RECURRENT SETS!
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1. Summary and introduction. As is well known ([7], [12], [13] and [14]) Markov
processes may be studied via an appropriate potential theory, which for sym-
metric random walks is discrete Newtonian potential theory (see [8],[19]). Here
we will be concerned with the problem of deciding when a set of lattice points in
s = 3 dimensions is recurrent, that is, when it is visited infinitely often a.s. by
the symmetric random walk. In [14] a necessary and sufficient condition was
given to decide this problem. Intuitively this test determines whether or not « is
a regular point of a lattice set (see [11]). However the test tells one very little
about the recurrence properties of an arbitrarily given lattice set.

Here we desire more precise information about lattice sets. Namely can one
impose regularity conditions on lattice sets such that there exists a weighting
u(a), such that the divergence of D ... u(a) is necessary and sufficient for the
recurrence of the lattice set A? As a step in this direction we give a necessary and
sufficient condition for recurrence of a set for a general Markov chain in terms of
the existence of a non-negative solution to a Wiener-Hopf type equation on the
set in question. As a byproduct of this equation for finite lattice sets, we obtain
interesting bounds for the probabilistic capacity of finite sets as well as explicit
expressions for the probability of leaving a finite set forever.

As an application of our criterion for recurrence in s = 3 dimensions, regularity
conditions are given on lattice sets so that u(a) = |a|™, where |a| is the Euclidean
distance from the lattice point a to the origin, is the appropriate weighting so
that D e u(a@) = o iff 4 is recurrent. Further it is shown that the regularity
conditions cannot be removed, as we exhibit a set for which the above series is di-
vergent but the set is not recurrent. Further the above regularity conditions are
invariant under arbitrary possibly different rotations of each lattice point about
the origin and hence recurrent lattice sets satisfying these regularity conditions
remain recurrent under arbitrary rotation. Finally a necessary condition and a
sufficient condition are given for subsets of the axis in 3 dimensions.

2. Definitions and analytic results. We consider stationary transient Markov
chains {z,,n = 0,1, 2, - - -}, with state space ¥. Denote by K(a,b) for a,b in ¥
the expected number of visits of z, to b given 2, = a. K(a, b) where a and b are
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lattice points will denote K for the symmetric random walk. We define recur-
rence and transience for subsets of the state space X as follows:

DeFINITION 2.1. A C ¥ is recurrent iff there exists an a £ A such that Plx, ¢ 4
infinitely often | zy = a] is positive.

DerFINITION 2.2. A C ¥ is transient iff for all a e A Plx, ¢ A finitely often
|2y = a] = 1.

DerFINITION 2.3. A C % is almost closed iff Pz, ¢ A infinitely often] = Plz, ¢ 4
eventually] > 0.

In the particular case of the random walk, S, , the state space will be the s = 3
dimensional lattice. A set is recurrent iff it is visited infinitely often almost surely
by the random walk (see [1]). Information on the behavior of K(a, b) is given in
[9]; that is, there exist constants depending only on s, for s = 3, g, and f, > 0 such
that

(2.1) fla — b = K(a,b) = ga — 0"

for |a — b| > 0. Following Duffin [7] we define the boundary dA of a lattice set
A as

(2.2) 0A = {acA|a =+ e;e A° forsome ¢, 1

lIA
<.
[IA
&

with the e; unit vectors in each axis direction.

3. Recurrence for sets. We now characterize transience as a set property for
stationary transient Markov chains with the following theorem, and by its corol-
laries, transience of lattice sets for symmetric random walk in s = 3 dimensions.

TuEOREM 3.1. Let A be a subset of the state space of a stationary transient Markov
chain {x,}. Then A is transient iff the system of equations (3.1) possesses a non-
negative solution u(-).

(3.1) S K(a,b)u(d) =1 forall acA.

Proovr. Suppose A4 is transient. Consider xz, with o = a for any a ¢ A. Now
define

Wy =1 if z; in A for the last time at b
=0 otherwise
but since A is transient
(3.2) Doves 2uimo Woj =1 as.
However
(34) E(Wyi|x = a) = Pla; =b,zj1 ¢4 forall > 0|z = a]
= PY(a,b)Plz, ¢A forall r> 0|z = b = P¥(a,b)es(d)

by stationarity and tl_le Markov property. The expected value of (3.2) yields the
equality, 1 = D 4 K(a,b)es(b), when the order of summation and expectation
interchanged, a valid operation by Fubini’s theorem, and (3.4) is used. However
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as a was arbitrary it follows that e, (-) is a non-negative solution of (3.1). e, will
be called the last exit probability of A.

