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THE GEOMETRIC DENSITY WITH UNKNOWN
LOCATION PARAMETER

By JEROME KLOTZ

University of Wisconsin
1. Summary. Unbiased estimators are derived for a sample from the geometric
density with unknown p and unknown location parameter. Mean square errors are
compared with the maximum likelihood estimator and unbiased tests of hypotheses
are given.

2. Model and sufficient statistics. Let X, X,, -+, X, have the discrete geometric
density

(2'1) P[Xl = xi] = qu_vp (xi =V, v+ 19 Y w)

where the vector parameter 6 = (v, p) is unknown, ¢ = 1 —p, and v is the location
parameter. When p is known, X;, = min X; is sufficient for v. Further, X, is
complete and has a distribution given by

(2'2) P[‘Xr(l) = x] = qnx_vpn (x =V, v+1, Tt OO)

where g, = q", p, = 1 —q". Using (2.1) and the factorization theorem, we see that
(X(1)» 3. X)) or equivalently (X,), U) is sufficient for 8 where U =) (X;—Xy)).
By Basu’s theorem [1], X,y and U are independent since the distribution of U does
not depend on v.

3. Distribution of U. The joint distribution of the order statistics X ;) < X3, <
-+ £ X can be written

P[X (1) = X1y X2y =X@2p """ Xwy = Xm)]

n! -v n
- - [nk tk!:l q""“” )(l—q )I["mévl

n
X(x(1)—X (1)) p
1—q

n][x(l)éx(2)§' rExm]

*q
where #; is the number of x; equal to the value k =0, 1, 2, - -+, c0. Thus

(32) P[Xuy=xqp,U=u]= qn(x“)—v)(l—qn)I[x(,);v]

i n!
' qu 1 _an(l_ﬁ“j 1[x(|)§' . '§X(n)])
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where the sum is over some region that depends only upon » and u using the
independence. If we call this sum g,(#), we have

n

PlU=u]=4q" gn(u)

p
1—
and we can determine g,(#) by summing the probabilities to one:

Yl

Z =g’ w)=1 or 3 gu)g"=1-g"1-g)™"
n=0 n=0
Equating coefficients of the power series we have
gnw) = ("= G,

with the usual zero convention for negative arguments of binomial coefficients.
Hence

n+u—1 u—1 p"

33 P[U=u]= - "
on == ()Tt
U fntn=1\ ¢ (u=1\ ,_
C1—-q" u ar 1—¢" n—n)? P

4. Unbiased estimators of . Since (3.3) belongs to the exponential family, u is
complete for the family with 0 < p < 1. Therefore (X4, U) is jointly sufficient and
jointly complete for 6 and the usual theory of minimum variance unbiased estima-
tion works. For the unbiased estimator of p, we solve for A(u) in the equation

n+u—1 u—1 P
4.1) Z h(u )<< >_<u—n>>q 1*_—(17,—19,

to obtain

4.2) h() = [ )= GIDICTTH=G=D]

To obtain the minimum variance unbiased estimator of v, we note that
(4.3) EX1y=v+q"[(1—¢").

Thus we similarly derive the unbiased estimator f(u) for ¢"/(1 —g") to be
(4.4) f@) =Gz H=GIDI,

and construct the unbiased estimator of v to be

4.5) X = (@D H =G0

The mean square error for estimator (4.2) is compared with that of the maximum
likelihood estimator p = n/(n+ U) in Table 1, and a similar comparison is given for
(4.5) and the m.Le. ¥ = X{,,in Table 2.

The values, believed accurate to within one unit in the last place, were checked
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by various methods. Probabilities were summed to one to 64 decimal places, and
checks from EW(U) = p, Ef(U) = q"/(1 —q") were obtained. In addition, for n = 2
the mean square error of f(u) simplifies to give [¢%(2—p)/(2p*(1 +g)]+4*/(1—g>).
The number of terms used varied between 170 for n =2 to 680 for n = 20. The
large number of terms was required for the accuracy given because of heavy tails
in the distribution for the smallest value of p = .1. An additional check was made
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TABLE 1
Mean square error comparison of unbiased and m.1. estimators of p

