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1. Introduction. A Room square is a (2n+1) x (2n+1) array in which each cell
is either empty or contains an (unordered) pair of the 2n+2 symbols 0, 1, - - -, 2n, co.
Moreover, each of the symbols appears exactly once in each row and in each
column of the array, and each (unordered) pair appears exactly once in the entire
array. A cyclic Room square (CRS) is a Room square in which the entries a;;, 7, j =
0,1,--+,2n, satisfy a;; =(x,y) if and only if a;,_, ;_; =(x—1, y—1) (where
addition is reduced modulo 2n+1 and co+a =g+ =ow fora=0,1, :--, 2n).
A patterned Room square (PRS) is a CRS in which the first row (the entries a;,
i=0,1, -, 2n) contains the (unordered) pairs (o0, 0), (1,2n), (2,2n—1), -,
(n, n+1), not necessarily in this order. Stanton and Mullin [3] gave a computer
construction for PRS of (odd) side 7 through 49, with the exception of 9, for which
a PRS does not exist. This note extends that result by showing that PRS of side p
always exist, where p is a prime not of the form 2°+1.

Mullin and Nemeth [1] give the following definitions for a starter and adder for a
general finite Abelian group G of order 2n+1: A starter in G is a set X = {(x;, y1),
(x2, ¥2)s =, (X,, )} Oof unordered pairs of elements of G such that (i) the elements
X1s V1> X25 Vas ** 5 Xy Yy, cOmprise all nonzero elements of G, and (ii) the differences
+(x;—y),i=1,2,--+,n comprise all nonzero elements of G (generating each
exactly once). An adder for X is a set A(X) of n distinct nonzero elements a,, a,, -+,
a, from G such that the elements {x;+a;, y;+a;},i=1,2, -, n are all distinct
and comprise all the nonzero elements of G.

As shown in [3] and in greater detail in [1], the existence of a starter and
adder for a cyclic group of order 2n+1 implies the existence of a CRS of
side 2n+ 1. The proof of this fact uses the following procedure for constructing
a CRS from a starter X and adder A(X): the entries a,; of the first row of a
(2n41)x (2n+1) array are specified by (i) aqo = (00, 0), and (ii) aq, —,, = (x;, 1),
i=1,2,--,n, and then the array is completed by imposing the condition that the
array must satisfy the cyclic property. The result is a CRS. A PRS is thus deter-
mined by an adder which corresponds to a starter consisting of the pairs (1, 2#x),
2,2n—1), -+, (n,n+1). In the next section, an adder is given for such a
starter.

Other references to the literature of Room squares will be found in [1].
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2. An adder for the construction of patterned Room squares.

THEOREM. Let p = 14 2°m, where m > 1 is odd, let A=2°"", and let x be a
primitive element in GF(p). Then

1
X +1 Xk k=0,1,. mA—l}

A(X) = {( 1yte/al
is an adder for the starter X = {(x*, x**™): k=0, 1, -+, mA—1}. (4s usual, [1]
denotes the greatest integer less than or equal to t.)

Proor. It suffices to show (a) the elements of 4(X) are distinct and nonzero, and
(b) in the set

+1
X+MD={GU{IWWL o,

1
xk+mA+( 1)[k/A]x +1 ) k=0,1,. mA—l}
x4 —

each nonzero element of GF(p) appears exactly once as a first or second component.

(a) Since m > 1is odd, x* # + 1, so the elements of A(X) are nonzero. Further-
more,

(= 1ywar X +1« = (- 1)[,/A]x 1
x4 x4—1

implies x* = + x/. Since k, j =0, 1, - -+, mA—1, we must have x* = x/, as required.

(b) Notingthat X+ 4A(X) contains mA pairs, and hence 2mA = p—1 components,
it suffices to show that in X+ A4(X), (i) no two first components are equal, (ii) no
two second components are equal, and (iii) no first component equals some second
component. We consider first the implications of the equality

(£ (A=) & (B + 1)) = X+ (B =) & (x4 +1))

in the 16 possible choices of the + and — signs. Case 1. + ++ +, — ———,
+—+4—, —+ —+. Each of these choices implies x* = x/, so k =j. Case 2.
+—-+4++, +++—, —+——, ———+. Each implies either —x*=x/** or
—x/ = x**4 Thus either k4+mA = j+A or j+mA = k+A, so [j/A] and [k/A] have
the same parity. Case 3. + + — +, + — — —, — — + —, — + + +. Proceeding as in
Case 2, we find that [j/A] and [k/A] have diﬁ'erent parity. Case 4. ++ — —,
4+ ——+, ——++, —++ —. Each implies x* = —x/, so k = j+mA. We now
establish (b) by showing (i), (ii), and (iii).