Now suppose A is recurrent and (3.1) possesses a non-negative solution u( )
then there exist an a ¢ A such that P[z, ¢ A infinitely often | zo = ao] > 0. Now
set zp = aop and let K = {w: z, ¢ A infinitely often}. Since (3.1) has a solution
u(+), which is extended to the entire state space by defining it to be zero off 4,
it follows that this extension satisfies,

(3.5) 1= 2 a K(ag, D)u(d) = Eay 2o n(n).
Define
To

min {j > m | z; ¢ A}
= o otherwise

and K, = [T < «]. Now T\, < « on K.
Let I, denote the indicator function of the set A, then

1 % an Z’Z=0 M(xn) + EaOIKm Z;::m-{-l M(xn)
(3.6) 1= Fuy D omeo (@) + Eaglgy D omer u(22)
oy D moou(,) + P(Kp |20 = ao)

by the strong Markov property and stationarity. The steps from line 2 to line 3
of (3.6) is eagy, just expand it. Letting m tend to infinity, (3.6) implies

(3.7) P(K |z = a) =0,

which is a contradiction.

ReEMarks. The author is indebted to F. Spitzer for asking why our previous
theorem, Corollary 3.2 here, did not hold in a more general setting. Theorem 3.1 is
the result. The essence of the sufficiency proof of Theorem 3.1 is also due to
Spitzer and seems more direct and simple than our original proof using potential
theory or a later proof using a martingale convergence theorem of [2].

Now we specialize to the random walk in s = 3 dimensions and to lattice sets.
We obtain the following

CoroLLARY 3.1. Given a lattice set A then A s transient iff the system

(3.8) Deoa K(a,D)u(d) =1  all acd

v

has a non-negative solution u(-). .

Proor. The necessity follows immediately from the proof of Theorem 3.1 by
noting that e4(a) for a ¢ A is null unless a ¢ 4. Sufficiency is also the same noting
that K and K, are equal a.s. to 2, the probability space.

CoroLLARY 3.2. Suppose a lattice set A is not almost closed then A is transient iff
the system

(3.9) Dreoa K(a,D)ud) =1, all acdd

has a non-negative solution u(-).
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Proor. Necessity is immediate from Corollary 3.1.

Sufficiency ; suppose (3.9) has a solution and A is recurrent, then Theorem 3.1
implies 94 is transient. Consequently S, ¢ A eventually a.s., or A is almost
closed, which is a contradiction.

We introduce the capacity of a lattice set as follows (see [14]).

DerinTION 3.1. The capacity of a finite lattice set A is C(A) = D ae0u €s(a)
(with e4(-) defined as in the proof of Theorem 3.1).

CoroLLARY 3.3. For a finite lattice set A, C(A) satisfies

4] |4]
mMaXpega ZaeA K(“, b minbeaA ZaeA K(a, b)

where |A| is the number of elements of A.

Proor. Clearly every finite lattice set is transient by the Borel Cantelli lemma.
Hencees( - ) is a solution of Equation (3.8). Bounds of the sum of both sides of
(3.8), over a ¢ A4, give (3.10).

COROLLARY 3. 4 Suppose A is a transient lattice set then the system (3.9) has the
unique non-negative solution e4(-) = P(S, zA foralln > 0|8, = -).

Proor. From the proof of Theorem 3.1, e (-) is a solution. Now suppose
there exists another non-negative solution . Form

f(&) = D seaa K(z, b)u(b)
g(x) = D was K(x, b)ea(d).

These functions are finite valued and hence potentials in the sense of [14]. For
any z £ dA there exists an @y € 34 of minimum Euclidean distance from z hence

(3.10) j =C(4) =

la — a £ |z — a| + |x — o] £ 2|z — g
or
|z — o™ = 27%a — af.
In view of (2.1), for example f satisfies

f(z) < gf 2" forall =z

Now application of the maximum principle (see [14]) yields f(z) = g(zx) and
g(z) = f(zx). But a potential in the sense of [14] uniquely determines its charge.
See [7] for an example of a potential in the sense of Doob, (i.e. non-finite valued)
which does not uniquely determine its charge.

CoroLLARY 3.5. Suppose A is a transient lattice set. Then there exists a prob-
ability measure v(-) with support on A such that es(-) = v(-)/K(-, a) where
acA.

Proovr. This follows immediately from (3.8). In fact »(-) is the measure in the
Riesz-Hunt representation of the excessive function, the entrance probability of
A (see [12]).

