CONVERGENCE OF SUMS TO A CONVOLUTION OF STABLE LAWS

By J. DAVID MASON

University of Georgia

1. Statement of the problem. Let $\{X_n\}$ be a sequence of independent random variables such that the distribution function of X_n is one of F_1, \dots, F_r , where F_1, \dots, F_r are r distribution functions and $F_i \in \mathcal{D}(\lambda_i)$, $i = 1, \dots, r$. Here, $\mathcal{D}(\lambda)$ denotes the domain of attraction of the stable type with characteristic exponent λ . Assume $0 < \lambda_1 < \dots < \lambda_r \le 2$. Let $n_i(n)$ be the number of random variables among X_1, \dots, X_n which have F_i as their distribution function, $i = 1, \dots, r$. Assume $n_i(n) \to \infty$ as $n \to \infty$, for each i.

If we assume that there are constants $\{A_n\}$ and $\{B_n\}$, with $0 < B_n \to \infty$ as $n \to \infty$, such that $B_n^{-1}(X_1 + \cdots + X_n) - A_n$ converges in law to a nondegenerate distribution function G, then Theorem 2 of [1] gives a necessary and sufficient condition (without the assumption that $F_i \in \mathcal{D}(\lambda_i)$) that G be a convolution of r distinct stable laws. The purpose of this paper is to obtain a necessary and sufficient condition (with the assumption that $F_i \in \mathcal{D}(\lambda_i)$ but without the assumption of the existence of $\{A_n\}$ and $\{B_n\}$) that G be a convolution of $l \le r$ distinct stable laws.

2. Statement of theorem. Let X(i,m) be the mth random variable in the sequence $\{X_n\}$ whose distribution function is F_i , $i=1,\cdots,r$. Then, for each i, there are constants $\{A(i,n)\}$ and $\{B(i,n)\}$, with $0 < B(i,n) \to \infty$ as $n \to \infty$, such that $(B(i,n))^{-1}(X(i,1)+\cdots+X(i,n))-A(i,n)$ converges in law to a stable distribution with characteristic exponent λ_i . By Lemma 5 of [2], for each i, there exists a measurable slowly varying function L_i defined over $(0,\infty)$ such that $B(i,n) \sim n^{\lambda_i-1}L_i(n)$. By Karamata's representation theorem,

$$L_i(x) = c_i(x) \exp\left\{ \int_0^x (\theta_i(t)/t) dt \right\},\,$$

where $c_i(\cdot)$ is a measurable function such that $c_i(x) > 0$ for all x and $c_i(x) \to c_i > 0$ as $x \to \infty$, and $\theta_i(\cdot)$ is Lebesgue-integrable over every finite interval (0, x) and $\theta_i(t) \to 0$ as $t \to \infty$.

THEOREM. A necessary and sufficient condition that there exist constants $\{A_n\}$ and $\{B_n\}$, with $0 < B_n \to \infty$ as $n \to \infty$, such that $B_n^{-1}(X_1 + \cdots + X_n) - A_n$ converges in law to a nondegenerate distribution function G is that for some set of indices $\{i_1, \dots, i_l\}$, with $1 \le i_1 < \dots < i_l \le r$,

$$B(j, n_i(n))/B(i_l, n_i(n)) \rightarrow p_i$$
 as $n \rightarrow \infty$,

where $p_j = 0$ for $j \notin \{i_1, \dots, i_l\}$ and $0 < p_j < \infty$ for $j \in \{i_1, \dots, i_l\}$.

Furthermore, G is a convolution of l stable laws with characteristic exponents $\lambda_{i_1}, \dots, \lambda_{i_l}$, and there is a constant b > 0 such that $B_n = bB(i_l, n_{i_l}(n))$ for all n.

Received July 14, 1969.

Also, the condition of the theorem may be stated as follows:

$$(1/\lambda_{j})\log n_{j}(n) - (1/\lambda_{i_{l}})\log n_{i_{l}}(n) + \int_{0}^{n_{j}(n)} (\theta_{j}(t)/t) dt - \int_{0}^{n_{i_{l}}(n)} (\theta_{i_{l}}(t)/t) dt \to t_{j}$$

$$as \quad n \to \infty,$$

where
$$t_i = -\infty$$
 for $j \notin \{i_1, \dots, i_l\}$ and $|t_i| < \infty$ for $j \in \{i_1, \dots, i_l\}$.

Hence, the rate that $n_i(n)$ goes to infinite and the rate that $\theta_i(t)$ goes to zero determine convergence.

3. Proof of theorem. The sufficiency is obvious.

Necessity. Let k_1 be the smallest integer such that $\limsup n_{k_1}(n)/n > 0$ and $\lim n_i(n)/n = 0 \text{ for } 1 \le i < k_1.$

In the proof of Theorem 1 of [1], it was shown that there exist a strictly increasing sequence $\{m(n)\}\$ of natural numbers and an integer $k \leq k_1$ such that

$$B(j, n_j(m(n)))/B(k, n_k(m(n))) \to p_j$$
 as $n \to \infty$, for $j = 1, \dots, r$

with $p_j = 0$ for j > k, and $0 \le p_j < \infty$ for $1 \le j \le k$.

