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ON THE INFERENCE AND DECISION
MODELS OF STATISTICS!

By CoLiN R. BLYTH
University of lllinois

1. Introduction and Summary. The inference and decision models considered here
are those described by Neyman in [5] pages 16 and 17. For a random variable X
with possible probability distributions indexed by a parameter 8, Neyman dis-
tinguishes two inference approaches to the problem of estimating 6: (i) having
observed X = x, find the most probable values z(x) of 6 (This requires a priori
probabilities, which often must be chosen rather arbitrarily, and whose existence
may be questioned.); and (ii) having observed X = x, find the values z(x) that are
most reasonable or in which we have the greatest confidence (This requires the
rather arbitrary choice of a real-valued function L, with L(x, ) measuring the
degree of confidence we have in the parameter value 6 given that X = x has been
observed.). Of these two approaches, (i) is a special case of (ii) since in particular
L(x, 0) can be taken to be the a posteriori probability of 6 given X = x, for a
specified a priori distribution of the parameter. '

Neyman remarks that in his opinion “the inferential theory solves no problem”
and proceeds to describe a real world situation for which the decision model is a
very good one. For a random variable X with possible probability distributions
indexed by a parameter 6 the decision approach to estimating 0 is to associate, with
the use of each possible estimator z(X), a random loss W(z, X, 6) whose possible
distributions are indexed by 0; and to determine z so that this loss will, in some
specified sense, be as small as possible on the whole over all § values.

The purpose of the present paper is to examine Neyman’s inference model in
detail, to describe real situations for which it appears to be a good model, and to
compare these with situations for which the decision model is more appropriate.
Mathematical models are described, but there is almost no mathematics in the sense
of deriving details for the models: concern is mostly with the applied mathematics
question of what mathematical model to use for a real situation.

Section 2 is a detailed description of Neyman’s general inference model. Here
L(x, 0) is interpreted as a measure of agreement between Py probabilities and ob-
served proportions; terms such as “most probable.” ““most reasonable,” *“greatest
confidence” are avoided as having connotations that are difficult to support. The
general inference estimator is just Wolfowitz’s minimum distance estimator [12].
Wolfowitz evaluates such procedures purely from the decision viewpoint.

Section 3 is a detailed description of the general decision model. This is given in
a form closely paralleling the description of Section 2, in order that the two models
can be compared easily.
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In Section 4, the inference and decision models are compared from several view-
points. The inference problem seeks an estimator z such that the P,,, probabilities
will be (for all x) close to the proportions observed in x; the decision problem of
estimating 0 seeks an estimator z such that z(X) will be (for all 0) close to 6. The
decision problem requires the idea of distance or error, measured by loss, in the
parameter space; this idea is completely or partially absent in the inference model,
where 6 merely indexes the possible probability models. It is this presence or absence
of a loss function that distinguishes between the decision and inference models as
defined here: in the decision problem the use of an estimator z results in definite
losses and we are to determine a z for which they are small; in the inference model
the idea of definite losses does not appear. The decision model is a much more
specific model for a much more specific real problem. In both problems we want
to choose a probability model for the real situation: il the decision problem we
know what the model is to be used for; in the inference problem we do not.

It can be reasonably argued, following Neyman [5] page 17, that the inference
model is sometimes used in the mistaken belief that making P,,, close to the ob-
served proportions will make P, , close to Py, and that if so it should be replaced
by the decision model with loss W[P,x,, Py]. In the inference problem as described
here, we do not have this definite aim of making P,, close to P,: we are uncertain
as to whether we want P,y close to P, or want z(X) close to 6 or want [z(X’ )]? close
to 0% or want something else; vaguely, we have all decision-type aims, but we have
no definite one.

Both the inference and decision models require the making of somewhat
analogous and rather arbitrary choices at two levels. (Here, and throughout this
paper “arbitrary” is used in its primary dictionary meaning of “depending on will
or discretion; discretionary; can be freely chosen,” with none of the secondary
dictionary meanings of ‘‘unreasoned, despotic.” Possible synonyms such as
“subjective,” “‘individualistic,” “‘personalistic’’ are avoided because of their
technical meanings.) Neyman’s view that the user should be fully entitled to any
choices he cares to make and that no attempt should be made to impose particular
choices on all, is followed here.

In Section 5 the most commonly used inference methods (Likelihood, Least
Squares and Moments, Chi-square, Kolmogorov-Smirnov) are examined as special
cases of the general inference method. '

Randomization. The language used throughout will be that of non-randomized
procedures, but is to be understood as including randomization. Actually, there is
no such thing as a randomized procedure: randomization has to be based (in a
non-random way) on the outcome of an additional random experiment; and this
randomization device must be described explicitly, for an exact account of
randomization. Therefore, all we need to do is take our X as including all available
randomization devices. For example, instead of taking X to be Normal (i, 1) and
considering randomized procedures, we can take X = Y, Z where Y and Z are
independent, Y is Normal (g, 1), Z is Rectangular (0, 1), and consider non-
randomized procedures. Moreover it is necessary to do some such thing because
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the first formulation fails to specify what randomization devices are a' ailable to us.

The randomized procedures based on Y are commo 1ly taken to consist of all the
non-randomized procedures based on Y, Z waere Z is Rectangular (0, 1) and
independent of Y. It would be no more general to use a real, vector or sequence-
valued randomization device with arbitrarily specified conditional distribution
given X = x, because it is easy to construct a function ¢ such that #(Z) duplicates
such a device. This can be done in two steps: first, write Z in decimal form Z =
-U,U,U; - -+ and make the usual one-to-one mapping of the unit interval on to
sequences of numbers from the unit interval

Z] ='U1 U3U6"'
ZZ=.U2U5...
Z3=’U4”'

Here Z,, Z,, - - - is a function of Z, and the Z;’s are independent, each Rectangular
(0, 1); second, for the ith component of #(Z) take F*(Z;) where F* is essentially
the inverse of the required cumulative probability function for the ith component of
t(Z), given the earlier components and given Y = y.

The objection is sometimes made that the use of such an extraneous Z ought to
be ruled out as intuitively unreasonable. This objection can be overcome, in many
problems, by noticing that no such Z is needed. The argument used in the following
example shows that Z is unnecessary if there is a sufficient statistic S = s(Y) such
that the conditional distribution of Y given S = s, has no points of positive
probability.

EXAMPLE. Let Y,, -, Y,, Z be independent, where each Y; is Normal (u, 1)
and Z is Rectangular (0, 1), write ® for the Normal (0, 1) cumulative probability
function, and consider the following classes of possible distributions of non-
randomized procedures:

A, : All those for procedures basedon Y,, -+, Y,

A,: All those for procedures basedon Yy, -+, ¥,, Z

A5 : All those for procedures based on Y, Z

A, All those for procedures based on Y, ®27*(Y, — Y,)).

Then A, = A4, is obvious; 4, = A; by the usual sufficiency argument, [4] page 18;
Ay = A, because the same joint distribution is involved in both; and 4,<=4, is
obvious. Therefore A, = A, = A; = A, and so any one of them can be used for
the randomized procedures based on Yy, *-+, Y,. Ordinarily we would work with
A, as easiest; if anyone objects to the Z we could change to the equivalent A, or 4;.

2. General statistical inference problem. Given independent random variables
X1, -+, X, each with the same probability distribution which is known to belong to
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a given class Py, 0eQ of probability measures on %,, and having observed
X, o, X, =xq, ", x, (abbreviated to X = x), the general statistical inference
problem is to choose a subset z(x) of Q giving those probability models from the
available class that are in best agreement with the empirical probability measure
P.. This empirical probability measure P, is the discrete probability measure that
places probability m/n on each point of Z; on which m of the values x;, - - -, x, fall.

