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A NOTE ON THE EXISTENCE OF THE WEAK CAPACITY
FOR CHANNELS WITH ARBITRARILY VARYING CHANNEL
PROBABILITY FUNCTIONS AND ITS RELATION TO SHANNON’S
ZERO ERROR CAPACITY!

By R. AHLSWEDE

Okhio State University

0. Introduction. In [7] Kiefer and Wolfowitz stated the coding problem for
channels with arbitrarily varying channel probability functions (a.v.ch.)—including
cases with side information—for pure codes and maximal errors, and gave necessary
and sufficient conditions for the channel rate to be positive. (A detailed discussion
about the different coding problems which arise in the ‘theory of a.v.ch. by using
different code concepts and different error concepts is given in [2].)

It was undecided for a long time whether the coding theorem and the weak
converse or also the strong converse of the coding theorem hold. (Compare [5]
page 566.) If the coding theorem and weak converse hold for a channel then we say
that this channel has a weak capacity, and if also the strong converse holds then
we say that this channel has a strong capacity.

In Section 1 we prove that the a.v.ch. considered in [7] have a weak capacity.
In case of output alphabets of length 2 an explicit formula for the strong capacity
is even known [3]. One would like to have this sharper result for general finite
output alphabets, but, while awaiting a solution of this difficult problem, it would
be of interest to know that at least the weak capacity exists. The disadvantage of
our method is obviously that it does not lead to a formula for the capacity. How-
ever, already for stationary semicontinuous compound channels a reasonable
formula for the weak capacity is unknown [6]. Moreover, in Section 2 we shall
show that Shannon’s zero-error-capacity problem for the discrete memoryless
channel (d.m.c.) is equivalent to finding an explicit formula for the capacity of a
special a.v.ch. defined by a set of stochastic 0-1 matrices. Therefore an explicit
formula for the weak capacity of an a.v.ch. would imply the solution of Shannon’s
problem, which is known to be of a graph theoretical nature and very difficult
(cp. [8], [4]). The close relation between the two problems might give some hope of
finding explicit formulas for the error-capacity of an a.v.ch. also in other cases of
an alphabet length for which the zero-error capacity is known.

Our method for proving the existence of the weak capacity for an a.v.ch. applies
to infinite alphabets and other channels than a.v.ch. (Corollary 1 and Corollary 2
in Section 1).

1. The existence of the weak capacity for a.v.ch. Let X' = {1,---,a}, Y'=
{1,-+-,b} for t=1,2,-- and let & = {w(-|*|s)|seS} be a set of stochastic
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1028 R. AHLSWEDE

matrices with @ rows and b columns. By X, = [[/-; X’ we denote the set of input
n-sequences (words of length ») and by Y, = []/-; Y’ we denote the set of output
n-sequences.

For every n-sequence s, = (s', - s") e[} S we define a discrete memoryless
channel P(-|-|s,) by P(|x,|s.) = [Tr=1 w(y'|x'|s") for every x, = (x', - x")€e X,
and every y,=(y!, --y,)eY, Consider now the class of channels &, =
(P Is) | snE )

Suppose now sender and receiver want to communicate without knowing which
channel of the channels in %, actually governs the transmission. (cf. [7], Section 2.)

(1) A-code (n, N, A) for the present problem (when the channel probability
function varies arbitrarily) is a system {(u; 4)|i=1, -, N}, where u;eX,,
A;cY,, AinA;=0 for i#j and P(A;|us,) = i—4 forall i=1,---, N and all
S, €S,

(2) A number C is called the weak capacity (of the a:v.ch.), if (a) for any § > 0
and A(0 < 4 < 1) there exists a code (n, 2"€~9, }) for all sufficiently large n, (b) for
any & > 0 there exists a A = A(d) such that for all sufficiently large » there does not
exist a code (n, 2"€+9, 2),

(3) Cis called the strong capacity if (a) holds and (b) is replaced by (b") for any
6>0 and any A(0 <1 < 1) there does not exist a code (n, 2"€*®, 1) for all
sufficiently large n. (a), (b") imply (a), (b).

(4) Let N(n, A) be the maximal length of a (n, N, 1)-code for .Z,.

(5) The entropy of a probability vector n = (n, - ** 7,) is defined to be H(rn) =
=Y i_ym;logm,.

(6) Denote the rate for the probability vector = on X and cpf w(- | |s) by
R(m, w(+|*|$)) = H(n'(s))— Y=y m; Hw( |- |5)), where n'(s) = m- w(- | |s).