M.S.E p=.1 3 S i 9
n=2 unbiased 6.632(—2)" 1.482(—1) 1.667(—1) 1.292(—1) 4.909(-2)
ml1.(p) 6.177(—2) 4.335(—2) 1.378(—2) 2.188(—2) 7.381(-2)
n=35 unbiased 3.769(—3) 1.994(—2) 3.219(—-2) 3.311(-=2) 1.677(—2)
m.1.(p)  7.074(=3) 1.714(—2) 1.500(—2) 1.693(—=2) 2.277(-2)
n=10 unbiased 1.222(—3) 7.516(—3) 1.384(—2) 1.557(—2) 8.251(—3)
m.1.(p) 1.689(—3) 7.718(—3) 9.714(—-3) 1.125(—2) 9.621(—3)
n=15 unbiased 7.226(—4) 4.653(—3) 8.907(—3) 1.019(—2) 5.469(—3)
m.l1.(5)  8.734(—4) 4.928(—3) 6.953(—3) 8.253(—3) 6.035(—3)
n=20 unbiased 5.124(—4) 3.388(—3) 6.570(—3) 7.569(—3) 4.089(—3)
m.1.(p)  5.817(—4) 3.590(—3) 5.394(—3) 6.481(—3) 4.392(-3)

! The number in parenthesis is the exponent or power of 10 so that 6.632(— 2) represents .06632.

TABLE 2
Mean square error comparison of unbiased and m.1. estimators of v

M.S.E p=.1 3 .5 i 9
n=2 unbiased 4.476(1) 3.683(0) 8.333(—1) 1.907(—1) 1.627(-2)
m.1.(¥) 4.061(1) 2.807(0) 5.556(—1) 1.185(—1) 1.031(—-2)
n=35 unbiased 4.378(0) 2.897(—1) 3.725(—2) 2.578(—3) 1.018(—5)
m.1.(%) 5.600(0) 2.837(—1) 3.434(—2) 2.448(—3) 1.000(—5)
n=10 unbiased 9.047(—1) 3.130(—2) 9.898(—4) 5.915(—6) 1.000(—10)
m.1.(%) 1.109(0) 3.076(—2) 9.794(—4) 5.905(—6)  1.000(—10)
n=15 unbiased 3.454(—1) 4.855(—3) 3.056(—5) 1.435(—8) 1.000(—15)
m.1.(%) 3.937(—1) 4.816(—3) 3.052(—5) 1.435(—8) 1.000(—15)
n=20 unbiased 1.634(—1) 8.020(—4) 9.538(—7) 3.487(—11) 1.000(—20)
m.1.(%) 1.767(—1) 7.998(—4) 9.537(—7) 3.487(—11) 1.000(—20)
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by computing the probabilities by two methods and the m.s.e. of the m.l. estimator
) = X, was completed from ¢"(1 +¢")/(1 —g")*.

The results indicate roughly that the maximum likelihood estimator of p is
better than the unbiased estimator for the middle values of p, while the unbiased
is better for extreme values of p. For estimating v, the unbiased is better for small p
values with the m.l. estimator better for moderate to large values, although the
difference is slight for large » and p.

5. Tests of hypotheses. For simplicity, we shall restrict attention to one-sided
hypotheses although they are easily modified for two-sided hypotheses ([3]
Chapter 4).

For testing the hypothesis

H,: v=<0 against the alternative A4,: v>0,

we construct a u.m.p. unbiased test by selecting the best similar test on the boundary
v=0,0 < p < 1. On this boundary, the statistic § =) X; is sufficient and complete
and under the general model S—nv has the negative binomial distribution with
parameters #, p. It is easy to show for a fixed value s = nv, that the conditional
likelihood ratio of the sample given S = s is monotone in X(;), and so the u.m.p.
unbiased level o test rejects with probability

d(x(1)) =1 if x> C(s)
=9 if x¢y = C(s)
=0 it xqy < C(s)
where C(s), y(s) are uniquely determined from
L =0 PG = CIES DT D =
For testing the hypothesis
H,:p < p, against the alternative A4,: p > p,

we similarly construct the u.m.p. unbiased test by finding the best similar test on
the boundary p = p,, —00 <v < . On this boundary, X, is sufficient and
complete. Reducing by sufficiency and using the independence of U and Xy, we
see that the u.m.p. similar test is based upon U alone. Since the distribution of U
given by (3.3) is in the exponential family, the u.m.p. unbiased level « test rejects
with probability
o(u) =1 if u<C

=9 if u=C

=0 if u>C
where C, y are uniquely determined so that

w=o d)(CTT D= (Z))0"Po" (1= 4o") = o
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6. Comments. The relationship with the continuous exponential density with
location parameter u given by Ae”**~® for ¢ > u is seen by letting the random
variables X; be the number of time intervals of length r before a failure. With
u=rv,p=ri, and T; = rX; (the time to failure) we see that the geometric distribu-
tion converges to the exponential as r — 0. The unbiased estimator for u in the
exponential distribution is given by T(l)—z,.(T i+ T(y)/n(n—1) which can be
obtained as a limit from (4.5) after multiplying by r. Similarly for A, the unbiased
estimator (n—2)/) (T;—T,,,) can also be obtained from (4.2) by dividing by r and
taking the limit.
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