The reason for using the notation X, - - -, X, independent and equi-distributed,
when the same notation with n = 1 is equally general (we can take X to be a random
variable with possible distributions the product of the P, measures, on & =
Zyx -+ x Z; and on which we have a single observation x), is that for » = 1 the
empirical probability measure P, degenerates to placing probability 1 on the single
point x, and discussion of agreement between P, and P, is more natural for non-
degenerate P,. In addition, the fact that P, — Py as #n — o (in the sense of the Borel-
Cantelli Lemma) may be of interest.

Restrictions on z. The function z or the random variable z(X) it generates is
called an estimator of 0. In any particular problem, attention is restricted to a very
small class of functions z. This class depends on the sort of inference wanted and
may be further restricted by intuitive ideas of reasonableness. In point estimation
of 0, for example, z is restricted to functions whose values are single points of Q, and
may be further restricted to functions having some intuitively reasonable property
such as equivariance under a group of transformations on & and an induced group
of transformations on Q. In point estimation of g(6), z is restricted to functions
whose possible values are sets of the form {All 6 such that g(6) has the value g, }.
In confidence set estimation z is restricted to functions such that, for all 6eQ,
Py{0ez(X)} is at least as great as a prescribed constant; and z may be further
restricted, for example, when 0 is real valued, to functions whose possible values
are intervals, or intervals of the form (— oo, @). In hypothesis testing z is restricted
to functions having only two possible values: a prescribed subset H of Q, and the
complement H' = Q—H of that subset; and there is the further restriction
Py{z(X) = H'} £ o whenever e H.

The restrictions on z can involve only such structure on Q as is relevant, i.e. which
corresponds to structure in the distributions and in the real situations for which
these are the possible models. The more such structure there is, the more restrictions
can be considered. There may be no relevant structure at all, the elements of Q
being merely arbitrary labels for the possible distributions, and distance or closeness
in Q implying no such thing for the corresponding distributions or real situations;
here restrictions on z must be invariant under all one-to-one mappings of Q onto
itself; equivariance is an example of such a restriction. Closeness in Q may be
relevant; invariance under continuous mappings is then enough: the requirement
that z(x) be a connected set is an example. There may be a relevant ordering in Q;
invariance under monotone mappings is then enough: the requirement, for real-
valued 0, that z(x) be an interval of the form (— 0o, @) is an example. In inference,
there is indefinite structure on Q such as closeness or order, rather than specific
structure such as distance. A condition such as unbiasedness Eg[z(X)] = g(0),
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which requires relevance of the linearity in the space of g(6), is not really part of
the inference approach.

In point estimation, the sense of best agreement between Py and P, can be made
specific by specifying d(P,, P,), where d is a nonnegative-valued function, as measur-
ing the discrepancy between P, and P,. Best agreement between P, and P, is then
taken to mean that d(P,, P,) is as small as possible: if d(P,, P,) has, for every x,
a minimum over 0 eQ, then z(x) is taken to be any 0 achieving this minimum, and
this determines a unique best inference estimator z (or a class of estimators, all
equivalently best inference).

If restrictions on z rule out the above estimator (as may happen in point estima-
tion and does happen in other problems) the sense of best agreement is not made
specific by specifying a discrepancy measure d; because when X = x is observed
the best available value for z(x) is now the set {0: d(Py, P,) < c(x)} where c(x),
subject to the restrictions on z, is taken to be as small as possible as a whole over
all x (in a sense that must still be specified). More generally, if the values of z(x)
are restricted to a class &7 of subsets of Q, then d*(4, P,) = inf, . ,d(P,, P,) is taken
as a measure of discrepancy between the set of probability measures Py, 0 € 4 and
the empirical probability measure P,. When X = x is observed the most reasonable
value for z(x) is now any 4 es/ such that d*(4, P,) = c¢(x) is as small as possible
as a whole over all x (in some specified sense), subject to any additional restrictions
onz.

In the preceding discussion we could equivalently have specified a(P,, P,), where
a is a nonnegative-valued function, as measuring the agreement between P, and
P., and interchanged inf and sup throughout. We can always change from an
agreement measure a to a discrepancy measure d which is a strictly decreasing
function of q, so there is no need for a separate general discussion using agreement
measures. In discussing particular inference procedures we will use either an
agreement or a discrepancy measure, whichever is usual for the procedure under
discussion.

One convenient way of constructing a discrepancy measure d is as follows.
Having observed X = x, choose a class 7, depending on x, of real-valued functions
t on &, and take for d some measure of discrepancy between the expectations of
t(X,) under P, and under P, over the class 7, i.e. between Eg#(X;) and ) 71— t(x;)/n
over the class 7. For a set Sc&,, asking for agreement between Py(S) and the
proportion of x;’s in S is to take for ¢ the characteristic function of the set S; such
functions are often used. This method of constructing a discrepancy measure is
fully general, since I can be constructed so that E, ¢(X,), 0 € Q duplicates Py, 0€Q;
for example, when X is real valued, take for  the indicator functions of the sets
(—o0, t],forall¢t, —c0 <t < 00.

The general inference method described above is due to Wolfowitz—his minimum
distance method [12]. It is the general inference method in that it includes as special
cases all the usual inference methods such as estimation by the methods of maximum
likelihood, minimum chi-square, moments, least squares; fiducial confidence
intervals; and likelihood ratio, chi-square, and Kolmogorov-Smirnov tests. For
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point estimation of 6 with no additional restrictions Wolfowitz shows, subject to
regularity conditions, that an inference method applied successively forn =1, 2, -
gives a consistent sequence of estimators. His proof begins with the fact that as
n— o, Py gets close to Py, where 0 is the true parameter value, in the sense of the
Borel-Cantelli lemma. The first regularity condition is that this should imply
d(P,, Py) - 0 in probability. This in turn implies d(P,,, Px) =0 in probability,
because z(x) is the 0’ value minimizing d(Py’, P,) over 8’ €Q. A second regularity
condition is that P, and P, being both close to P, should imply that they are
close to each other—Wolfowitz ensures this by having d satisfy the distance axioms.
Completing the proof is the identification and continuity regularity condition that
P, close to Py should imply z(x) close to 6. The first regularity condition is a
critical one: for some inference methods (e.g. Kolmogorov—-Smirnov) it is satisfied,
but for most inference methods (e.g. maximum likelihgod) it is not satisfied, and
consistency for those methods does not follow from the Wolfowitz theorem.

In problems where, for every xe %, there is a 0 giving Py = P,, this gives the
inference point estimator (no additional restrictions on z) of 8, which is the same
for every d because any reasonable d must be minimized by P, = P,. An example is
the binomial problem X, ‘-, X, independent, P(X;=1)=0, P(X;=0)=1-0,
where 0 = Y x; gives the above identity, and where every inference point estimator
is X /n. '

In the inference problem an uncertain inference or guess or estimate is to be
made as to the value of 0. This inference has to do with agreement between 0-
probabilities and the observed proportions; it has nothing to do with any possible
losses resulting from poor guesses. The ideas of specific decisions to be made, and
definite losses resulting from poor decisions, are not a part of the inference model.

3. General statistical decision problem. The probability model is exactly the same
as in the inference problem: we are given independent random variables Xy, -+, X,
each with the same probability distribution which is known to belong to a given
class P,, 0eQ of probability measures on Z;. Having observed X;, -, X, =
X4, ***, X, the general statistical decision problem s to choose a decision 6(x;, ' * *, X,)
from a given class D of possible decisions. In many decision problems each element
of D can be thought of as “acting as though we believe that 0 lies in some particular
subset of Q.” In the following discussion 8(xy, - * -, x,) will be identified with this
corresponding subset z(x,, ***, x,), and the language of estimation rather than
decision-making used, in order to make easier comparisons between the inference
and decision problems.

