiuxju + Elaw(zwu - éw),
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where

Bo=wz=:1%30w, 0y = Bow — Bo, 27'w=7—;v2

and By, is the level parameter for the wth block, 2., is a dummy variable assuming
the value unity when the uth experiment falls in block w and zero otherwise, 7,
is the number of observations in the wth block (including center points) and
N = E::-l N « . .

8.1. Orthogonal Blocking—Rotatable Designs. It is shown in [5] that orthogonal
blocking is obtained when the within block moment components of the design
(denoted by [¢**j**]s) have the following properties:

1. [i]bw = %;xiu = O)
2. [l = £ 3 i je = 0, i
N4
; 13
3. [zg]w=zvzu:x§u=;—zv"-i)\z, w=12:--m,

‘where D _+*indicates summation over the n, design points within the wth block.

The blocking arrangements we consider here will be called submatrix blocking
schemes since they utilize the submatrices a;D; , @;:D:, - - - , D, or combina-
tions of them, as blocks. From the general formulas for the moment components
of these submatrices it is clear that they individually satisfy the first two condi-
tions above. To individually satisfy the third condition however it is necessary
that the quantities a2 be such that their ratios are rational numbers. Instead of
using the submatrices themselves as the basis for blocking, combinations of
these submatrices can be employed. If the a, are such that they allow blocks to
be formed which yield a ratio of [¢*]s,/\: which is equal to a rational number then
orthogonal blocks can be obtained. Table 6 shows some blocking arrangements
which are derived in this way for the designs in Table 4.

In general the individual submatrices can not be employed as blocks without
sacrificing either orthogonal blocking or rotatability. It is naturally most reason-
able to sacrifice rotatability since clearly we only require an approximately
“symmetric distribution” of information. Unfortunately when the conditions
for rotatability are relaxed in this way the general inverse of the resulting
matrix is not easily written down. When an electronic computer is used in the
analysis of data however this presents little difficulty. The radius multipliers
required for orthogonal blocking differ little from those required for rotatability
and the resulting designs are thus nearly rotatable. Table 7 provides these
values of a, together with the “uniform variance” number of center points for
each sub-matrix block. ,

8.2. Non-orthogonal Blocking of the Rotatable Designs. An alternative would be
to retain rotatability but to accept slightly non-orthogonal blocking. From the
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TABLE 6
Summary of orthogonal blocking schemes for rotatable designs of Table 4

859

Number of points in Block from Submatrix

Total No. of Points in Block

Design | Block Sans Center Grand
@D1 | a:Ds | asDs | auD4 | asDs | aeDs | a7D7 | asDs | Center Points Total
Points | Added® ()
Std. | 1 3 3 2 5
2 » 3 3 2 5
nqne
Std. 1 5 10 15 7 22
2 10 5 15 7 22
p ¥ 1 6 15 21 5 26
2 15 6 21 5 26
Std.| 1 7 21 35 63 19 82
2 35 21 7 63 19 82
X2 1 7 35 42 8 50
2 35 7 42 8 50
T 1 7 21 28 6 34
2 21 7 28 6 34
T 1 7 7 ) 7
2 21 21 (14) 35
3 21 21 (14) 35
4 7 7 0) 7
T 1 8 56 64 10 74
2 56 8 64 10 74
p 1 28 28 5 33
2 28 28 5 33
p ¥ 1 8 8 4) 12
2 56 56 (4) 60
3 56 56 4) 60
4 8 8 4) 12
Std. 1 9 36 84 | 126 255 45 300
2 126 | 84 | 36 9 255 45 300
X2 1 9 126 135 13 148
2 126 9 135 13 148
X3 1 36 84 120 0 120
2 84 36 120 0 120
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TABLE 6—Continued

Number of points in Block from Submatrix ‘Total No. of Points in Block
k| Design | Block Sans | Center Grand
aiD1 | asD2 | asDs | aD4 | asDs | 66D | a7D7 | asDs | Center Points Total
Points | Added® (#t0)
T 1 9 84 93 14 107
2 84 9 93 14 107
h ¥ 1 9 9 (9) (10) 18 19
2 126 126 (0) (7) | 126 133
3 126 126 (0) (7) | 126 133
4 9 9 9)@0) | 18 19
b ¥ 1 36 36 (48) 84
2 84 84 (0) 84
3 84 84 0) 84
4 36 36 (48) 84
T 1 9 9 4) 13
2 84 84 (7) 91
3 84 84 ) 91
4 9 9 4) 13

