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NOTES

ON SOME PROBLEMS INVOLVING RANDOM NUMBER OF
RANDOM VARIABLES!

By P. Toporovic

Colorado State University

1. Introduction. Frequently in various investigations, considerations on stochastic
models involve sequences of random number of random variables. For instance,
in many applications the number of experiments or observations in some interval
of time (0, ¢] is a chance variable. Of particular interest, for example, is the question
of extreme values and sum of these observations in (0, 7].

Let 7(v) and &, denote the time of vth observation and result of the observation,
respectively, and suppose that for all v=1,2,---,0 < t(v) < t(v+1), 7(v) > o0 if
v— oo and &, > 0. Assuming that the number of points 7(v) in (0, ¢] is a chance
variable, then t(v) are random variables (rv’s) as well. In addition it is supposed that
7(v) are continuous rv’s.

In the following, attention is restricted to the next four functionals:

(11) infz(v)§t€va Supt(v)gtév
(1.2) X(0) =Y.l T(x)=inf{t; X(1) > x}.

An attempt is made to determine a reasonable description of the extremes (1.1). In
addition, the mathematical expectations and one-dimensional distribution functions
(df’s) of the processes (1.2) are determined.

2. Notations and definitions. Consider the probability space (Q, &/, P). By
definition & is the smallest o-field which contains all subsets of Q of the form
{t(v) £t} and {X, < x}, where X, = ) y_, . It is supposed that X, are continuous
rv’s such that with probability one, X, - oo if v — 0.

Let E,' and G,* be defined as follows:

2.1) E/={t)st<t(v+D}, G ={X,Sx< X1}

thenforalli#j=0,1, -+, E/nE;'=0,GnG;* =0, U0 E,) = U)20 G, = Q,
where 0 denotes the empty set. By virtue of (2.1) it follows that:

2.2) P(E,)) = P{z(v) <t} —P{z(v+ 1) < 1}.
23) P(G") = P{X, £ x} = P{X,s; < x}.

Since {r(v)} and {X,} are strictly increasing sequences of continuous rv’s it follows
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that P(E,)) > 0, P(G,*) > 0,forall t>0,x >0and v=0, 1,---. In addition, these
probabilities are continuous functions of ¢ and x, respectively.

Finally, assuming 7(0) = 0 and X, =0, from (2.2) and (2.3) it follows that the
distribution functions of ©(v) and X, are

(2.4) A =1=-3324P(E)  B,x)=1=Y320P(G;".

3. On extreme values of random number of random observations. Consider a
phenomenon in an interval of time (0, 7] and suppose that the number, as well as
the results of observations, are chance variables. What can one say about the
extreme observations ? The following is the most natural approach to this problem:
Suppose that the series of N observations of the phenomenon (for example, N
repetition of the same experiment) in (0, ] is available, then one would consider
the extremes in (0, 7] for each of these observations.'In this way, N values for
minimal and maximal results are obtained and from these data corresponding
frequency distributions may be determined.

In the following, an attempt is made to determine the two distributions
theoretically. To this end, consider the sequence:

3.1 ¢iér (6=0)

and denote by n(¢) = sup {v; t(v) < t}, i.e., P{n(t) = v} = P(E,"). Then the follow-
ing theorem (bearing in mind that on the set E,’ variable n(¢) = v) gives the distribu-
tion functions of inf,(,, <, ¢, and sup,,, <, ¢, as the mathematical expectation of the
conditional probabilities:

(32) (a) P{infz(v)grév é z I 7](1)}’
(b) P{Supr(v)§r£v g z II’](t)},
where z = 0.

THEOREM 1. Let F(z|t) and F(z|t) stand for the mathematical expectation of
(3.2.a) and (3.2.b), respectively, then

(3.3) E(th)= 1_21?;1 P[ﬂ'é=1{€v>2}ﬁEk']
(3.4) F(th)=Zii°=oP[ﬂ’$=o{év§Z}0Ek']-
PROOF.

EP{inf, <, &, < z|n(1)} = 1 — EP{inf,,,, &, > z | n(1)}
=1-Y2 P[{info<,<, & > z}NE,]
Similarly,
EP{sup, <, ¢, =z | n(0)} =20 P[{supo<,<i ¢y < 2} NE/]

which proves the theorem.
It is apparent that (3.3) and (3.4) are nondecreasing functions with respect to the
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variable z, such that F(0|¢) =F(0|7) = P(E,"), F(c0 | 1) = F(oo | 1) = 1 and so they
are required distribution functions.
Let (3.1) be the sequence of independent rv’s with the common distribution

function H(z) and n(¢) independent of {&,}, then (3.3) and (3.4) become
3.5) Fz|)=1-Y2 [1-H@)]'PE)
(3.6) F(z|1) = Y20 [H(2)*P(E,).
EXAMPLE. Assuming that #(¢) is Poissonian (3.5) and (3.6) become F(z | 1) =
1+e *—exp {—AtH(z)} and F(z | t) = exp { — At(1 — H(2))}.