Associated with a parameter value 0 and the use of an estimator z is a family L;,
iel of random losses, L; = W;(0, z, X,, -+, X,) being a nonnegative-valued
random variable, with W;(0, z, x,, -, x,) being the type i loss incurred when 0
is the parameter value, the estimator z is used, and Xy, ", X, = Xy, ", X, is
observed. The general statistical decision problem is to find an estimator z for which
the random losses L;, i€ I are as small as possible (in some specified sense).

The following are some commonly used systems L;, i€l of loss functions. In
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pointestimation I contains a single element, with L, dependingonfand z(X,, " - -, X,)
only. In hypothesis testing (Neyman-Pearson model) I contains two elements, with
L; having the value 1 or 0 according as a type i error is or is not committed. In
confidence set estimation (Neyman model) / is a duplicate of Q and L; has the value
0 or 1 according as iez(X;, - - -, X,,) or not when i = 6; and L; has the value 1 or 0
according as iez(X,, -, X,) or not when i # 0; that is, for each possible value i
of the parameter we consider a loss L; which is 1 if either i is the true parameter
value and is not covered or is not the true parameter value and is covered, and
is otherwise 0. In sequential estimation, n =1, X, is sequence-valued, and [
contains two elements with L; depending on 6 and z(X;) only, and L, depending
on the number of elements of X, needed to determine z(X,). In design of experi-
ments n = 1, X; = Z,, e A consists of all possible experiments under consideration,
and 7 contains two elements with L, depending on 6 and z(X}), and L, depending
on the set of «’s needed to determine z(X,) [this is an experiment being designed for
point estimation].

The meaning of smallness of a nonnegative-valued random loss (in the above
notation, when 7 consists of a single element we are concerned with one such loss
only) is specified in the following way. First, for a random loss L with known
distribution we specify r;, called the risk of L, as measuring how bad we consider
this loss to be, where r is a nonnegative-valued function of the distribution of L;
i.e. of two such losses we consider the one with smaller 7, to be the smaller. This
associates with L a risk function r;, where r;(6) is the risk specified for the distribu-
tion that L has when 0 is the parameter value. Should there be an estimator z which
minimizes r;(0) for all §, the meaning of smallness is now completely specified and
such a uniformly minimum risk estimator is used as best. Uniformly minimum risk
estimators often exist when the class of available z’s is a fairly restrictive one: for
example the class of unbiased point estimators of 6 often contains a uniformly
minimum risk member. More usually, different estimators z minimize r (6) for
different 6 values, so that the meaning of smallness is not yet specified, and a second
specification is needed : Second, we specify q(r,) as measuring how large we consider
r.(0) to be as a whole over all 0 e Q, where g is a nonnegative-valued function of the
function r;. Then a best estimator z is taken to be one for which the corresponding
q(rp)is as small as possible.

The specifications of r and ¢ usually worked with are those used by Wald [9], [11],
namely r; = EL for risk and q(ry) = supy.qori(0) for overall size—such a best
estimator is called minimax. Other specifications of risk could be used, such as
r, = median of L, or r, = 95 percentile of L, or r, = P(L = c) where c is a disaster
level. Other specifications of overall size are used, such as g(r.) = faru(0)di0)
[such a best estimator is called Bayes (1)], or q(rp) = suppeq {rr(0)—inf ry }
[such a best estimator is said to minimize the maximum regret].

~ When there is more than one nonnegative-valued random loss, i.e. when I
contains more than one element, the losses L;, L; for i # j are understood not to be
fully comparable or interchangeable. That is, while ¢, L, + ¢, L, can be worked with
formally, it is not possible to replace the L,, L, losses by thesinglelossc;Ly + c,L,.
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Sometimes such a replacement is possible in principle, but we do not want to commit
ourselves on c;, ¢, values. This idea of several kinds of losses that are not fully
comparable or interchangeable was introduced by Neyman and Pearson [7] who
considered the hypothesis testing problem of minimizing the probability of a type 11
error subject to a bound on the probability of a type I error, with the relative serious-
ness of the two kinds of error difficult to specify. It is used by Wald [10] in the
sequential test problem of minimizing expected sample size subject to bounds on
the probabilities of type I and II errors, where increases in these probabilities cannot
be traded for smaller sample size; and in sequential estimation subject to a budget
on expected sampling cost, where we are not free to exchange greater sampling cost
for greater accuracy.

When there is more than one L;, a risk and overall size of risk are specified
separately for each L;, ie ] and the problem considered is that of finding a z for
which some named L; is best, subject to given bounds on the risks of the others.
This includes the problem of finding a z for which several L;’s are best subject to
bounds on the risks of the others, should there be a z that does this uniformly in
the named i’s; failing this, a further specification of smallness as a whole over the
named i’s would be needed.

In the decision problem, the choice of an estimator z results in definite losses, and
the aim is to determine z so that these losses will be small; in the inference problem,
no definite losses are involved, and the aim is to determine a z giving probability
models from the given class that are in best agreement with observed proportions.

4. Comparison of the inference and decision problems. In this section the statistical
inference and decision problems are compared from several viewpoints.

(1) The probability models are the same in both problems.

(2) More restrictions on the estimator are possible in the decision problem. The
primary restrictions (e.g. to point-valued z’s, to confidence sets, to z’s with only two
possible values) are the same in both problems, as are some additional restrictions
such as equivariance. But there is usually more relevant structure on Q in the
decision problem, and in addition there may be restrictions involving the losses,
which are not available in the inference problem.

(3) The decision problem is a more special mathematical model for a more specific
real problem; the inference problem is a more general mathematical model for a less
specific real problem. To one inference problem correspond many decision problems,
one for each choice of loss. For example, estimation of 6 and estimation of g(0) are
the same problem when g has an inverse, provided any restrictions on z are in-
variant under the g mapping: if z(x) is the best set of values for 6, then automatically
glz(x)] is the best set of values for g(). But estimation of 6 and estimation of g(0)
are different decision problems even when g has an inverse: stating both as problems
of estimating 0, it would be understood that we want z(X) close to 0 in one case,
glz(X)] close to g(0) in the other; since these are not equivalent, different losses

would ordinarily be involved.
There is very little competition between the inference and decision problems as
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to which should be used as a model for a particular real problem. If we are estimating
0 for a specific purpose and know at least approximately what losses result from
errors, there seems to be fairly general agreement that the decision problem is the
more suitable model. If on the other hand our purpose in estimating 0 is merely
to choose a probability model for the real situation in an attempt to systematize
our examination of it, and with no idea as to what specific questions may be interest-
ing [for example, with no idea as to whether it is important to have z(X) close to 0,
or to have [z2(X)]? close to 6%], and with no idea as to the existence of losses let
alone their amounts, it would seem that we will have to make do with the inference
problem as a model. One possibility is to use the inference model in the early stages
of an investigation, for the purpose of deciding on what specific decision questions
ought to be considered.

The necessity of actually specifying losses presents a decided practical difficulty
in using the decision model: even though the existence of losses often seems self-
evident it is usually very difficult to say exactly what these losses are, and they have
to be chosen rather arbitrarily. Thus in point estimation squared error loss is
almost always used, not because it is thought to be a very good approximation to
actual losses (which are always bounded by the total fortune of the decision-maker),
but because it results in easy mathematical problems.

Experimenters show decided preference for the inference model, because they
have not usually decided in advance on some definite question to ask about the real
situation, and even if they have, the inference choice relieves them of the difficult
task of specifying what losses are involved.