» Those values not in brackets are the number of centerpoints required for ‘‘uniform
variance” and can be replaced by any other number evenly distributed between blocks.
The values in brackets also provide uniform variance but can not be changed freely with-
out loss of orthogonality.

point of view of computational difficulty this approach turns out to be much the
simpler, while the loss of information due to the slight non-orthogonality in
blocking is small. In reference [15] the moment conditions are given which the
points within the individual blocks must satisfy in order to retain rotatability.
In particular it is shown that these conditions are met by any blocks which
satisfy conditions 1 and 2 in Section 8.1 and hence by the submatrices D,
asDy, -+, azDy whether or not they are augmented with center points. Thus.
when only condition 3 is violated in blocking a rotatable design the variance-
covariance matrix of the response surface coefficients (adjusted for the block
effects) retains the form necessary to give “spherical” variance contours. The
form also readily lends itself to providing a general explicit solution for the
normal equations. The estimates of the regression coefficients for any such ar-
rangement are given below where we let 7, denote the average of the observa-
tions in block w and use the notation

n

{iy} = Z:yu {3y} =,,,2;:x"“y“’ {47} =;xwwmyu,

U=

A7 =2\ [(k 2N — BN D [i’]iw/nw]
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to give

=N [{ — 24NN ( {ity} — kN i [’izlbwgw>];

sM§
J
§"

|

zZ

by = N4, [{uy ATV + (

= (N)Hay},
= ()\4N)_1{7:jy}'

The variances and covariances are
m 212 )
V(bo) = 20"\ N"As [(k + 2N —k (N > [in]—"l’ - Aﬁ)]
V(b,) = 0'2(N)\2)_1, ] V(b”) = 0'2(N>\4)_1,

V(bi) = *N A I:(k + D — (k — l)Ni: [’t;_]io:l’

' m r212
Cov (bobii) = —20'2>\4)\2N_1Aa, Cov (biibjj) = GzN—lAa l:N Z I—:%b—w - 7\2].

It will be noted that the variances of b; and b;; are not affected by non-orthog-
onal blocking but the variance of the constant term by and the quadratic terms
bs; are affected. In [15] it is shown that the loss of information introduced by the
small degree of non-orthogonality is small.

The -variance function from which the variance of an estimated value § can

TABLE 7

Radius multipliers and center points for orthogonal nearly rotatable
submatriz blocking

D: D: Ds D, Ds D¢ D: Ds
1 Original
Design
a1 | nio a2 | nm20 as %30 a4 s as 750 ae 760 ar 7w | as | 7130
3 |Standard| 1 | 2 | .8165| 2 |1 2
4 |Standard| 1 | 3 | .7638 4 | .7638| 4 |1 3
5 |Standard| 1|4 | .7071) 5 | .6583| 6 | .7071| 5 |1 4
p & 11} .8238 4|0 0| .8238 4 |1 1
T 1110 0] .7868| 6 |0 01 1
6 [Standard| 1 | 6 | .6679| 8 .5547| 5 | .5547) 5 | .6679 8 |1 6
p S 11410 0| .5954| 4 | .5954| 4 (0 01 4
7 (Standard| 1| 8 | .6455/12 | .5164| 8 | .4776| 3 | .5164) 8 | .6455(12 |1 8
p s 1(3(0 010 0| .5992 9 |0 00 o 3
8 |Standard| 1 |12 | .6172/20 | .4690|13 | .4140{ O | .4140| 0 | .4690/13 | .6172(20 | 1 |12
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readily be calculated is

V(g) = «"N“Aa{z(k + 20 — 20, (N 3 Bl _ xé)

Ny

. m 1212
+ 2 [(k + 20 — (kN 3y zxz)] o

N
[ - - 1)N§%]p*}.