4. On the processes X(¢) and T(x). Wald [2] proved a notable theorem for the
sum S, = ZZ=1 &, of rv’s £, where the chance variable n =1, 2, ---,. Namely, if
E{n} and E{¢,} = a exist, and P{{, < x|n =m} = P{&, < x} for all v> m, then
E{S,} = aE{n}.

Consider the stochastic process X(¢); on the basis of the definition X(¢) is the sum
of random number of rv’s in (0, ¢], where, distinguished from the Wald case, #(¢)
and {&,} are not independent and #(¢) depends on time.

THEOREM 2. For all t€(0, o0), for which the following series converges,
1) T ADE(E |10 < 13
E{X(t)} exists and is equal to (4.1).
PrOOF. It is apparent that
E{X(1)} = [oE{X(")|n(1)} dP = 330 Y k=0 r,c E{Ec| n(®)} dP
or, after simple transformation,
E{X()} = Yo Yowi fes E{E | n(D)} dP

= Y% 1 Jiew =0 E{G | n()} dP
and the theorem is proved.

THEOREM 3. Let F,(x) = P{X(¢) £ x}, then for everyt 2 0and x = 0
4.2) F(x) = P(Eo")+ Y5>, P(EYP{X, £ x| E'}.
Proor. It is apparent that
F(x) = EP{X(t) £ x [n()} = Y=o P{Tk=0 &k = x| EJ}P(E,)
= P(E¢)+ )7, P(E))P{X, < x|E)}
which proves the theorem:

REMARK. Theorem 3 may be proven in another way, bearing in mind that X(¢)
is the sum of the random number of positive rv’s in (0, t]. Since the sample functions
of X(¢) are nondecreasing step functions, the following relationship is obvious

{X(t) £ xInE}={X, S x}nE/. Therefore,
P{X(1) £ x} = Y V-0 P(E))P{X, < x| E,}.
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THEOREM 4. For all x € (0, o), for which the following series converges,
4.3 Yizo P(GOE{w(k+1)| G};
E{T(x)} exists and is equal to (4.3).

PROOF. Let pu(x) = sup {v; X, < x}, i.e., P{u(x) = v} = P(G,). By virtue of the
definition T(x) = supy, _, <x<x, T(v). Therefore,

E{T(x)} = [ E{supx, _, <x<x,7(v) | u(x)} dP
= Yo E{t(k+1)| G}P(G,Y)
since on the set G,* supy, _, <x<x, T(v) = ©(k+ 1), which proves the theorem.
THEOREM 5. Let Q.(t) = P{T(x) < t}, then for every t =0andx =0
4.4) 0.(1) = 1-F(x).
ProoF.
P{T(x) < t} = EP{T(x) < t| pu(x)}
= Y0 Jo, P{SuPx,_, sx<x,7(v) £ x| u(x)} dP
= Y7o P{a(k+1) £ 1| GTIP(GY).
Since {t(k+1) <t} =i+ E), it follows that
Q1) = Yo Xiur 1 PG NE)) = 1= Y2 0 3%, P(E/NG,)
= 1-Y o PIE/ (X, < x}]
and the theorem is proved.

Note. If in Theorem 2 it is supposed that (3.1) is the sequence of identically
distributed rv’s independent of #(¢), then (4.1) becomes

E{X()} = E{¢} Y- 1 Aut) = E{SIE{n()}

and this is the Wald case.
In many applications, the events E,' and {X, < x} may be supposed to be
independent. Under this condition, (4.2) may be written as follows:

F(x) = P(Eo)) + )y 1 2.7~ P(E,)P(G/").
If one assumes that the following conditions are satisfied
Yr%2 P(ESTY) = a(Al) if At—>0

) P(Elt,t+At I Evt) ) P(E’lt—At,t | Evt—At)
im —mmMM~ = lim ————~

= A(1,v)
At=0 At Ar=0 At ’
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then
P(E,
d E{ V) = i](t’v— I)P(Etv—l)_j'l(t’v)P(Evt) V= ]’23' o
dP(E
Wg}ﬂ = —4(t,0)P(Eo')

where E,”' "4 = {n(t+At)—n(t) = r}.
By virtue of the following relations
P(E,"*)—P(E,) = })- P(E\_,nE""%) =32 | P(E,/NE™Y)
P(E))— P(E,™) = Yo, P(E\-8 AE, =) = Y2 | P~ AE, =A%)
and the conditions the assertion follows. Similarly, if
@ , P(G,** %) = ¢(Ax) if Ax-0
hm P(Glx,x+Ax | va) _ hm P(Glx—Ax,x| va—Ax)
Ax=0 Ax Ax>0 Ax

= Aﬂ'Z(x’ V)

then

dP(G,")
dx

= Ay(x, v— DP(G*_ ) — iy(x, V)P(G,Y) v=1,2,-

dP(Gy")
dx
where G, 4% = {u(x+Ax)— p(x) = r}.

= —4y(x,0)P(GyY)
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