A MARTINGALE DECOMPOSITION THEOREM¹

By GORDON SIMONS

University of North Carolina

Let Z be a random variable with $E|Z| < \infty$ and define recursively

$$Z_0 = EZ, \qquad Z_n = E^{\mathscr{F}_n}Z,$$

where

(2)
$$\mathscr{F}_n = \mathscr{B}(Z_{n-1}, I(Z \ge Z_{n-1})) \text{ for } n = 1, 2, \dots^2$$

The Z_n sequence constitutes a martingale decomposition of Z in the sense of the following

THEOREM.

- (i) $Z_0, Z_1, \dots, Z_n, \dots, Z$ is a martingale.
- (ii) The conditional distribution of Z_n given Z_{n-1} is a one or two point distribution a.s. for $n = 1, 2, \cdots$.
 - (iii) $Z_n \to Z$ a.s. as $n \to \infty$.

PROOF. It is useful to define a closely related sequence by

$$Y_0 = EZ, \qquad Y_n = E^{\mathscr{G}_n} Z,$$

where

(4)
$$\mathscr{G}_n = \mathscr{B}(Y_i, I(Z \ge Y_i); i = 0, \dots, n-1)$$
 for $n = 1, 2, \dots$

We shall show that

$$\mathcal{F}_{n} = \mathcal{G}_{n}$$

from which we may conclude (i) (cf., [1] page 293) and

(6)
$$Y_n = Z_n \text{ a.s. for } n = 0, 1, \dots$$

To show (5), it suffices to show for $0 \le j < k$ that

(7)
$$Z \ge Y_i$$
 if, and only if, $Y_k \ge Y_i$ a.s. and

(8)
$$Y_i$$
 is measurable with respect to $\overline{\mathcal{B}}(Y_k)$.

Received July 22, 1969.

¹ Research partially sponsored by the National Science Foundation under Grant No. GU-2059.

² We shall assume that everything is defined on a basic probability space (Ω, \mathcal{F}, P) . For an arbitrary event $A \in \mathcal{F}$ and arbitrary random vector W, we denote I(A) and $\mathcal{B}(W)$ as the indicator function (taking the value 1 on A and 0 off A) and the σ -field generated by W respectively. $\overline{\mathcal{B}}(W)$ will refer to the smallest σ -field containing $\mathcal{B}(W)$ and the null sets of \mathcal{F} .

For then

$$\overline{\mathscr{G}}_{n} = \overline{\mathscr{B}}(Y_{i}, I(Z \ge Y_{i}); i = 0, \dots, n-1)
= \overline{\mathscr{B}}(Y_{n-1}, I(Z \ge Y_{n-1}), Y_{i}, I(Y_{n-1} \ge Y_{i}); i = 0, \dots, n-2) \quad (\text{cf., (7)})
= \overline{\mathscr{B}}(Y_{n-1}, I(Z \ge Y_{n-1})) \quad (\text{cf., (8)})
= \overline{\mathscr{B}}(Z_{n-1}, I(Z \ge Z_{n-1})) \quad (\text{cf., (1), (2), (3), (4)})
= \overline{\mathscr{F}}_{i}.$$

(7) follows from

(9)
$$I(Z \ge Y_j)(Y_k - Y_j) = E^{\mathcal{G}_k} I(Z \ge Y_j)(Z - Y_j) \ge 0 \quad \text{a.s.}$$

and

(10)
$$I(Z < Y_j)(Y_k - Y_j) = E^{\mathcal{G}_k}I(Z < Y_j)(Z - Y_j) < 0$$
 a.s. on $[Z < Y_j]$.

(8) is true for j = 0 and if true for $j = 0, \dots, \alpha - 1 < k - 1$, then

$$\overline{\mathscr{G}}_{\alpha} = \overline{\mathscr{B}}(Y_i, I(Y_k \geq Y_i); i = 0, \dots, \alpha - 1) \subset \overline{\mathscr{B}}(Y_k)$$

and, hence, (8) is true for $j = \alpha$.

(ii) is immediate from (1) and (2). Preliminary to showing (iii), we observe that for $0 \le j < k$,

(11)
$$E|Z - Y_{j}| = EE^{\mathcal{G}_{k}}(I(Z \ge Y_{j}) - I(Z < Y_{j}))(Z - Y_{j})$$

$$= E(I(Z \ge Y_{j}) - I(Z < Y_{j}))(Y_{k} - Y_{j})$$

$$= E(I(Y_{k} \ge Y_{j}) - I(Y_{k} < Y_{j}))(Y_{k} - Y_{j}) = E|Y_{k} - Y_{j}|.$$

It is easily seen that $\sup E|Y_n| \le E|Z| < \infty$ and that the Y_n are uniformly integrable. Hence, by the martingale convergence theorem, there is a random variable Y_∞ with $Y_n \to Y_\infty$ a.s. and $E|Y_\infty - Y_n| \to 0$ as $n \to \infty$. In view of (6) and (11), (iii) clearly follows.

REMARKS.

- (A) It is easy to see that if one of the Z_k is decomposed as we have Z into a sequence Z_{kn} $(n = 0, 1, \dots)$, say, then $Z_{kn} = Z_{k \wedge n}$ a.s. where $k \wedge n$ is the smaller of k and n.
- (B) The search for this theorem was primarily motivated by the work of Lester Dubins [2]. In particular, the decomposition leads to an obvious procedure for embedding Z into Brownian motion when EZ = 0 and, more generally, for embedding zero mean martingales. The idea is the following: If Z is not almost surely equal to zero (a trivial case), then Z_1 assumes one of two possible values a or b, say, with a < 0 < b. The law of Z_1 is identical to the law of W(t) where $(W(s), s \ge 0)$ is Brownian motion and t is the first time s > 0 such that W(s) = a or b (cf., Skorokhod [3] page 163). Having embedded Z_1 , one embeds Z_2, Z_3, \cdots successively (cf., Strassen [4] page 318). The embedding of Z is accomplished by pro-

ceeding to limits. This procedure, which does not require external randomization, is identical to the one suggested by Dubins [2].

(C) I am indebted to Professor Dubins for bringing to the author's attention the recent work of Paul Meyer appearing in the form of University of Strasbourg seminar notes. These include a section on "Un Théorème de Dubins" in which he clarifies a difficult point in Dubins' paper. There is some overlap between Meyer's work and the author's.

REFERENCES

- [1] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [2] Dubins, Lester E. (1968). On a theorem of Skorohod. Ann. Math. Statist. 39 2094-2097.
- [3] SKOROKHOD, A. V. (1965). Studies in the Theory of Random Processes. Addison-Wesley, Reading.
- [4] Strassen, Volker (1967). Almost sure behavior of sums of independent random variables and martingales. *Proc. Fifth Berkeley Symp. Math. Statist.* 2 315–343.