(4) In both problems, choices of a rather arbitrary sort must be made by the
experimenter. 1n the inference problem he must decide on a meaning for (i) best
agreement between P, and P, for given x and (ii) best agreement as a whole over
all x. In the decision problem he must decide on a meaning for (i) smallness of a
random loss L; for given 6 and (ii) smallness as a whole over all §. In both cases, it
would seem that the experimenter is fully entitled to whatever choices he cares to
make. Choices for the inference problem will be discussed in Section 5.

The experimenter finds this situation unpleasant because he has the very difficult
practical task of making choices suitable for his real problem. On the other hand,
the statistician finds this situation pleasant because of the great freedom of choice—
he can consider a wide variety of problems, and can make choices leading to easy
and elegant mathematical problems.

(5) The inference problem is usually much easier to solve. (Neyman in [5] refers
to it as the ““easy way out”.) The inference problem, once the arbitrary choices have
been made, and provided restrictions on z do not cause complications, is solved by
finding the 6 that minimizes a known function of 6. In parametric problems, where
the set Q of possible s is a subset of a Euclidean space and continuous functions
are involved, this problem is easily solved (at least in principle) using elementary
calculus methods.

The decision problem, once the arbitrary choices have been made, is solved by
finding the z that minimizes a known function of z. Here the set of possible z’s
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is a class of functions on the space of X to a family of subsets of Q. Special methods
can be used to solve this minimization problem for special kinds of problems,
especially when there are strong restrictions on z. But no very general methods are
available, and we often find the problem too hard to solve.

(6) Inference methods from the decision viewpoint. Because of ease of solution,
inference methods are of great practical interest even in problems for which the
decision model seems more suitable. Commonly, the decision problem cannot be
solved, while one or more inference estimators can be written down rather easily,
their performances from the decision viewpoint easily computed, and the best one
of them used in the hope that it may be fairly good (which may or may not be true).
In point estimation with squared error loss and expected loss as risk, a Schwarz
inequality bound on risk can sometimes be used to show that some particular
inference estimator either is optimum or cannot be much improved upon.

In some classes of problems, estimators obtained by particular inference methods
can be shown to have optimum properties from particular decision viewpoints: the
Gauss-Markov theorem for least squares estimation is an example. Wolfowitz [12]
raises the general question of trying to determine what inference choices will give
estimators that are good from some particular decision viewpoint.

From the decision point of view most inference methods are asymptotically good
as n— oo, roughly because as n— oo (identifiability and continuity assumed), 6
becomes known and there is no longer any uncertainty. Wolfowitz’s consistency
proof [12] is the most general result of this sort. Similar, and stronger, results are
known for particular methods; for example, the consistency and asymptotic
efficiency results for maximum likelihood estimation.

5. Survey of inference methods. In this section some commonly used inference
methods are considered as examples of the general inference method. For the
hypothesis testing examples that are included, we need to consider both the Karl
Pearson and Neyman-Pearson models of testing. In both, the values of z(x) are
restricted to a named subset H of Q, and its complement H’; and there is the size
restriction Py{z(X) # H} < aforallfe H.

Testing Hypotheses 1 (Karl Pearson model). The question asked is: does H
provide a reasonable model or not ? The answer given is

Reject H if d*(H,P,)>c¢
Accept H if d*(H,P,)=c¢

where the size condition determines c.
Testing Hypotheses 11 (Neyman-Pearson model). The question asked is: which
of H, H' provides the more reasonable model ? The answer given is

Reject H if d*(H,P,) islargecompared tod*(H’, P,).
Accept H if d*(H,P,) issmallcomparedtod*(H’, P,)

where the size condition determines where the line is drawn. Here the meaning of
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“large compared to” has to be specified. The choice made by Neyman and Pearson
[6], for a particular d, is

Reject H if d*(H,P,)> c-d*(H', P,)
Accept H if d*(H, P,) < c-d*(H', P,).

In model I we do not care how good a model H' may provide, because H' is only
a formal alternative: z(x) = H' means not that we are going to use H' as model, but
only that we are not going to use H. Indeed, model I is most easily put in general
inference form by using H and the null set for the possible values of z(x); alterna-
tively, we can use H and H’, and artificially modify a natural d to be larger for
e H'. In model I1, on the contrary, H'is a genuine alternative, on the same footing
as H except for the non-symmetry introduced by the size condition. In problems
where H indexes some relatively small class of distributions and H' indexes every-
thing else, it often happens that for every xe %, 0e H there exists 0’e H' with
|d(Py, P)—d(Py', Px)| arbitrarily small. Then d*(H, P,) = d*(H', P,) for all x,
and model II cannot be used without modifying d, or modifying H, H' to provide
an indifference region.

(1) Likelihood methods. These are characterized by the choice of py(x;) * * * pg(x,),
where p, is a probability density of X relative to some fixed measure u, as a measure
of agreement between P, and P,. The intuitive reasonableness of this measure can
be examined in two ways. One way is to think of the sample size as 1, with X, - - -, X,
taking the place of X; of the general discussion. Then P, is a measure putting
probability 1 on the single point x. Having P, maximize the probability (density if
is not discrete) on x is one obvious measure of best agreement; another possibility
would be to have P, centered at x in some sense. A second way is to think of the
sample size as n, so that P, places probability »;/n on each point of Z'; on which »;
of the x;’s fall. Since [[;p} is maximized, subject to Y.;p; =1, by the choice
p; = n;/n, one measure of best agreement between Py and P, is to make [y =
Do(x1) -+ pe(x,) [in the discrete case] as large as possible. From this point of view it
is even clearer that, while likelihood is a very reasonable measure of agreement,
there is nothing necessary or unique about this choice. In fact, other measures are
in common use. The least squares discrepancy measure Y (p;—n;/n)* and the chi-
square discrepancy measure ) (p;—n ;In)?[p; are examples, u discrete.

When p is not discrete and the function given by pe(x) is not continuous in both 0
and x, likelihood is unreasonable and must be replaced by some such measure as
lim sup Po(X; € S)/u(S), the limit being over open sets containing x with u(S) — 0.
It is difficult to cover desired cases without covering undesired cases as well, and
no reasonably general definition is in common use.

The use of likelihood as an agreement measure can be applied to any kind of
inference problem—point estimation, testing hypotheses I and II, confidence set
estimation:

(1a) Point estimation (Maximum Likelihood Estimation). The choice of likeli-
hood []pe(x;) as agreement measure specifies a point estimator z given by taking
for z(x) any value of § maximizing [ [ py(x;). This maximum likelihood estimator is
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often easy to calculate, and is very widely used. From the inference point of view
it is a best estimator in its own right and questions about losses are not relevant.
From the decision point of view it is usually fairly good but can be very bad.
Asymptotically as n — oo and subject to certain regularity conditions (those of
Wolfowitz [12] are not satisfied) it has some optimum properties. Lehmann [3]
gives a list of references.

(1b) Testing Hypotheses I. For this problem the choice of likelihood as an
agreement measure specifies the test

Reject H when supy.y[]pe(x:) <c

where c is determined by the size condition. This test is sometimes used in practice,
especially for a simple hypothesis H. No particular name seems to be attached to it.

(Ic) Testing Hypotheses II (Likelihood Ratio Test). One way of making a specific
choice of test based on likelihood as an agreement measure is the likelihood ratio
test of Neyman and Pearson [6]:

Reject H when supy.p H Po(x;) = ¢ supg g Hpo(xi)

where c is determined by the size condition. From the inference point of view, the
likelihood ratio test is a best test in its own right. From the decision point of view
it is usually a good test (Neyman—Pearson Lemma shows it optimum for simple H
and H'); it can be very bad. Asymptotically as n — co it has some optimum pro-
perties: Lehmann [4] page 16 gives references.