(7) Incasea = b = d wecall the stochastic matrix (w(i|j))i =1, d;j=1,"--,d
d-ary symmetric, if

w(jli)=1-¢ for i=j
=gd—1)"' for i#j.

(8) The discrete memoryless channel P(- |-)defined by P(y, | x,) = [Ti=; w(»' | x")
for every x, = (x', - x"eX,, y, =", - y)eY,,and all n=1,2--- is called a
d-ary symmetric channel.

(9) The a.v.ch. (&,) n=1,2,--+ is called d-ary symmetric if for some
e3>e>0) L = {w(:|)|wi|i)=1—efori=1,--,d}. Using a suitable index-
set S we can write & = {w(+||s)|seS}.

(10) We say {(u;, A)|u;€X,, A;cY,fori=1,-"N, Aind;=0fori#j}is a
strict maximum likelihood code (s.m.l.c.) with respect to P(* | D), if4; = {y, | y.€Y,
and P(y, |u;) > P(y,|u;)forj # i} fori=1,--+, N.(cf. [10]7.3.1.)

(11) As usual the Hamming distance between n-sequences is defined as A(x,, y,) =
number of components in which x, and y, are different. After these preparations
we can state
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LEMMA 1. Let &, be a d-ary symmetric a.v.ch. and let {(u;, A;) | i=1,""+, N} be
as.m.l.c. with respect to the d.m.c. P(- | +), given by

w(j|i)=1-2¢ for i=j
=2¢d—-1)""' for i#j.
Then

(12)  P(A;|u;|sy) = P(4;|u;) for i=1,-,N andall P(-|'|s)e,
Proor. Notice first that y, € 4; if and only if
(13) By, ui) < h(y,, uj) for j#1i.

(14) we can assume for symmetry reasons without loss of generality that the sth
component of u;is 1.
Define
Ai = {yu|yue4;and y'=j} and

in*t = {(yl,“',yt_l,ytﬂ,'",yn)l(yl,"’,yt_l,j,yt+1,"',y")Gint}
fori=1,---,Nandj=1,,d.
It follows from (13), (14) that

(15) A5 A% forall j=1,",d.

In order to have a unique description we write P(~|~|s,,) with s, =(1,---, 1)
instead of P(+|-). We shall now prove the lemma iteratively. Suppose (12) holds
for s,’, we shall show that (12) holds for s,*, where s, * can be produced by changing
the rth component of s,” from a 1 to s*'. Because w(1|1|s*") = w(1|1|1)+¢& and
because of (14) and (15) P(4,|uy|s,*) = P(4;|uys,’) for i =1, -+, N. This completes
the proof. (Similar arguments were used in [3].)

THEOREM 1. The capacity of the d-ary symmetric a.v.ch. is

= max, R(m, w(- | ) =logd+(1—2¢)log(1—2¢)+2¢elog2e/(d—1)
= (1—-2¢)logd+(1—2¢)log (1 —2¢)+2¢elog2e.

Proor. We have to verify (a). Using Shannon’s random coding method
we achieve a code with average error 1 of the desired length for channel P(- | ).
Without essential loss in the code length we can reduce this code to a code with
maximal error 4 = 21 (Lemma 3.1.1 [10]). By Lemma 1 this code is even a A-code
for all channels in &, This proves (a). An elementary calculation gives the formula
for max, R(rm, w(- | -)). Theorem 1 plays a basic role in the proof for the main result
of this section:

THEOREM 2. The weak capacity for an a.v.ch. exists.

Proor. Define C*(4) = limsup,.,,, n~'log N(n, A) and C = infy <, <, C*(4).

C*(%) and therefore C exist, because logN(n, 1) < nlogh. For 6 >0 and
e(0 <& < 1) there exists a k =k(5,¢) such that k™ 'logN(k, e) = C—45. Let
{u, A)|i=1,-+-, N(k, &)} be a (k, N(k, €), ¢)-code for &,.
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We use {u;|i=1," -+, N(k, )} as input alphabet and {4,|i=1, -, N(k, ¢)} as
output alphabet of the a.v.ch. determined by the class of stochastic matrices ¥’ =
{W ()| W(j|i) = P(4;]uj|s,) for some P+ |*|s) €Ly i, i =1, -+, N(k, ¢)}.

%’ contains by definition only matrices with
(16) w(ili)z1-e for i=1,,N(k,e).

