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A COMPARISON BETWEEN THE MARTIN BOUNDARY
THEORY AND THE THEORY OF LIKELIHOOD RATIOS'

By ALLAN F. ABRAHAMSE

University of Southern California

1. Summary. Given a sequence {X,; n = 0} of random variables, let {P% Oen}
be a parameterized class of probability measures, with respect to each of which the
sequence is a Markov chain. Under conditions which make it appropriate to define
likelihood ratios, the parameter set z can be identified with a subset of the Martin
boundary for the space-time chain {(n, X,); n = 0}, so that each parameter 0 can
also be considered as a point of this Martin boundary. Then for each 6, the space-
time sample paths converge in the Martin boundary topology to 0, almost surely
with respect to the probability measure P°. Moreover, the likelihood ratio corre-
sponding to the parameter 6 is the same as the minimal regular function corre-
sponding to the parameter 6, and the probability measure P? is the relativised
probability measure corresponding to the point 0.

2. Results. Let (Q, #) be a measurable space, let E denote the integers, let /
denote the nonnegative integers, and let {X,; nel} be a sequence of measurable
functions from Q into E. For each nel, let %, denote the Borel o-field of subsets
of Q induced by the collection {X,,; m < n}, and let 4, be the o-field induced by
the collection {X,,; m = n}. We assume that & is the smallest o-field containing
F , for each nel, and we set F ,, = (\,e; %, Which we call the tail field. Let n be
some collection of parameters, and let {P’; 0en} be a collection of probability
measures on %, with respect to each of which, {X,;nel} is a temporally
homogeneous Markov chain.

Let 6, be fixed in 7, and let P% be denoted by P. We make the following assump-
tions concerning the parameterized class of Markov chains just introduced:

AssuMPTION 1. For each fem, for each nel, P’ is absolutely continuous with
respect to P over & ,,.

AssuMPTION 2. For each nel, X, is sufficient on &, for the parameter 0. (The
meaning of sufficiency is given below.)

AssuMPTION 3. For each Oem, the tail field &, is P’-trivial, i.e., for each
AeZF ., P°(A) is either zero or one.

Assumption 1 allows us to define the likelihood ratio L,(6), the Radon-Nikodym
derivative of the measure P? restricted to & ,, taken with respect to the measure P
restricted to & ,. That is, if AeZ,, then

(1) PY(A) = [oL,(0)dP.
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Assumption 2 means that for each 6 e n, there is a function k[ -, 6] defined on I'x E
such that k[(n, X,), 6] = L,(0) almost surely with respect to the measure P. Finally,
Assumption 3 implies in effect that the “true” value of the parameter uniquely
determines, and is uniquely determined by, the asymptotic behavior of the chain.

We now recall some definitions from the potential theory for Markov chains.
The reader is referred to [1] for a more complete exposition. The definitions given
here are specialized for the space-time chain {(n, X,); nel} over the probability
space (Q, &, P). The state-space for this chain is the subset E’ of Ix E defined by

E'={(n,x)el x E|P(X, = x) > 0}.

A nonnegative function fon E’ is said to be regular (for the space-time chain) if
for each (n, x)e E’,

nx) = E(f(n+1, X1 1) | Xy = ).

We wish to consider only those regular functions f satisfying the additional con-
dition that E(f(0, X,)) = 1. The word “regular” will henceforth imply that this
condition holds.

If fis a regular function, we can define a probability measure P/ over & called a
relativised measure. It is sufficient to define P/ over %, for each nel. When
AeZ,, define P/(A) by

@) P/(A) = fof(n,X,)dP.

The regularity of f guarantees that this is a consistent definition.

A regular function f'is minimal if the relation f = (g + h), for g, h regular, implies
that f = g = h. It is not difficult to show that the regular function f is minimal if
and only if the tail field & , is trivial with respect to the relativised measure P”.

The Martin potential kernel for the space-time chain is the function K over
E’'x E', defined by

K[(m,x),(n,y)] = P(X,, = x| X, = y)|P(X,, = X) msn
=0 m < n.