(1d) Confidence Set Estimation (Fiducial Limits). One way of making a specific
choice, based on likelihood as an agreement measure, is

2(x) = {0: ] po(x) = ¢}

where the confidence level condition determines c¢. Kendall and Stuart, [2] vol. 2,
page 136, call this the fiducial interval for 6 (in cases where this set is an interval).
This is the confidence set obtained by inverting the tests 1b of single point hypotheses.
From the inference viewpoint it is a most reasonable set in its own right; from the
decision viewpoint it may be good or bad.

Fiducial confidence sets do not appear to be much used in practice: they are
often difficult to compute and have no decision-optimum properties that would
justify heavy computing effort. For example, when X has binomial (r, p) distribu-
tion the maximum likelihood estimator is computed by maximizing (*)p*(1—p)" ™ *
which is very easy to do; while to compute the fiducial interval one must find the
two solutions of (§)p*(1—p)"™* = ¢ for arbitrary ¢ and determine ¢ so that the
confidence level condition is satisfied. This is too laborious—almost everybody uses
the confidence set, tabled by Clopper and Pearson, that can be obtained with no
work at all by inverting the equal probability tail tests.

Kendall and Stuart caution that some authors use the term fiducial for confidence
sets other than the above one. Conceivably the term might be used for any confidence
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set whatever that is based on likelihood as an agreement measure. Another example
of such a set is that given by

z(x) = {0: II Po(Xx;) Z csupy n po(x))},

obtained by inverting the likelihood ratio tests (1c).

(2) Least squares methods. In its most general form the method of least squares
is just the general inference method as described in terms of the expectations,
under P, and P,, of a class J of real-valued functions on &', with the important
restriction that the class J should not depend on x. That is, having observed
X = x, choose a class 7, not depending on x, of real-valued functions # on &', and
take for d some measure of discrepancy between E, #(X,) and ) 7, #(x;)/n over the
class 7.

The discrepancy measure always used is given by

APy P) = Yo 5 {Eg (X )= Y0 t(x)]n),

from which comes the name “least squares,” our aim being to make d as small as
possible by choice of 0. This includes weighted least squares—the weights can be
included in the ¢’s. However, if it seems more reasonable or if it leads to an easier
minimization problem, one might want to use some other discrepancy measure
such as

Yies |Ee HX)—) =y t(xi)/"l or
Zzef {|Ea t(Xl)P_ |Z7=1 t(xi)/"rf}z

and still, somewhat improperly, use the name least squares.

Usually 7 is taken to be a finite set, commonly the set given by X;, X%, -, X;
for real X;, and by U,, V,, U2, U, V,, V2, -+, V¥ for bivariate X, = Uy, V.
However, any functions at all can be used, provided only that their expectations
exist. There are some obvious guides on the choice of #’s: (i) the expectations should
be simple functions of 6 making it easy to determine what 0 values minimize d;
(ii) the expectations should depend strongly on 0, preferably in a monotone manner
—thus a function whose expectation does not depend on 6 is no use at all, and the
function given by #(x) = 0 for x negative, 1 for x nonnegative where X, is real
valued, may be a good choice for a translation parameter 6 but a bad choice for a
scale parameter 0; (iii) because of the discreteness of P,, continuous functions ¢
seem preferable—small changes in the x;’s then will make only a small change in
the value of the estimator; (iv) functions ¢ that are bounded or at least do not grow
too fast as x — oo are preferable because any realization of P, is a bounded approxi-
mation to the true P, and necessarily ignores the “tails’ of P,.

The method of moments is a special case of the method of least squares, in which
the class 7 (usually consisting of the powers and cross products mentioned above)
is so chosen that a unique value of @ makes d = 0, i.e. makes Eo t(X ) = Y 1=, #(x;)/n.

The method of least squares could be used for any type of inference problem
(point estimation, testing hypotheses, confidence set estimation) but is in common

k
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use only for point estimation. From the inference viewpoint it is its own justifica-
tion; from the decision viewpoint it has the optimum property of giving minimum
variance unbiased linear estimators (the Gauss—Markov theorem, see Plackett [8]).
It is a very useful method because one can almost always choose J and d so as to
easily obtain an estimator even in problems where the usual methods lead to
minimization problems too difficult to carry out. From the decision viewpoint this
estimator may be good or bad, but at least it is an estimator, and resulting losses
can be computed. Here are two very simple examples illustrating expediency as a
criterion for choosing g~ and d.

ExaMmpLE. Let X, have a Poisson (1) distribution and let » = 1. Here it seems
foolish to use the functions given by X, X2, X3, --- when the functions given by
X, X(X—1), X(X—1)(X—2), --- have the very much simpler expectations 4, A2,
23, -+~ Further, it seems foolish to use the d given by {x—4}*+ {x(x—1)—4*}> +
{(x(x=1)(x—2)—2%}2+ -+ when the d given by {x—A}*+ {[x(x—D]F-A}*+
{[x(x—1)(x=2)]4—A}>+ - -+ is so much easier to minimize. In both cases, there
is no obvious reason for thinking one choice more reasonable than the other.

ExAMPLE. Let X, have Cauchy density given by (1/z0)/{1+(x/0)*}, with 0 an
unknown scale parameter. Here the usual methods (e.g. maximum likelihood) are
hard to carry out. But it is easy to estimate 0 using the method of moments—just
use any convenient function ¢. One such function, given by ]xl*, has expectation
2%0%; equating this to the P, expectation ) |x;|*/n of the same function gives us the
least squares estimator {3 |X;|¥/n}?/2 for 0.

(3) Chi-square methods. These are characterized by the following choice of
discrepancy measure, due to Karl Pearson. We partition the space of X, into k
regions S, * -, S, (this partitioning does not depend on x) and ask for best agree-
ment between probabilities and observed proportions for these regions in the sense
of the discrepancy measure given by d(Py, Py) = 1. Yt~ {Ps(S)— P(S)}*/Py(S))-
This is just the method of least squares with J taken to be the indicator functions
of the sets S, -, S, and with sum of squares (possibly with constant weights)
replaced by the above weighted sum of squares with weights 1/P,(S;) depending
on6.

This discrepancy measure can be used in any kind of inference problem; it is in
common use for point estimation (minimum chi-square estimation) and testing
hypotheses I (the chi-square test). From the inference viewpoint itisits own justifica-
tion; from the decision viewpoint it has optimum properties as n — co. These are
discussed and references given in [4]. An asymptotic property of great convenience
is that as n — oo the distribution of d*(H, Py) tends to a noncentral chi-square
distribution, making it easy to approximate the cut-off point and the power function
of the test. In hypothesis testing, the regions Sy, - -+, S are chosen so that d(Py, P,)
would be expected to be large when 0 has values against which we want the test to
have high power.

(4) Kolmogorov—Smirnov methods. In these methods the discrepancy measure
used is given by d(P,, P,) = sup,, |Fs(x")—F; (x’)| where F,, F, are the cumulative
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probability functions corresponding to the probability measures P,, P, respectively.
In least squares language this amounts (for real-valued X,) to taking for J the
indicator functions of the sets (— o0, t], —00 <t < o0, and using the discrepancy
measure given by sup, |Eq #(X,)— Y 71—, t(x;)/n|.

The use of this measure, and asymptotic results, are discussed in [1] for hypothesis
testing [ problems. Wolfowitz uses this measure as an example in point estimation
and Wolfowitz’s regularity conditions can be used to show that forn=1,2,3, -
it gives a consistent sequence of estimators.

From the inference viewpoint this discrepancy measure is its own justification.
Like other measures differing from likelihood it has the drawback that the 0 value
minimizing it for a particular x can make this value of x impossible while other 0
values give this x a higher probability.

ExAMPLE. Let X, - -, X,, be independent, each with-Rectangular (6—13%, 0+3%)
distribution, n=100. If X; =0, X, =1,-*, X900 =1 we know for sure that
0 = 1 but the value 6 = .99 minimizes the discrepancy measure, and this 6 value
makes the observed sample impossible.

