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EQUIVALENCE OF GAUSS’S PRINCIPLE AND MINIMUM
DISCRIMINATION INFORMATION ESTIMATION OF
PROBABILITIES!

By L. L. CAMPBELL

Queen’s University at Kingston

1. Introduction. Suppose that X is a random variable with unknown probability
distribution function F(x). Prior to an experiment, let the experimenter make the
initial guess that the distribution function is Fy(x). Now let the experimenter
observe the number.

(1.1) a=n"'Y4_ T(Xy),

where T is a known function, and X, X,, ---, X, are the values of X at » inde-
pendent trials. How should the experimenter modify his guess about F(x) in order
to take account of the new information provided by this number ?

There are, of course, many possible answers to this question. In this paper, we
examine two attractive answers and show that they lead to the same distribution.
The first method, which is an extension of Gauss’s derivation of the normal
probability distribution ([1] page 107), assumes that the probability distribution
depends on the parameter

(1.2) a = E[T(X)] = [, TdF.

It is then assumed that the functional form of F is such that the arithmetic mean,
4, is also the maximum likelihood estimate of a, given the observations X, X5, - -,
X,,. Finally, it is assumed that F depends on the parameter a in such a way that there
is a value, a°, of a for which F = F,. These assumptions, together with the assump-
tion @ = @ determine F, under reasonable assumptions about F, and 7. Hosszu
and Vincze [6] have recently studied extensions of this method.

The second method which we consider consists in choosing the distribution
function F which minimizes I(F,F,) = [©,log(dF/dF,)dF subject to the con-
straint that [  TdF = 4. Here, dF|dF, is a Radon-Nikodym derivative. If Fand
F, have density functions f and f, respectively, then dF/dF, = f|f,. If F and F,
correspond to discrete probabilities p; and g¢; respectively, then I(F, Fy) =
Y.pilogpilg;.

This is the method of minimum discrimination information estimation of
probabilities. If f, =1 or q;= 1, it becomes the maximum entropy method.
Maximum entropy estimation of probabilities has been proposed for use in
statistical mechanics [7], operations research [2], and in the formation of hypo-
theses [4]. Dutta [3], Good [5] and Jaynes [8] have recently considered some of

Received May 27, 1969; revised January 5, 1970.
! The research for this paper was supported in part by the Defense Research Board of Canada,

Grant number 2801-29.
1011

[
\ Jg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to o2z

3ok

The Annals of Mathematical Statistics. KON

WWWw.jstor.org



1012 , L. L. CAMPBELL

the properties of maximum entropy estimates of probabilities. The functional
I(F, F,) is Kullback’s [9] “directed divergence,” or Rényi’s [12] “information
gain.”

As stated above, it will be shown that these two methods lead to the same guess
about F. For discrete distributions and the case T(x) = x, Dutta [3] has obtained
the same result. For continuous distributions where a is a location parameter,
McBride [11] showed that Gauss’s principle leads to density functions which are
exponential functions; it is known [9] that exponential densities maximize entropy.
In a somewhat different setting, Good [4] noted a connection between maximum
likelihood estimates and maximum entropy estimates.

In the present paper we extend and unify these results. We allow T to be a vector-
valued function and we do not necessarily assume that a is a location parameter.
In addition, we examine the role of the initial guess, F,, in a way which does not
seem to have been done before, and we exhibit the directed divergence as a sort of

potential function.

2. Gauss’s principle. By Gauss’s principle we shall mean that a distribution
should be chosen so that the maximum likelihood estimate of the parameter a in
(1.2) is the same as the arithmetic mean estimate given by (1.1). Let 7T(x) be a
vector (T,(x), Tr(x), -+ -, T{(x)), corresponding to s possible measurements which
can be made at each trial and suppose that the functions T; are differentiable.
Let 4 be the vector defined by (1.1) and let the distribution function F(x; a) depend
on the vector parameter a = (ay, a,, ***, a,) in such a way that (1.2) holds. Let
there be a value a° which is such that F(x; a®) = Fy(x), the initial guess.

