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The results in this paper are analogous to those of Teicher [7] for maximum
likelihood estimators. He showed that if Y x;/n (3 x;?) is a maximum likelihood
estimator for a location (scale) parameter family of distributions, then the family
is the normal family of distributions.

We will show that the normal distribution is the only distribution for which X
is a sufficient statistic for a location parameter. Similar but weaker results are
obtained for S? sufficient for a scale parameter and for (X, S) sufficient for a
location and a scale parameter. )

Koopman [4] showed that if X is sufficient for a location parameter in a differen-
tiable density, then the density is normal. The first theorem in this paper is a direct
extension of a result of Basu. Basu [1] showed that ) b,x; is a boundedly complete
sufficient statistic for a location parameter 6, based on an independent sample of
size n(n = 2), if and only if each x; is a normal variable with variance a/b; for some
constant a. '

For the direction of the proof which is not trivial, the following theorem con-
siderably strengthens Basu’s result by dropping bounded completeness from the
hypothesis.

THEOREM 1. Let x;,X,, ", X, (n=2) be independent non-degenerate random
variables with cdf’s F,(x) = F(x—0), —00 <0 < 0. 4 necessary and sufficient
condition for ) byx (] [b; # 0) to be a sufficient statistic for 0 is that each x; is a normal
variable with variance alb, for some constant a.

Proor. That the condition is sufficient is clear from the factorization theorem
for sufficient statistics.

Conversely, let a;, a,, **, a, satisfy Y a; =0, and without loss of generality
assume ) b; = 1. We will show that Y bx; is stochastically independent of Y a,x;;
from this, using the result proved by Skitovich [6], the conclusion follows.

Ghurye ([2] page 161) has shown that if #(x,, -+, x,) is a sufficient statistic for
0 which satisfies t(ax;+d, -, ax,+d) =at(x,, ", x,)+d, and if s(x;, ", x,)
satisfies s(ax,+d, ‘- -, ax,+d) = as(x,, -*-, x,) with a >0, then ¢ and s are in-
dependent. Let #(x;,*, x,) =Y b;x; and s(xy, -, x,) = Y.a;x;. Thus Y b.x, is
independent of Y a;x;, and therefore each x; has a normal distribution.
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From the factorization equation, it is easily seen that the variance of x; is equal
to a/b; for some constant a. This concludes the proof.

Additional conditions are necessary for a corresponding theorem on scale
parameters. Consider a random variable which is the square root of a gamma
random variable that has a scale parameter. The statistic Y x,? is sufficient for the
scale parameter.

THEOREM 2. Let x,, x,, ", x, (n = 2) be independent random variables involving
a common scale parameter; i.e. F,(x)=F{x/o) i=1,2,-"",n (6 >0). Let x;?
be non-degenerate. Then a necessary and sufficient condition for inz‘ to be sufficient
for @ is that each x;* has a gamma distribution with a common scale parameter and
that for each i, either P(x, > 0) = 1, or P(x; < 0) = 1, or P(x; < —|x|) = cP(x; > |x|)
for some constant c. .

Proor. That the condition is sufficient is obvious.

Assume that inz is sufficient for o, and let Y be any scale invariant function of
Xy, ***, X, Using a procedure similar to that in the proof of Corollary 2.2 of
Ghurye [2], we get that Y is independent of ) x;?.

Now let u = x,2, v = x,2+ -+ +x,2. Then u+v is stochastically independent of
ufv. Now a theorem of Lukacs ([5] page 319) states that under the circumstances
u, v, and u+v have gamma distributions with a common scale parameter. Thus the
density of w;=x72 is f(w)= (BT (k)) "W lexp(—w/B),w>0. Let 4=
{1, X35 770, X,) ] xy >0}. Let y, be a random variable with the conditional
distribution of x, giventhatx; > 0.Let ¥ = (¥4, X5, ", x,)and X = (x, x5, " **, X,,).
Let B be a Borel subset of 4. Then P(YeB|S =s5) = P(XeB|S = s5)/P(x, > 0).
The right side is independent of ¢, and hence the left is also. Thus S is still sufficient
for ¢ with the distribution of x, replaced by its conditional distribution, given that
x; > 0(x; < 0). It follows that y,? has the gamma density f; and that the density
of x; must be of the form g(x) = 2c(p*T'(k)) x* texp(—x%/B), x>0 and
g9(x) = 2(1—)(B*T(k")) " *x* ~Lexp(—x?/B), x < 0 for some ¢, 0 S c £ 1.

Since £1(y1) = 2yH) "1 (g(yH)+g(—y,?)), it is seen that k = k’ = k,, and the
conclusions of the theorem are satisfied.

COROLLARY. Let X, X,, '+, X, (n = 2) be independent random variables involving
a common scale parameter. Let F;, the distribution function of x;, be absolutely
continuous with respect to Lebesgue measure in a neighborhood of the origin. At the
point x = 0, let F;' be non-zero and continuous. Then if Y. x;2 is sufficient for the scale
parameter, each x; has a normal distribution with mean zero.

Proor. The conditions imply that k, = ¢ = 1 in the function g in Theorem 2.

THEOREM 3. Let xq, X5, ", X, (n=4) be independent, identically distributed
random variables with the distribution of each x; having a location parameter 0
(— o0 < 0 < ) and a scale parameter ¢ > 0. Let X = Y x,/n, S* = (1/n) ¥ (x;—X)*.
If (X, S?) is a sufficient statistic for (0, o), then each x; has a normal distribution.
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PrOOF. Let Y be a statistic that is invariant under changes of location and scale.
Procedures similar to those used in Corollary 2.2 of Ghurye [2] can be used to show
that Y is stochastically independent of X and S. The result follows from the
following lemma.