At first sight this seems to be a serious drawback (from the decision viewpoint it
is serious, leading to inadmissibility) but actually it may be of little importance. It
may happen only with negligibly small probability. Besides, the probability model
is intended only as an approximation to reality, and it is common to use probability
models that ascribe positive probability to x’s known to be impossible (for example,
the normal distribution as a model for measurements known to be positive) or on
the other hand that assign zero probability to values known to occur. In the above
example it might well be argued that the outlyirig X, value should be rejected as an
accident and that 8 = .99 is a very reasonable guess indeed. That example can be
made more realistic, less simple, by spreading out the X;’s that are concentrated
on the point 1.

Also discussed in [1] are the Cramer—von Mises tests of hypotheses I which use
the discrepancy measure [©,, {Fy(f)—F(t)}* dK(f) where K can be more or less
arbitrarily chosen, one choice being K = F,,

(5) Nonparametric methods. There are a very large number of nonparametric
hypothesis testing I methods in which the rather arbitrarily chosen discrepancy
measure (chosen so that we would expect it to be small when 0 € H, and large for
0e H' values against which we want high power) is distribution-free, i.e. has the
same known distribution for all e H. This enables us to determine the cut-off
point for the test /. Furthermore, it often happens that this distribution approaches
a simple limit as » — oo, giving an easy approximation to the cut-off point for large
n. Some examples are: the chi-square test, the Kolmogorov—Smirnov test, the sign
test, the Wilcoxon test.
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COMMENTS ON BLYTH’S PAPER

BrRADLEY EFRON:? Students of statistics who venture into applied work after years
of study are often surprised to find out that they have been taught the wrong subject.
Faced with a messy batch of actual data, their more experienced colleagues usually
will not concern themselves with admissibility, minimax properties, subjective prior
distributions, etc.; instead they will get right down to the business of “inferring”
what is going on, probably using a combination of the methods Professor Blyth
outlines in Section 5 of his paper. ,

Of course any good applied statistician must keep in mind the principles of
theoretical statistics (‘““power”’, “Bayes Law”’, “sufficiency”, ‘““‘unbiasedness”, etc.),
and bring these principles to bear whenever they are appropriate and feasible. This
truism should not be used to conceal the fact that there is a much greater distance
between theoretical statistics and applied statistics than between, say, theoretical
and applied physics.

Professor Blyth’s paper is an attempt to describe mathematically the vulgar form
of statistics in common use (which he calls the “inference model”), and show how
it differs from the classroom and journal variety of statistics (which he calls “the
decision model,” a term embracing both the objectivist decision theory of Wald
and the subjectivist world of the Bayesians).? Since statistical inference is, unlike
the weather, something which everyone does and no one talks about, Professor
Blyth deserves a great deal of credit for his lucid venture into this difficult subject.

The basic point of Blyth’s paper seems incontrovertible ; the inference model is a

2 Stanford University.

3 Equating “theoretical” with “‘decision” and “applied” with “inference” is a crude over-
simplification, which I have used, nevertheless, in order to preserve Professor Blyth’s terminology
in this note. I hope that the discussion which follows will make my meaning clear.
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much looser collection of ideas than the decision model, fundamentally because
real life problems usually present themselves to the statistician in a vague and
amorphous form. In Blyth’s formulation the necessary vagueness of the inference
model is obtained by deleting the specific loss functions of the decision model, and
substituting an almost arbitrary concept of ““closeness” or “agreement” with the
observed data. (Hence the often-heard contention of the applied statistician that
he believes in “working close to the data™).

Although I agree with Professor Blyth that the inference model usually does not
have a specific loss function built into it, I cannot accept this as its only distinguish-
ing feature from the decision model. The theoretical and applied models of any
discipline customarily differ in just this way, with the latter being a deliberately
relaxed version of the former.

In my mind the difference between the theoretical and applied (“decision” and
“inference’’) models of statistics lies at a deeper and more disturbing level. An
example, in which the choice of a loss function is not the crucial difficulty, will be
helpful in making this point.

A new type of stellar object (‘““Raysars”), is discovered at Mt. Palomar. A total
of 10 Raysars are sighted after a year of careful investigation, and an important
quantity, the logarithmic intrinsic brightness L;, is measured for each one. These
measurements are made independently by a technique with a known normal error
law

L~ A(4s 1),

where A; is the true log intrinsic brightness of Raysar i. The observed values
Ly=1,L,=1,+,Ly,=I,, have a total sum of squares d*> = ) 1° ;> = 20. An
answer is desired to the following question: is 6> = Y {° ;% less than 20 or greater
than 207

Letting L =(Ly, Ly, """, Lig)s A=(A1, 45, " "5 A10) and I =(Iy, L5, "+, 1), We
know that L ~ A"(4, I), in the usual multivariance normal notation. An objectivist
will argue as follows: Given A, D* =) [°L; has a noncentral x> distribution,
D?* ~ x},(6%), with mean 6%+ 10 and standard deviation (462 +20)*. The observed
value d? = 20 is unlikely if 62 = 20, since even in the case 62 = 20, D? has mean 30
and standard deviation 10. An exact calculation yields

P(D* £20|6% 2 20) < .156.

The objectivist would decide that 62 was probably less than 20, and, if pressed for a
quantitative assessment, might estimate 62 at 10, the minimum variance unbiased
estimate.

Next, let us consider the problem from a Bayesian (subjective) point of view.
Considering the novel nature of Raysars, and the fact that log intrinsic brightness
varies from —10 to +25 for ordinary stars, the Bayesian should not have strong
a priori opinions on A. This leads to the approximate a posteriori distribution

A~H(A,I) given L=I.
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The a posteriori distribution of 62 given L = [is 32, (d?), which has mean d?+10 =
30 and standard deviation (4d*420)* = 10. The subjectivist decides that 62 is
greater than 20 (with a posteriori probability .844) and perhaps estimates 62 as 30,
the a posteriori mean.

Where does all this leave our inference statistician, who actually has to answer
to the astronomers? If he tries to ““stay close to the data”, he may report the maxi-
mum likelihood estimate of 62, which is 20, the likelihood ratio statistic for testing
82 < 20vs 62 = 20, which is 1, and conclude that the data is not decisive on the
question of whether or not 6% is greater than 20. This conclusion is apt to leave our
statistician in an uneasy mood, particularly if he has, as a point of comparison,
gone through the objectivist and subjective arguments above. Even if he does not
believe in minimum variance unbiasedness, for instance, he may note that the
maximum likelihood estimate of 62 based on D? alone is also near 10,* and wonder
why the seemingly irrelevant extra information provided by the direction of the
vector L is changing his estimate so drastically.

The nub of the difficulty, which this example® is designed to exacerbate, is that
both the objective and subjective decision theorists have very definite and very
different “frameworks of replication’ in mind when they use probability models.
The objectivist asks, ‘“how well would my decision rule work, on the average, if
I were to replicate this experimental situation a great many times, always with the
same (“‘true’’) value of the unknown parameter, but allowing the observations to
fluctuate randomly according to the given probability laws ?” The Bayesian thinks
of his potential replications in the opposite manner: “how well would my decision
rule work, on the average, if I were to replicate this experimental situation a great
many times, always with the same (observed) values of the measured statistics, but
allowing the unknown parameter to fluctuate randomly according to the a posteriori
distribution ?”’

Neither of these frameworks is necessarily applicable to a given experimental
situation. The Bayesian concept is often patently inappropriate, particularly in
scientific experimentation. The assumptions of the objectivist model are minimal

# The m.le. of §2 based on D? is 10.6. This is obtained by numerically maximizing the yx?Z; (62)
density, evaluated at D? = 20, as a function of 62. The representation of anoncentral x2 as a Poisson
mixture of central x? distributions is useful here. [4]. The m.l.e. of § based on all the data is of
course 20, since this is the length of /, the m.l.e. of the vector A.