9.0. A Convenient Reduced Design for &k = 7. The design derived from the
basis vector, X'; for the seven factor design in Section 6.2, has several interesting
features which will be discussed here. Since it requires but 56 points (plus center
points) to estimate the 36 coefficients of a seven factor second degree poly-
nomial, it is extremely efficient. The comparable central composite design [5]

TABLE 8
Seven factor second order rotatable,design in three levels
iD: iDs
1 1 0 1 0 0 0 -1 -1 0 -1 0 0 0
1 0 1 0 1 0 0 -1 0o -1 0o -1 0 0
1 0 0 0 0 1 1 -1 0 0 0 0o -1 -1
0 1 1 0 0 1 0 0o -1 -1 0 0o -1 0
0 1 0 0 1 0 1 0 -1 0 0o -1 0o -1
0 0 1 1 0 0 1 0 0o -1 -1 0 0o -1
0 0 0 1 1 1 0 0 0 0o -1 -1 -1 0
1 0 0 0 0o -1 -1 -1 0 0 0 0 1 1
1 0o -1 0 -1 0 0 -1 0 1 0 1 0 0
0 1 0 0o -1 0o -1 0 -1 0 0 1 0 1
0 1 -1 0 0 -1 0 0 -1 1 0 0 1 0
0 0 0 1 -1 -1 0 0 0 0o -1 1 1 0
0 0 -1 1 0 0o -1 0 0 1 -1 0 0 1
1 -1 0o -1 0 0 0 -1 1 0 1 0 0 0
0 0 1 -1 0 0 -1 0 0o -1 1 0 0 1
0 0 0o -1 1 -1 0 0 0 0 1 -1 1 0
0o -1 1 0 0o -1 0 0 1 -1 0 0 1 0
0o -1 0 0 1 0o -1 0 1 0 0o -1 0 1
0 0 o -1 -1 1 0 0 0 0 1 1 -1 0
0 o -1 -1 0 0 1 0 0 1 1 0 0o -1
0o -1 0 0 -1 0 1 0 1 0 0 1 0o -1
0o -1 -1 0 0 1 0 0 1 1 0 0o -1 0
-1 1 0o -1 0 0 0 1 -1 0 1 0 0 0
-1 0 1 0o -1 0 0 1 0o -1 0 1 0 0
-1 0 0 0 0 1 -1 1 0 0 0 0o -1 1
-1 0 0 0 0o -1 1 1 0 0 0 0 1 -1
-1 0 -1 0 1 0 0 1 0 1 0o -1 0 0
-1 -1 0 1 0 0 0 1 1 0o -1 0 0 0
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requires 78 points (plus center points). The vector of radius multipliers that
defines this designisa’ = (0 1 0 0 0 1 0) and thus utilizes the points
specified by the matrices D, and Ds only.

In seven dimensions it is possible to find a matrix D; , giving the coordinates
of a regular simplex, which involves only the two levels —1 and +1, for each
factor. Consequently D, and Dg need only involve three factor levels. Further-
more D, and Dg provide orthogonal blocks.

The 8 X 8 matrix [1 D;] which can be used to generate this design is

1 1 1 1 1 1 1 1]
1 1 1 -1 1 -1 -1 -1
1 1 -1 1 -1 1 S |
1 1 -1 -1 -1 -1 1 1
1 -1 1 1 -1 -1 1 -1
1 -1 1 -1 -1 1 -1 1
1 S — 1 1 -1 -1 1
[ 1 -1 -1 -1 1 1 1 —1]

Its squared vector length is eight, as required, and all rows and columns are
orthogonal.

The derived matrices D and 1Ds are shown in Table 8. Since multlphcatlon
by a constant is permissible, we will define our derived design matrix D therefore

as
3 D
3 Ds
The singulari;cy of the moment matrix of this design is readily detectable by
noting that all the points lie on a hypersphere of radius (3)* and hence center
‘points must be added to make all coefficients separately estimable. The addition
.of ten such points will produce a design having the “uniform variance’ property.
For this design (and whenever nonorthogonal blocking does not complicate

the normal equations) the regression coeflicients and their variances are easily
obtained from the general solutions for rotatable designs given in [5].
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