LEMMA. Let Xy, X5, """, X, (n = 4) be independent, identically distributed random
variables with the common cdf F. Let Y = (x, —x,)/S. If Y is stochastically independent
of the pair (X, S), then each x; has a normal distribution.

Proor. The proof is along the lines of the proof of Kawata and Sakamoto [3]
for characterizing the normal distribution in terms of the independence of X and S.

Let t =) x;, ¢ = x;% and let f(t, ) be any measurable function such that
Ef(t, q) is finite. The distribution of ¥ has moments of all orders since| Y| < (2n)*.
Thus for any positive integer r,

(N EY'f(t,q) = EY'Ef(1, ),

since the assumptions of the lemma imply that Y is independent of f(t, g). The
equations (1) will help define the distribution if the quantities involved can be
evaluated in terms of some characteristic functional. This is achieved by taking r
even (= 2k) and f(¢, q) = S**p(t, q) exp (iut — bq), with p a polynomial and b > 0.

Define G(x) = ko [* ., exp(— bv?)dF((v—0,)/0,), with k, a normalizing constant
and with b, 6,, 6, such that the mean of G is zero and the variance of G is one. This
can be done if b is small enough. In particular, b must be less than }. G has moments
of all orders. F(x) could just as well have been F((x—6,)/0,). This leads to the
equations

(2) Eg{(x, —x2)%p(1, q)exp (iut)} = (Eg Y2k)EG{Ssz(t, q)exp (iut)}.

Now, it turns out that k = 1 results in an identity which gives us no information;
hence, we must try k = 2. Another point to note is that all equations (2) obtained by
taking p = t"g(t, q), with g a polynomial, are derivatives of the equations obtained
by taking p = g. Thus it is the powers of ¢ (or equivalently, of S) in p that give
additional information. Let K = EY* and let 4 be the logarithm of the characteristic
function of G. Taking k = 2and p = 1 in (2) gives us

(2n—K(n—1)Hh® = n((n* - DK —12)(h")*.

Since n =4, both coefficients cannot be zero; thus 2n—K(n— 1)?2 #0, since
h'(0) # 0. Let ¢ = n((n*— 1)K —12)/(2n— K(n—1)?). We now have

3) h® = c(h")?.
We propose to show that ¢ = 0. For if ¢ = 0, then from equation (3) and the
conditions on G we get that h(u) = —u?/2; and since '

h(u) = log {k, [ exp (iux—bx*)dF((x—00)/0,)},

it follows that k,exp (—bx?) dF((x—0,)/a,) = (2n) " *exp(—x?/2). Since b < %, we
conclude that Fis a normal distribution.



A SUFFICIENT STATISTICS CHARACTERIZATION OF THE NORMAL DISTRIBUTION 1089

The remainder of the proof consists of showing that ¢ = 0. Let o, = Eg(x,)". The
function G was picked so that o, = 0 and a, = 1. Evaluating equation (3) at ¥ =0,
we get A(0) = ¢ =a,—3.

Letu =0, k = 2,and p = S? in equation (2). Straightforward but time-consuming
computations lead to

4) (n—1Dag—2(n—1)o,2 4+ (n+ 3oty + 200, 0032 —d(n— a3 =12 = 0.

Taking the derivative of equation (3) and letting u = 0, we get a5 = (4+204)x3. Two
derivatives of equation (3) give us

(5) g = 20042 4 o, + 2004 0032 + 40ty 2 — 12,
Combining (4) and (5), we get

(6) 3% = (6—2a4)/0y,

Lettingu = 0,k = 2and p = S*in equation (2), we have

7 (n—=1)205—2(n—1)2aga,+2(n—1)(n*=2n+11)og

+8(n—1)as oty o3 —16(n? —2n+2)as oty
—2(n*=2n+3),>—(4n® =170+ 38n—49)a,>
+2(n®—45n+54)a, +4(4n> — 170 +25)04 0052
—4(2n% —15n2+44n—65)0,2 —24(n* —6n+12) = 0.
Three derivatives of equation (3) lead to
(8) og — 280t — 56015 oty — 2000, 20032 — 1001, + 55042
+ 1200, 032 4 1500, + 380032 — 360 = 0.

Multiplying equation (8) by (n—1)? and subtracting from equation (7) and then
writing the result in terms of o4, we get the equation

n(n—2)o* —2n(4n—"7)a> —(5n* — 10n + 8)a®
+6(16n%—29n+4)a—108n(n—2) =0, or
) (a=3)[n(n—2)a®—n(5n—8)a® —(20n> — 34n + 8)«
+36n(n—2)] =0.

We now show that o = 3 is the only root of equation (9). From equation (6)
we get that o, < 3. Using the relation a5? < a4, which is valid for the moments of
any distribution, we have

(4+420,)%(6—20y) oy = ats® < gty
= [0 4 3oty + 2004(6 — 20t4) oty +4(6 — 204) oty — 12]ety, OF
20* + 70 — 400 — 96 = 0.
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The expression on the left is convex for « > 0, and is negative for « = 0, 2. Thus we
conclude that 2 £ o < 3. The right-hand factor in equation (9) is negative at o = 2
and at o = 3 and is convex for 2 < o < 3. Applying this information to equation (9),
we conclude that o = 3. If & = 3, then ¢ = 0, and this concludes the proof.

The method of proof used in the lemma did not yield any information about
what the conclusion is if » = 3. For n =2, X and S? are equivalent to the order
statistics. As a particular counter example for n = 2, the order statistics are sufficient
for the uniform distribution.
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