5 Readers will recognize the objectivist portion of the example as a part of C. Stein’s construction
of an improved estimator for the mean of a multivariate normal distribution [6]. The Bayesian
analysis is naive, in that a practical Bayesian would recognize that his seemingly innocuous prior
distribution was actually strongly prejudiced against small values of 2. If he assumes an improper
prior with density g(1) oc ||A]|~®~2 he will get approximately the same answers as an objectivist to
questions involving d2. If the definition of a “practical Bayesian” is one who always chooses his
priors to give good objectivist proportions, then there is little pragmatic difference between the
objective and subjective viewpoints. Most modern Bayesians would object to this last statement,
and give examples where the different viewpoints resulted in different conclusions. In the Raysar
example this difference has been deliberately aggravated. For a nice example of Bayesianism
shading into objectivism, see Section 3.3.3 of Reference [3].
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and usually acceptable in practice, but the conclusions they lead to may beirrelevant.
(A blatant example is the confidence interval (— co, + o) that can arise in estimat-
ing the ratio of two means. Another example is given below).

Both the objective and subjective schools have attempted to broaden the philo-
sophical basis of their respective models. These attempts at greater applicability
range from the ingenuous (*‘in his lifetime the statistician would err 59, of the time”)
to the heroic (subjective probability). Nevertheless it is a fact of life that in many
practical situations, neither frame is satisfactory. In such situations the difficulty
in choosing an appropriate loss function is dwarfed by the fundamental problem
of choosing an applicable framework in which to view the experiment and its
results.

I consider the “inference model” of statistics to be an amorphous collection of
methods which attempts to fill the void lying beyond the philosophical scope of
decision theory. The adjective ‘““amorphous’ is pejorative only in the sense that no
cohesive theoretical framework has yet been able to contain this body of methods
(despite such formidable attempts as fiducial inference.) Many of the most fruitful
ideas in modern statistics have their origins in the inference model, with a later
history of decision-theoretic justification. Examples include maximum likelihood
estimation, the analysis of variance, and to some extent nonparametric methods. A
very pragmatic definition of inference model statistics is the following: all statistical
statements are comparative; in any given experimental situation, no statistical
technique can treat both the unknown parameters and the observed values of the
statistics as unique. The types of comparative statements possible in the objective
or subjective models are often irrelevant or inapplicable to the problem at hand.
The inference model is an attempt to make statistical statements anyway.

The next paragraphs are devoted to an example of one important technique
inference statisticians have developed for making statistical statements outside of
the decision theoretic framework.

The following problem is based on real data which arose in connection with a
disease prevalence study. In thirty-six cities a standardized disease prevalence
statistic Z; was obtained by random sampling. The model

Z;~ipg /(0 1) i=1,2,3,,36

was used as an approximation, which could be assumed to be very good from

binomial considerations and the sample sizes involved. Here 0; was city i’s actual

disease prevalence rate as compared to the national average, and by definition

3160, = 0. It was desired to know whether or not the prevalence rate was related

to the rainfall r; in each city. The values of r; were constants obtained from city

records. (These were also measured from the nationwide average, so that Y 1° r; = 0).
The standard ““one degree of freedom” test statistic [4] for this situation is

S, = [ Z)I3° r)*]?

which under the null hypothesis of no relation between rainfall and disease pre-
valence rate has a y,? distribution. (The test which rejects for large values of S,
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is easily seen to be a uniformly most powerful unbiased test for  3° 7,0, = 0 versus
Y'1%7,6, 5 0.) S, had an observed value of 13.06 so that the null hypothesis was
definitely rejected.

The trouble with this analysis is that it is irrelevant: The value of ) 3°z;> was
144.2, which implied that the vector 8 = (0, 0,, - - -, 03¢) had an estimated length
of (144.2—36)* = 10.4 (with a standard deviation of about one for this estimate).
Given that the vector 6 has length 10, one can show that it is very difficult to choose
the constants r; so that the statistic S, is not significant.

A much more pertinent question is the following: among all statistics of the form

Sg = [(Zi6 Rizi)/(Zi6 Riz)g]z

is S, unusually large ? Here the observed values z; are thought of as fixed while the
vector R = (R, Ry, ", R;) takes on all possible values satisfying Y ;°R; = 0.
Without loss of generality we can also assume that ) ;° R;*> = 1, since Sg is homo-
geneous. This suggests a natural measure on the vectors R, namely the measure of
“‘area” on the surface of the 35 dimensional sphere determined by 2?6 R; =0 and
Y3 R = 1 (normalized so that the measure of the whole sphere is 1). Calling this
measure 4, for “Lebesegue,” the question becomes, ‘“What is the A measure of those
vectors R having S > S,?” A standard geometric argument [1], gives the answer
to this question in terms of the Studentized version of S,,

T, = [( 236 rz)/( Zi6 riz 236 (z;— 77)2)%]2,

which we also recognize as the square of the sample correlation coefficient between
r and z. We compute 7, = .029 for the data given and note that this is the upper
329, point of a Beta distribution with parameters 1/2 and 34/2. (This computation
can also be done using ¢ or F tables. As we have pointed out, the length condition
Y 3R =1 is actually irrelevant since S (or equivalently T%) is homogeneous in
R. To answer the question posed, we can choose any distribution of the vector R
having a uniform distribution of direction in the hyperplane  ;°R; = 0. In
particular a multivariate normal distribution in that hyperplane, with mean
vector 0 and covariance matrix 7, allows us to use standard normal theory as shown.)

We conclude that rainfall does not have any discernible linear relationship with
disease prevalence, since if we chose the coefficients R; completely at random we
would get a value of Sy exceeding S, 329, of the time (the same argument also
shows that no low order polynomial function of rainfall has an interesting relation-
ship to disease prevalence in this problem).

This example was interided to show a familiar inference technique in an un-
familiar setting. It is a close cousin to the two-sample permutation test introduced
by Fisher. “Randomization as a Basis for Inference” is a familiar and apt name
for the basic idea, which is to compare the observed value of the statistic not with
its theoretical distribution under the null hypothesis, but rather with the distribu-
tion of values which would arise if the null hypothesis were selected in a random
manner. Rejecting the null hypothesis is interpreted to mean that the experimenter
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actually knew some relevant information about the structure of the experiment
when he set up the null hypothesis.

Although the randomization model can be forced into a decision-theoretic mold,
the type of comparative statements it makes seems to me to be of a fundamentally
different nature than those of either the objective or subjective models. I believe
that future breakthroughs in the science of statistical inference will be made at this
fundamental level of increasing the catalogue of useful frameworks in which to
view statistical data.
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COMMENTS ON BLYTH’S PAPER

Kel TAKEUCHI®: The comparison between ‘‘inference” and “‘decision” in
mathematical statistics is a theoretically interesting and practically important
problem. But as the past controversies for many decades over this problem have
shown, it requires much subtlety for the discussion of this delicate issue to be
fruitful.

At the very beginning of the discussion, the term “‘inference” should be defined
carefully. Sometimes futile controversy started simply from the misunderstanding
or misuse of such terminology. And the logico-methodological aspects other than
abstract mathematical formulation of the concepts should be carefully examined.
In a pure mathematical model, “inference” can be reduced to a special kind among
a wider class of statistical decision problems, regarding the problem as a choice
among a set of possible statements and considering the possible “loss” due to wrong
statements. The motivation of the first paper of A. Wald on statistical decision
functions [12] was to give a unified approach to several forms of inference like
testing and estimation by such a formulation. The pertinent problem here is not
whether this formulation is really appropriate or not, but whether there exists any
way of looking at the problem of inference which might clarify logical difference
between inference and decision, which is missed by the decision function approach.
In this sense the essential difference between ““inference” and “‘decision” should
not be characterized by the contrast between a set of possible statements against
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concrete practical decisions, or between error probability against monetary loss or
utility. The distinction between accepting or rejecting a hypothesis and taking this
or that decision, or between the errors of the first and the second kind and the
expected loss due to the wrong decision is not a basic difference from this standpoint.