(i) Suppose two first components are equal. Then there exist j, k=0,1,---,
mA —1 such that

X (= )[k/A]x “"lx — X (- )[f/A]’_C_AA"'_lxj’
x4—1 -1

which implies x*((x2—1)+(—DFA(x2+1)) = /(x> = 1)+ (= DIA(x2 +1)). If
[k/A] and [j/A] have the same parity, then Case 1 applies (and k =j). If [k/A]
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and [j/A] have different parity, then Case 2 applies (a contradiction). Thus the only
possibility is k£ = j, which shows that no two first components are equal.

(ii) Suppose two second components are equal. Proceeding as in (i) we find
again that the only possibility is k = j, as required.

(iii) Suppose some first component equals some second component. Then there
existj, k=0,1, -+, mA—1 such that

x/

x4+1 )[J/A]x At
A_] ?

X (= )[k/A] xk= —xI (=
x4 —1

which implies x*((x®—1)+(—= DA x24+1)) = /(= (x* = 1)+ (= DU/ (x2 +1)).
If [k/A] and [j/A] have the same parity, then Case 3 applies (a contradiction). If
[k/A] and [j/A] have different parity, then Case 4 applies (again a contradiction
since k = j+mA is impossible). Thus no first component.equals some second com-
ponent, completing the proof of (b), and of the main result.

From the remarks made in the introduction, it follows that PRS of side p exist,
where p is a prime not of the form 2°+1.

3. Patterned Room squares from strong starters. In [2], Mullin and Nemeth
defined a strong starter X = {(x;, y;): i=1,2, -+, n} to be a starter with the addi-
tional property that the elements of the set {x;+y;:i=1,2,---, n} are distinct
and nonzero. In [1] it was shown that for a strong starter the set {—(x;+y;): i =
1,2,--+,n} is an adder, say A(X). Thus the set X+ A(X) = {(—y;, —x)):i=
1,2,-++,n} is also a strong starter. The following similar result shows how a
patterned Room square may be obtained from a strong starter.

PROPOSITION. If X = {(x;, yy):i=1,2,--,n} is a strong starter, then the set
={—=Q+y)2:i=1,2,---, n} is an adder for X.

Proor. It suffices to show that the elements of each of the two sets 4 and B =
{xi—=(x;+2)2, yi—(ei+p)2: i=1,2,+,n}={(x;=y)2, (yi—x)2: i=1,
2, -+, n} are distinct and nonzero. Since X is a strong starter the elements of each
of the sets C = {x;+y;:i=1,2,-++,n} and D = {x;—y;, yi—x;:i=1,2,""",n}
are distinct and nonzero. Hence the elements of 4 (compare to set C) are distinct
and nonzero, as are the elements of B (compare to set D), thus completing the proof.

Therefore A is an adder for X, say A(X), and furthermore the pairsin X+ A(X) =
{((x;=y)2,(y;i—x)[2):i=1,2,+--,n} are in the form (g, —a). Thus the first
column of the CRS obtained from the strong starter X and the adder 4(X) in a
cyclic group contains the pairs (oo, 0), (1, 2n), (2,2n—1), -, (1, n+1), so the
array is a PRS (we consider the rows as columns and columns as rows to strictly
satisfy the definition given for PRS).

The existence of a strong starter in GF(p") where p" is not of the form 2°41
(exhibited in [2]), thus also shows the existence of PRS of side p where pisnot of the
form 25+ 1.

The theorem also holds for GF(p"), n > 1, although in this case the Room square
constructed from the starter and adder (as in [1]) will not be cyclic, and thus not a
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PRS. Mullin has noted that by generalizing the definition of PRS to a Room
square (not necessarily cyclic) in which the first row consists of inverse elements,
then the theorem (as well as the strong starter result) implies the existence of the
generalized PRS of side g, where ¢ is a prime power not of the form 2°+ 1.
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