Let £*>5.%’ be the set of all stochastic matrices satisfying (16). #* determines a
d-ary symmetric a.v.ch. with d = N(k, ¢). Let N*(¢, 1) be the maximal length of a
(¢, N, A)-code for &,*.

(17) Acode(t, N, ) for £,*is acode (tk, N, A) for Z,,.

The idea is now that it is possible to find codes for .#,* which are long enough
even for &, if only ¢ is sufficiently small. Notice that, with decreasing ¢, k = k(5, ),
and therefore also the alphabet length d = N(k, ¢), will in general increase. This, for
instance, makes Theorem 1 of chapter II of [1] inapplicable.

However, as a consequence of Theorem 1 we have

N*(t,2) > exp {(1—2¢) log N(k, &)+ (1 —2¢) log (1 —2¢) +2¢log 26—y} ¢
for ¢ sufficiently large and therefore and because of (17)

1/tklog N(tk, 2) = 1/tklog N*(t, A)

(18) = 1/k{(1—2¢)log N(k,e)+(1—2¢)log (1 —2¢)+2¢log 2e—n}
2 {(1—2e)(C—48)+(1 —2¢)log (1 —2¢) +2¢log 2e —7}
>2C-16

for ¢, n sufficiently small and ¢ sufficiently large. Every nonnegative integer can be
written as n=tk+r, where 0=<r<k. Using N(k+r, )= N(tk, A) and
lim, ., (tk+r)/tk = 1 we get N(n, 1) = C—§ for all nsufficiently large.

COROLLARY 1. The weak capacity of an a.v.ch. with infinite input and output
alphabet exists if and only if

C =infy. ., limsup,,, n~'logN(n,A)

is finite.
This follows immediately by observing that only the finiteness of C was used in

the proof of Theorem 2 and from the definition of the weak capacity.
(19) For every positive integer ¢ let &' = {w(-|-|s")| s'e S'} be a set of stochastic
matrices and let £, be defined as usual.

COROLLARY 2. Let (£,)y=1,2 ... be a channel system as defined under (19)
satisfying S' o8 fort =1, 2, - -+, then the weak capacity exists.
Noticing that (18) still holds one can give the same proof as for Theorem 2.

REMARK 1. One can generalize this result to channel systems with an indepen-
dence structure which satisfies (18). The independence property also can be
weakened. It is enough that (18) holds asymptotically.
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ReMARK 2. The a.v.ch. considered above can be more fully described asan a.v.ch.
where neither the sender nor the receiver knows the individual channel which
governs the transmission of a code word. (S~, R™). Kiefer and Wolfowitz also
introduced in [7] an a.v.ch. where only the sender (S*, R™) or only the receiver
(S, R*) knows the individual channel which governs the transmission of a code
word.

In the case (S~, R*) acode (n, N, A) isa system

{(ubAi(sn)) ' i=1,,N; S,,GS,,},
where u;e X, A(s,) = Y, the 4,(s,), - -+, Ax(s,) are disjoint for every s,€.S,, and
P(A(s,) |ui|s,) 2 1—4 for s,€S,, i=1,---,N.

Again the weak capacity exists. To see this one proceéds as in the case (R™, S7).
First one defines C* (1) = lim sup,_,,, n~ ' log N(n, A) and C = infy <, <; C*(4).

For é > 0 and &(0 < ¢ < 1) there exists a k = k(J, &) such that k™ !log N(k, &) =
C—14.

Let {(u;, A(s,)|i=1,-+, N(k, &)} be a (k, N(k, ¢), e)-code. We use {u;|i=
1,-+, N(k,€)} as input alphabet and {i|i=1,---, N(k,¢)} as output alphabet
of the a.v.ch. (R7,S7) determined by the class of stochastic matrices %' =
W | swils)) = P(A(s,) |ui| s,) fori,j=1, -+, N(k, €) and some s,€ S,,}.

That means the set {4,(s,) | s,€S,} will be identified with letter j. The receiver
knowing s, still knows how to decode. We can now proceed as in the proof for
Theorem 2.

A similar argument applies in case (S*, R™) and we therefore omit it.

2. The relation to Shannon’s zero error capacity. In [8] Shannon introduced the
zero error capacity C, of a d.m.c. as the least upper bound of rates at which it is
possible to transmit information with zero probability of error. More precisely :

(a) a code (n, N, 0) is a system of pairs {(u;, A,-)|i= 1,-+-, N}, where u;e X,,,
AicY, for i=1,--,N and 4;n4; =90 for i#j; satisfying P(Ai]u,-) =1 for
i=1,---,N.