Let $\{i_1, \dots, i_l\}$ be the set of indices of all the nonzero p_i 's. Assume $i_1 < \dots < i_l$. For each i, let Y_i be a random variable such that

$$(B(i, n))^{-1}(X(i, 1) + \cdots + X(i, n)) - A(i, n)$$

converges in law to Y_i . Also, let

$$Z_n = (B(i_l, n_{i_l}(n)))^{-1} \{ X_1 + \dots + X_n - \sum_{j=1}^r B(j, n_j(n)) A(j, n_j(n)) \}.$$

We see that $Z_{m(n)}$ converges in law to $p_{i_1} Y_{i_1} + \cdots + p_{i_l} Y_{i_l}$. Since $B_{m(n)}^{-1} (X_1 + \cdots + P_{m(n)})$ $+X_{m(n)}$) $-A_{m(n)}$ converges in law to G, we see that G must be a convolution of I stable laws with characteristic exponents $\lambda_{i_1}, \dots, \lambda_{i_l}$.

What remains to be shown is that the sequence $\{m(n)\}$ may be taken to be $\{n\}$. Let f_n and f be the characteristic functions of Z_n and $p_{i_1} Y_{i_1} + \cdots + p_{i_l} Y_{i_l}$, respectively.

Suppose f_n does not converge to f. Then there exist $u \in (-\infty, \infty)$, $\varepsilon > 0$ and a sequence $\{q(n)\}\$ of natural numbers such that

(1)
$$\left| f_{q(n)}(u) - f(u) \right| \ge \varepsilon$$
 for all n .

Then there exist a subsequence $\{s(n)\}$ of $\{q(n)\}$ and $s \in \{1, \dots, r\}$ such that

$$B(j, n_j(s(n)))/B(s, n_s(s(n))) \rightarrow \rho_j$$
 as $n \rightarrow \infty$, for $j = 1, \dots, r$,

with $\rho_j = 0$ for j > s and $0 \le \rho_j < \infty$ for $1 \le j \le s$. Therefore, $(B(s, n_s(s(n))))^{-1} \{X_1 + \dots + X_{s(n)} - \sum_{j=1}^r B(j, n_j(s(n))) A(j, n_j(s(n))) \}$ converges in law to $\rho_1 Y_1 + \cdots + \rho_s Y_s$.

Since $B_{s(n)}^{-1}(X_1+\cdots+X_{s(n)})-A_{s(n)}$ converges in law to G, there are positive constants b_1 and b_2 such that $b_1(p_{i_1}, Y_{i_1} + \cdots + p_{i_l}, Y_{i_l})$ and $b_2(\rho_1, Y_1 + \cdots + \rho_s, Y_s)$ have the same distribution function. Since $\rho_s = p_{ij} = 1$, an easy symmetrization argument shows that $i_i = s$, $b_1 = b_2$, $p_i = \rho_i$ for $j \in \{i_1, \dots, i_l\}$, and $\rho_i = 0$ for $j\notin\{i_1,\cdots,i_l\}.$

Therefore, $f_{s(n)} \to f$, which contradicts (1). Hence, every subsequence of f_n converges to f which shows that $\{m(n)\}$ may be taken to be $\{n\}$. \square

Since G is of the same type as $p_{i_1} Y_{i_1} + \cdots + p_{i_l} Y_{i_l}$, given any normalizing coefficients $\{B_n\}$, there is a constant b > 0 such that $B_n = bB(i_l, n_{i_l}(n))$ for all n.

The alternate statement of the condition follows from the fact that

$$B(j, n_j(n))/B(i_l, n_{i_l}(n)) \sim c_j c_{i_l}^{-1} \exp \{(1/\lambda_j) \log n_j(n) - (1/\lambda_{i_l}) \log n_{i_l}(n) + \int_0^{n_j(n)} (\theta_i(t)/t) dt - \int_0^{n_{i_l}(n)} (\theta_{i_l}(t)/t) dt \}.$$

Hence, $p_j = 0$ if and only if $t_j = -\infty$, and $0 < p_j < \infty$ if and only if $|t_j| < \infty$.

4. Remarks. If each F_k is in the domain of *normal* attraction, then, since $L_i(x) = 1$ for all x and all j, the condition of the theorem becomes

$$(n_i(n))^{1/\lambda_j}/(n_i(n))^{1/\lambda_{i_i}} \to p_i$$
 as $n \to \infty$.

There are examples (e.g. [3]) that show that G being a convolution of stable laws does not imply that $F_i \in \mathcal{D}(\lambda_i)$ nor even that F_i be in the domain of partial attraction of any law.

REFERENCES

- [1] MASON, J. D. (1970). Convolutions of stable laws as limit distributions of partial sums. *Ann. Math. Statist.* **41** 101–114.
- [2] TUCKER, H. G. (1968). Convolutions of distributions attracted to stable laws. Ann. Math. Statist. 39 1381-1390.
- [3] ZOLOTAREV, V. M. and KOROLYUK, V. S. (1961). On a hypothesis proposed by B. V. Gnedenko. *Theor. Probability Appl.* 6 431-435.