REmaRKS. For finite sets we have shown that solving a matrix equation deter-
mines the capacity of a finite set and the last exit probabilities. Since for s = 3,
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K is tabulated by Duffin in [9], numerical values for these quantities are possible.
For finite sets, Spitzer has obtained in [17] the analogous result for s = 2 and
recurrent random walks. The above corollaries can be given suitably modified for
transient stationary Markov chains. For example, the generalization of Corollary
3.4 can be proved with a maximum principle for potentials in the sense of
Doob, finite only on the supports of their charges. (Private communication
McKean.)

ExampLE 1. Consider s = 3, define R(-, -, ) as R(ar — by, as — by, a3 — b3) =
K(a,b). Using Corollary 3.1 we compute the last exit probabilities for the sets,
A= {(0) 0,0), (0,0,1)}, B = {(a70) 0), (6,0,0)} and C' = {(0: 0,0), (1,0,0),
(2,0,0)} as

1
R(0,0,0) + E(1,0,0)
1
R(0,0,0) + R(a — b,0,0)
R(0,0,0) — R(1,0,0)
R*(0,0,0) 4+ R(0,0,0)R(2,0,0) — 2R(1,0,0)
R%*0,0,0) + R(0,0,0)R(2,0,0) — 2R(1,0,0)*"

Now we give a more analytic criterion for transience of a lattice set.

THEOREM 3.2. A set A is transient iff there exists a d € A® and a real number v
with 0 < v < 1 such that for every finite subset Ay = {a1 - -+ an} and every col-
lection of positive real numbers {¢}iz1...n

(3.11) Y SUPheas Dimr K (b, @) = Dt K (d, as).

Proor. For sufficiency, suppose the condition holds and A is recurrent. Then
by the Hewitt Savage 0-1 law, ¢(d) = P(S, ¢ A for somen = 0| d) = 1 for every
d £ A°. Choose A, finite subsets of A with m elements such that A4,.,TA. Since
A, are finite, Theorem 3.1 implies there exists a positive lattice function on dA4., ,
e, (+) such that

om(d) = P(Spe A, forsome n =08 =d)
(3.12) = D oot 2ui0 P(Se = b, 0 = j |80 = d)
= ZbeaAm Z?-:O P(j)(d’ b)eAm(b) = ZbeaAm K(d7 b)eAm(b)7

where ¢ is the last exit time of A, . Now ¢n(d)Te(d) as m — « by the count-
able additivity of the probability measure. But (3.11) implies

(3.13) Y SUPseas om(b) = em(d)
by choosing

¢5(0,0,0) =e4(1,0,0) =

GB(G, 0, 0) = eB(b, 0,0) =

60(0, 0, 0) = 60(2; 0’ 07) =

60(1, 0, 0) =

ci = e, (b;) for b; €04,

= 0, otherwise.
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But (3.13) implies
(3.14) Y = on(d) forall m

a contradiction, since ¢,(d) — 1.

For necessity, suppose A is transient, then there exists a d ¢ A° and a 7,
0 < v < 1, such that ¢(d) = v. Letting p4 be the first entrance time of the walk
starting at d to A then it follows that

(3.15) D> eoa K(b, a)pa(a) = K(b,d)  forall bed
where
pa(a) = P(S,, = a, pa < o |S = d).

Equation (3.15) follows from an argument of Doob [6], namely that K (b, S,,)
and K(b, d) form a martingale sequence, since S, — « a.s. (see [6]). Also see
Hunt [12] and [13]. But ¢(d) = D _eesa ma(a), so that Equation (3.15) has a
solution of I; norm 5. The theorem follows since (3.11) is obviously a necessary
condition for (3.15) to have a non-negative solution of ' norm .

Equation (38.15) gives the harmonic measure of A relative to d. Corollaries
3.1 and 3.2 deal with the existence of a positive solution to a discrete Wiener-
Hopf equation and one might hope that it would be possible to practically decide
the recurrence question with the Wiener-Hopf theory. But unfortunately in
probabilistically interesting situations K (a, b), restricted to 44, is not I and the
existence problem for positive solutions seems quite delicate.

4. Recurrence for subsets of the three dimensional lattice. Now we seek more
specific information about three-dimensional lattice sets. Our results will be stated
in three dimensions with their obvious analogue in higher dimensions left to the
reader. The following definitions are appropriate:

Derinrrion 4.1. An infinite sequence of real numbers {a,} is superlinear iff for
all but a finite number of #’s a, = @,—; + a; forall 7, 0 < 7 < m,

DErINITION 4.2. A lattice set A is radially finite iff for every positive real
number ¢ there exist at most @ uniformly in ¢ bounded number of elements of A
with Euclidean norm c.