We now state one of the central results of the Martin boundary theory for
Markov chains. There is a set S, called the minimal boundary. For each se S, there
is a uniquely determined minimal function K[-, s] on E’. For each se .S, there is a
set Q e, such that PXIs1(Q.) = 1. We call the elements of Q. s-paths, and for
each s-path w,eQ,, we have

lim,,, , K[(m, x), (n, X ,(00))] = K[(m, x), 5]

for each (m, x)e E'. This amounts to saying that the sequence {(n, X,(w,)); nel}
converges to s in a special topology placed on E'US called the Martin boundary
topology.

We can now state the main point of this paper: The minimal boundary S and the
parameter set © have essentially the same properties. Specifically:
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(i) For each Oemn, the likelihood function k[ -, 0] is a minimal regular function
and furthermore, the measure P? is just the relativised measure P %1,

(ii) For each fem, there is a subset Qye#, such that PY(Q) = 1, and for w, ey,
lim, - o K[(m, x), (n, X ,(wo)] = k[(m, x),6]
for each (m, x)e E’.

These assertions imply that Martin boundary for the chain {(n, X,); nel} can
be constructed in such a way that the minimal boundary contains the parameter
set . Then for each 0 e =, the likelihood functions k[ -, 8] and the Martin potential
kernel K[-, 0] are the same function. We note that the minimal boundary may be
strictly larger than n.

Brief proofs of these assertions now follow. It is well known that the system
{(L(6), #,); nel} is a martingale with respect to the measure P. From the
definition of the functions k[ -, 6], it follows that k[ -, 0] is regular. That P¥("-01 = p®
then follows from equations (i) and (ii). Finally, Assumption 3 implies k[, 6] is
minimal. This proves Assertion (i).

From the definition of the Martin potential kernel, for m < andn (m, x)e E’,

K[(m,x),(n,X,)] = P(X,, = x| X,)/[P(X,, = x).

Hence, the system {(K[(m, x), (n, X,)], #,); n = m} is a martingale with respect to
P, hence it converges a.s., (with respect to P). The limit is a.s. given by

lim, ., K[(m, x),(n, X,)] = P(X,, = x| # ,)/P(X,, = X).
Since & , is trivial with respect to P = P%, this limit is a.s. equal to 1, hence
lim,_, , K[(m,x),(n,X,)] =1
= k[(m, x), 0,].

PP—as., for all (m, x)e E'. Hence, a set Qy, €% with the required properties can

be obtained.
For an arbitrary e, define the Martin potential kernel K° for the space-time
chain over (Q, &, P%. It is easy to see that

K°[(m, x), (n, p)]k[(m, x), 6] = K[(m, x),(n, y)].

Following the reasoning of the previous paragraph, lim K°[(m, x), (n, X,)] = 1,
P°—a.s., hence, lim,., ., K[(m, x), (n, X,)] = k[(m, x), 0], P°—a.s., and so the set
Q, can be constructed, thus proving assertion (ii).

3. Examples. We exhibit a large class of familiar statistical models in which
Assumptions 1, 2 and 3 hold. Suppose for each 6 e, there is a probability distribu-
tion function f(x, ) on E, such that

P(X,=0) =1
Pa(Xn+l—Xn = x) =f(x>e)n€1'
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Then for each Oen, {X,; nel} is a random walk with a fixed starting point over
(Q, #, P’%, hence Assumption 3 holds.

LEMMA. A necessary and sufficient condition for Assumptions 1 and 2 is that the
JSfamilies of probability distribution functions {f(x, 0); 0en} be of exponential form,
i.e., there exist a function f on E, and functions g and h on =, such that

f(x,0) =f(x)g(6)"h(0).

Proor. Proving sufficiency is a simple matter, and is left to the reader.

When Assumptions 1 and 2 hold, k[, 0] is a minimal regular function for the
space-time chain. It is shown in [2] that such a function is of the form k[(n, x), 6] =
g(0)*h(6)". Hence,

f(x,0) = PU(X, = x)
= P(X, = x)k[(1,x),0]
= f(x,60)g(0)*h(6)

and this proves the lemma.
The binomial, exponential and negative binomial distributions are of exponential
form.
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