(b) N(n,0) = maximal length N for which a code (n, N, 0) exists. Then the zero
error capacity can be defined as

(c) Cy = limsup,_. ., n~'log N(n, 0). C, exists because N(n, 0) < d".

It is easy to see that N(n, +n,, 0) = N(n,, 0)* N(n,, 0). Therefore one can write
Co =lim,,, n~ 'log N(n, 0).

Shannon proved that for alphabet length d < 4 always C, = log N(1, 0), in other
words N(n, 0) = N(1, 0)".

This multiplicativity formula fails ford = 5inthecase: X =Y = {0, 1,---, 4}.

w(j|i)>0  for j=ii+1(mod5);
=0 otherwise.

N(1,0)=2, N(2,0)=5. (cf.[8].)
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One would like to have a “reasonable” formula for C, which does not “depend
on an infinite product space.” Such a formula is unknown. (An answer as: for given
d there exist a k = k(d) such that N(nk, 0) = (N(k, 0))" could be considered
“reasonable’.)

(20) We say the a.v.ch. (&,) n=1,2, - is of 0-1-type, if & is a subset of the
finite set {w(-|-)|w(:|-) stochastic and w(i|j) = O or 1}.

The elements of £ may be written as w( | . |s) where s is an element of a suitable
finite index set S. We ask for a formula for the weak capacity in this special case.

Let {(u;, A)|i=1,--+, N} bea(n, N, A)-code for £,, then by definition

(21) P(A;|uy|s)=1—-4  forall i=1,--,N and s,€S,
However, P,(y,|x,|s,) = 0 or 1 implies
(22) P(A;|uy|s,) =1 for i=J,---,N andall s,eS,.

We define w*(i|j) = |S| ™! Y,cs w(i|j|s) and the d.m.c. P*(-|-) by P*(y,|x,) =
[Tiw*(y'| x") forally,e Y, x,e X,;n=1,2,"".

We say P*(- | -) is the d.m.c. corresponding to the 0-1-type a.v.ch. (£ )n =1, .

Let now g be a uniformly distributed probability measure on S: g = (|S|™, -,
|S|~") and g, its independent product on S, = []1 S, then

(23) P*(A | xn) = Zs,,e Sn qn(sn)P(A |xn| sn)
for all x,€ X,, A= Y, and therefore by (22)
(24) P*(A;|u) =1 for i=1,---,N.

On the other hand, let us assume that (24) holds for a code {(u;, 4;) | i=1,-,N},
then also (22) must hold for this code, because g,(s,) >0 for all s,eS, and
P(A; |ui| s,) < 1 for some (i, s,) would violate (24).

THEOREM 3. Let (Z,),=1.2,... be an av.ch. of 0-1-type and P*(-|-) the corre-
sponding d.m.c., then

(i) The zero-error capacity C, of P*(- | *) is equal to the strong capacity of
(gn)n=l,2,- s

(ii) The zero-error capacity of an arbitrary d.m.c. is equal to the strong capacity of
a suitable a.v.ch. of 0-1-type.

Proor. (i) follows immediately from the equivalence of (21) and (24). Shannon
calls two matrices w and w’ adjacent, if w(i | J) > 0 when and only when w'(i | H>0.
It is easy to see that d.m.c.’s which correspond to adjacent matrices have the same
zero error capacity (cf. [8] page 10). Choose now & = {w(-||s) | w(- |- |s) stochastic,
w(i|j|s) =0 or 1 and w(i|j|s) = 0 if w(i|j) = 0}. The corresponding w* and w are
adjacent.

(ii) follows now by means of (i). )

Shannon raised the question of finding a connection between the zero error
capacity of a d.m.c. and the error capacity of a suitable other d.m.c. Theorem 3
gives a connection with the capacity of an a.v.ch.
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REMARK 3. Theorem 3 makes it possible to compare results for C, with results
for the capacity of a.v.ch.

The estimate of Shannon ([8] Theorem 1) C, < inf {C(w’)|w' adjacent to w}
means in terms of a.v.ch. C, £ Cj, (as defined in [2] Section 3).

That C,, is in general unequal to inf {C(w')|w" adjacent to w} follows therefore
also from Example 1 in Section 3 of [2], where

1 00 010
w,={(0 1 0], w,=10 0 1
0 0 1 1 00
and &£ = {w,, w,}. Thus
3 20
we=(0 1 1),
30
C, = 0 for w*, but Cp > .
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