DEriNTION 4.3. A radial skeleton A, of a radial finite set A is any collection
of elements of A with distinct Euclidean norms such that forany a e A 3 a, ¢ A,
such that |a| = |as|.

Given two lattice sets A and B with B D A define gz 4(b) for any b ¢ B as

(4.1) g5.4(b) = Mingey [b — al.

We first prove the following corollary, as its proof is computationally simple, and
sketch the proof of its generalization Theorem 4.1.

CoROLLARY 4.1. Let A be a subset of the three dimensional lattice satisfying:

(i) A 1s radially finite;

(ii) The norms r(n) of the elements a, of a radial skeleton of A form a super-
linear sequence.
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Then A s transient iff
(4.2) Domar(m)] < .

Proor. If the series converges then Y n_; K(0, a,) converges by (2.1) and
the Borel Cantelli lemma implies A is transient.

Suppose D _n_11/r(n) is divergent and A is transient. Without loss of gener-
ality we may assume A = {a,}, where the a, have distinet increasing norms. By
Theorem 3.1 there exists e(-) = 0 such that

(4.3) : S na K(am, an)e(a,) = 1 for all m.
Now define
(4.4) N (m) = 20 r(n) K (am, )20 P(m)7T
But (4.3) and (4.4) imply
(4.5) S N (m)e(an) =1
and for fixed m
(4.6) N(m) -0 as N — .
However, assume m < N, then using (2.1) it follows that

1 3 1 ! + ¢ !
(4.7) 0N (m) g —nmrn 1(n) Jon 1" @] r(m)

Now elementary inequalities can be used to yield
(4.8) [an — @™ £ [r(m) — r(n)]7, m > n,
ln — an™ = [r(n) — r(m)I, n>m.
But it is clear that for m > n
(4.9)  {r(mr(m) — rm]}7 = )] + [r(m — n)]7}
while forn > m
rm)r(n) — r(m)}™ = (I {Ir)™ + [r(n — m)]™}
using Assumption (ii). Now it follows that ,
ilrtm — )7 = 2 ()]
2nemar(m — )7 = 20 ()]
Hence for m < N it follows that
(4.10) N (m) = [r(m)]"[4¢ + K (0, 0)r(1)].
Similarly (4.10) holds for m = N. The dominated convergence theorem in view
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of (4.6) and (4.10) with (4.3) implies
(4.11) limyaw Y omet N¥(m)e(m) = 0.

But (4.11) contradicts (4.5)

TarOoREM 4.1. Let A be a radially finite subset of the three-dimensional lattice
and suppose there exists a lattice set B containing a radial skeleton A, of A such that
95,4, 18 bounded on B and the norms of elements of B are a superlinear sequence
then A 1s transient iff

(4.12) Doaea o] <.

Proor. If (4.12) converges the Borel Cantelli lemma implies A is transient.

Suppose 4, is transient but (4.12) diverges. Then Theorem 3.1 asserts the
existence of u(a) satisfying (3.8) relative to 4, and it follows that F(-), the
potential induced by the charge u(-) satisfies,

F(b) = Xaesa, K(b, a)u(a) = K/[ga,a,(b) + 1], beB
Define

I

Ay = {aeB||a] £ N}
Me(@) = 2seay DK (b, @)/ 2peay |67 (ga,4,(b) + 1)

Then since Ay(a) — 0as N — » and 0 £ M\y(a) = ¢/|a| (see the proof of the
above corollary) but D _seshv(a)u(a) = K, a contradiction.

SUB-COROLLARY 4.1. Let a(n) be an increasing sequence of non-negative integers.
Denoting A(n) = a(n) — a(n — 1) suppose A(n) decreases at most finitely often.
Then A = {(0,0,a(n)),n = 1,2, ---} 4s transient iff Y 7y 1/a(n) < .

Proor. Let {a'(n)}no1 be the set {a(n)}i finitely augumented so that
A'(n) is non-decreasing, where

a'(n) —od'(n—1) = Al(n) with A'(1) = &'(1).
Hence
o'(n) = 25 A(G) =2 DI AG) + Xiad'() = d(n — i) + o (4)

or o (n) is a superlinear sequence and the result follows.

ExAmMPLES.

(1) Let a(n) = [n log n] where [z] denotes greatest integer in z then A is
recurrent.