The problem of “inference” proper has been formulated, rightly in my
opinion, as the problem of reasoning from the given observed sample to the popula-
tion or the parameter, whereas the “decision” problem has been considered as the
choice among possible decision procedures or rules characterized by their prob-
abilistic behaviors or average performances under possible probability distributions.
R. A. Fisher, especially in his last book [5], emphasized this point very strongly,
and contended that statistical inference has nothing to do with the “long-run
frequency,” that is the probabilistic behavior of the procedure. He tried to construct
a system of the logic of statistical inference which was to.be entirely different from
the Neyman-Wald type theory of statistical decisions. As it has turned out, Fisher’s
viewpoint has not been widely accepted by mathematical statisticians, nor has his
effort been entirely successful. There is an appreciable group of statisticians who
deny the possibility of such a logical system, including, notably, J. Neyman [8], [9].
There are some others who recognize the necessity of such a logic, but are not
satisfied with Fisher’s approach. And some of the people who call themselves
Bayesian statisticians have in some sense unified inference and decision by
introducing subjective (or personal) probability.

This is not a proper place to discuss such problems fully, but briefly summarizing
my own viewpoint, I think that inference proper in the sense above is a real
problem in almost all of the applications of statistical methods in scientific research
and even in most of the more practical applications in management or engineering
problems, where the issues are an understanding of the actual processes and inter-
pretation of the data other than simple choices among a predetermined set of
actions. I am not really satisfied with the approach of R. A. Fisher, because his
logical concepts are difficult to interpret and to justify, nor with the Bayesians
because actually what is required in scientific research is not the consistency of
subjective probability but rather objective statements, whatever the term “‘objec-
tive’”” may mean. However, it cannot be denied that R. A. Fisher and leading
Bayesian statisticians, such as Savage and Lindley, have contributed much to
clarify important points in this problem area [7], [10], [11].

The author seems to consider “inference” in the sense above, i.e. reasoning from
the observed data to the parameter, but he is not consistent in that he chooses as
the criteria of “inference” not only the distance from the observed frequency
distribution to the possible population distribution, which is a function of given
data and the theoretical distribution only, but also such characteristics as the size
of the test, which is based on the probabilistic property of the procedure calculated
for the set of points including non-observed sample points. The last point was
vigorously objected to by Fisher, who insisted that the “‘inference’” should not
depend on the nature of unobserved points (cf. also Barnard [1]). A more sophisti-
cated formulation of this viewpoint is the so-called “‘conditionality”” principle
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as discussed by Birnbaum [2] and others, which implies that if there exists a
subset of the sample space which is clearly distinguishable in some sense, including
the sample point, the “inference” should refer to this subset instead of the whole
sample space. Although the ““conditionality” principle someiimes leads to a contra-
diction, and there is no wide agreement among statisticians how to solve the
problem, itis, I believe, generally admitted through many examples that unwarranted
applications of unconditional probability may lead to absurd conclusions if they
are considered as the solutions of inference problems (Cox [4]). And it is clear that
“inference” methods cannot be based directly on probabilistic properties of the
procedure; or at least it is necessary to supplement them with some other considera-
tions or principles.

It seems to me a little strange to read a paper which discusses the problem of
“inference’ but does not mention anything, even negatively, about R. A. Fisher, the
Bayesians, or others who have discussed the problem for many years, at times quite
heatedly. A more serious defect is that the author does not pay attention to a few
principles of ““inference” which are widely accepted, or at least thought to be worthy
of consideration. The first among these is the principle of ““sufficiency’”” which is
agreed upon by almost all statisticians interested in “inference” even though they
may differ about its precise meaning and interpretation. The second is the “likeli-
hood” principle which is accepted by Bayesians and some others, but not by many
belonging to the Neyman-Pearson school. The principle of ““invariance” may also
be mentioned, which sometimes justifies Fisher’s fiducial approach, as was proved
by Fraser [6]. Anyone may of course reject any or all such “principles” but, he
should not do so simply by ignoring them. I feel that the author should have
discussed the problem more carefully before violating the sufficiency principle in
order to defend randomization in the inference, a choice which is rejected by most
statisticians as a legitimate technique of “inference”.

More particularly, in the discussion of testing problems, it is hard to understand
why the author did not spare even one sentence for the difference between Fisher’s
and Neyman-Pearson’s approaches to this problem, because not only has it been
the object of notable controversy over the years, but it really touches upon the
basic issue of the “inference” and has serious practical significance. Should the
“size” of the test be always preassigned or can the ““level of significance” be deter-
mined from the sample ? This problem is not purely an academic one, and although
no satisfactory mathematical theory for the latter approach has yet been established,
in most of the real applications, it is usually considered to be, I think, the more
appropriate approach.” Anyway, when one discusses the problem of testing
hypotheses from the viewpoint of ““inference”, thisis one of the most basic problems,
which cannot be evaded without mention.

There may be serious doubt whether any clear-cut systematic theory of

7 Even Neyman himself allowed for the sample significance levels in applied problems: Statistical
problems in science. The symmetric test of a composite hypothesis (mimeographed) Lecture, 1969
IMS Annual Meeting.
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“inference” proper could be constructed. If one is not willing to submit to arbitrari-
ness, perhaps the whole theory must remain somewhat vague in its implications, as
was shown in Birnbaum’s discussion [3] of the concept of statistical “evidence.”
But the whole situation is not so vague or chaotic as to warrant the extremely wide
range of arbitrariness allowed in Professor Blyth’s paper.

For the theory of “inference”, logical consistency and coherence are more
important than for “decision” theory because it must stand on its own system of
logic as well as on the considerations of general use for many kinds of decision
problems, and logical coherence is the minimum requirement for such a system.
For example, in the decision case, one can take an intermediate point as an estimate
between two possible parameter points when it is difficult to decide; although it is
certain that the estimate cannot be the true value, it may give a smaller expected
error than the one which chooses only between two possible cases. But for inference
such a procedure may give seriously misleading information about the situation;
one should consider one or another of the possible cases, or possible inadequacy
of the evidence. From this viewpoint the author’s treatment of the example for
the case of uniform distribution seems to be unfortunate, because the logical
incoherence should not be lightly accepted, and the smallness of the probability
of such an occurrence and the inexactness of the model-has nothing to do with
it here.

The inference procedures should be efficient in utilizing the information con-
tained in the sample; more strictly so than the decision case, because if one uses
only a part of the information contained in the sample, the rest of the information
in the sample may provide logically contradictory conclusions, and also because the
inference is for general use but not for a specific decision problem, where some part
of the information could safely be discarded when it hardly affects the expected loss.
From. this viewpoint, the Wolfowitz type minimum distance method does not
necessarily provide us with an efficient or even nearly efficient procedure. Con-
sistency in large samples is a very weak condition, and when the asymptotic
efficiency is not high, which is usually the case for various distance methods, no
consistent procedure can be regarded as a good method of “inference”. Also the
large sample situation sometimes obscures the logical differences or difficulties of
several approaches, since under a set of regularity conditions, asymptotic normality
and/or asymptotic efficiency of maximum likelihood methods leaves little doubt
about the desirable procedures to be used either in decision or inference. The real
test lies, as it has at least since the 1900’s, in the small sample situation.
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