(2) Let a(n) = [n'* e > 0 then 4 is transient.

(3) Let a(n) = [log n!] then A is recurrent.

Remarks. Note that the result of Ito and McKean ([13], (6.7), (6.8)) is
considerably weaker than Sub-corollary 4.1. Given a set A satisfying the hy-
pothesis of Sub-corollary 4.1, perform an arbitrary possibly different rotation of
each of its lattice points about the origin to a new lattice position. Then Corollary
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4.1 shows that the new set obtained has the same recurrence properties as A.
It is easily seen that a lattice point of distance r from the origin has asymptotically
r possible new positions under the rotation described above. Let A denote a
subset of the axis and RA the resultant set obtained from A by arbitrary rota-
tion of each of the points of A. Now with no conditions on A it follows easily
that if RA is transient then A is transient and if A is recurrent then RA is re-
current. The referee suggested a proof of the foregoing using Theorem 3.2.
An open question is whether RA can be recurrent but A transient. Likewise
clearly conditions of Corollary 4.1 are invariant with respect to arbitrary lattice
rotation of each point of a lattice set about the origin. The motivation for these
theorems is a theorem of Breiman [3] for the returns to zero in the fair coin
tossing game, which in turn was stated in [5], p. 1009, for the coin tossing game.

The question remains; is the gap condition of Sub-corollary 4.1 best possible
in the sense that it cannot be entirely removed? We show that it is by an example
of a transient subset of the line, ((0,0,\,) n = 1,2, - -) for which >_ \,™ = o}
(see [4]).

COUNTEREXAMPLE. Let A, = {ieI|2" <4 < [27(1 + )]} and A = uAr =
Mnym=1,2---).Then D so A " = Dores Dojer,j - = Dmaln(l +77") = oo,

Recalling Corollary 3.3, it follows that
C(A) S I8 Jminsen, Sies, K(iy DI ~ 2T 7T ~ 2r(r = o)™
where A" = {(0, 0, a) |ae A}. Hence Y C(A,)/2" < o, but Wiener’s test
(see Appendix 1 and [14]) implies ((0, 0, \,), n = 1,2, ---) is transient.

In view of the specific nature of the counter-example we give necessary and
sufficient conditions for transience of sets of this type satisfying a regularity
condition as follows:

TuEOREM 4.2. Let A = {(4,0,0) | i B} where B = Uy {j | m, < 7 < M,}
and M, > m, > M, with {M,}, {m,} increasing sequences. Suppose

(1) For all but a finite number of n’s and some finite positive s and k independent
of n

(M, — M;)(mg — M)™ < Mi_; M5, forallj <n
M'u — My é H’?=l Mismi_8~
Then A 1s transtent iff

(4.13) Donat (M — my)/my < .

Proor. Necessity is trivial. Sufficiency is shown by following the argument of
Corollary 4.1 where here

M(a) = [ 2255 220, K (a, (0, 0, 9)I[2 5o 2 7T

Using the conditions of this theorem, it easily follows that Ay(a) < Kla|™,
and the theorem results.
ExamMpLE. Let M, = n + nz, m, = n’ then A is recurrent.
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For subsets of an axis in the lattice, define
ma(n) = |An{a]2" < [o < 27|/2"

where |A4] is the number of points in A. We have the following,

TrEOREM 4.3. Let A be a subset of the line in the three dimensional lattice. If
D onima(n)/n diverges, then A is recurrent. M oreover, if D m—1ma(n) con-
verges, then A 1is transient.

Proor. Let A, = A n {a|2" £ |a] < 2"7"}. Consider the capacity of A, ,
then by the remarks following Corollary 3.1

(4.14) C(An) = D acoa, n(a)

where u(a) is the unique solution of

(4.15) D bean, K(a,b)u(d) =1, acdd,.
Using Corollary 3.3, it is evident that »

|04,
MaXpea4, ZazaAn K(a,b)

= Vi) = minbsaAn Zae&AnK(a;b) )

(4.16)

Now
(4.17) mMaXpeaa, Zazun K(a, b) = K(0, 0) + 2ﬁn gs/x dx

(see 2.1) and the result follows by Wiener’s test (see [14] and Appendix). Note
that one can replace Y m4(n)/n by . ma(n)/In ma(n) in Theorem (4.3).

Appendix. [Wiener’s Test] (see [14]). Let A be a lattice set in s = 3 dimen-
sions then A4 is recurrent iff

Z:=1 CAn{a|2" = la| < 2n+l})/2n(s——2) - .
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