We restrict our attention to the two cases for which maximum likelihood
estimates are usually considered: the case where F(x; a) has a density function
f(x; a) and the case where F(x; a) is a step function. In the latter case, we assume
that the range of values of the random variable X is some finite set {x*, x2, - -+, x™}
and that the probabilities are P(X = x*) = f(x*; a). We assume, finally, that the
function f(x; a) has continuous mixed second partial derivatives with respect to x
and the components of a.

If X, - -+, X, are n independent observations, the maximum likelihood estimate

of a satisfies the equations

0
—log L= 0, (i=1,2,---,s)
da;

where logL=>)r_,logf(X,;a). Put ¢(x,a)=logf(x;a) and denote partial
derivatives by subscripts. The likelihood equation is then
2.1 Yie1 a(Xy,0) =0, (i=1,2,,5).

If we apply Gauss’s principle to choose f, then we require that 4 in (1.1) and (2.1)
be the same. Put another way, Gauss’s principle implies that the (n —s)-dimensional
hypersurface defined by the equations

(2.2) St T(x)—a;] =0, (i=1,2,.5),
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is the same as the (n—s)-dimensional hypersurface defined by
(23) Zz=l ¢a;(xkaala'“aas)=09 (l = 1729"'95)‘

We assume here that s < n and that the derivatives of the functions T; are linearly
independent. Then a normal to any of the (n— 1)-dimensional surfaces (2.3) must
be a linear combination of normals to the (n— 1)-dimensional surfaces (2.2). That
is, there are numbers p;; such that (equating kth components of normals)

(24) ¢afx(xkaala'”aas)=Z§=1#ij1},(xk)7 (l= 1,2".',S;k=1927”'7n),

where T’ is the derivative of T;. Since u;; does not depend on k, (2.4) can be
written

¢a,~x(xa a) = Zj= 1 Kij Tj’(x)a * (l =1,2,", S),

where p;; is independent of x. We can now integrate these equations with respect
to x and substitute back in (2.2) and (2.3) to evaluate the constants of integration.
The result is

(2'5) ¢a.-(x’ a) = Zj’=l“ij[1qj(x)_ajja (i = i929' “’S)‘

In order that (2.5) be consistent, we must have ¢,,, = ¢, This leads to the
equations

S [Opy  Ou; .
kgl <5Z_;lf B ai?:) [Tk(x) - ak] B Hij " 'uji =0

Since the derivatives 7,' form a linearly independent set of functions, the set of
functions {Ty, -, T,, 1} is linearly independent. Thus oy, /da; = du;/da; and
ui; = u;j;. The first of these equations implies the existence of functions 4, (a) which
are such that u;, = 04,/da; and 4,(a°) = 0. The equations y;; = u;; then imply the
existence of some “potential” function ¥ which is such that i; = 0¥/da; and
V(a®) = 0. We can now write (2.5) in the form

a s
(2'6) ¢a¢(x9a)=;:)_a—{z A][]—"}(x)_aj]+V}9 (i= 1’29“'95)'
i(j=1
Each side of (2.6) is now expressed as a component of a gradient vector which
we integrate from a° to a, getting

$(x, a) = ¢(x,a°)+ Ha) - [T(x)~a]+V(a)

or
) J(x;a) =f(x;a%)exp {Aa): [T(x)—a]+V(a)},

where - [T—a] is the inner product of the vectors T—aand A = (A1, 45, *, 4) =

grad V. Thus, if f satisfies Gauss’s principle f(x; a)/f(x; a®) is an exponential
function of T(x). The parameters A and V are determined by the conditions that f°
be a density function or a set of probabilities and that E[T(x)] = a.



1014 L. L. CAMPBELL

One way to determine A and V is to introduce the partition function Z by
(2.8) Z(A) = [ f(x;a%) e* T® dx or
2.9) Z() = Yy f (x5 a) ¥ T,
when F is respectively a continuous function or a step function. The normalization
[f(x; a)ydx =1 or ) f(x*; @) = 1 implies that ‘
(2.10) Z(A) =e* 77, so that
(2.11) fx;a) =f(x;a%) e* TXZ(A).
The condition E[T(X)] = a now implies that A,, - -+, A, must be a solution of the
equations

(2.12) 0z

a;

i

=aiz(ll9...,ls)’ (i=192’.'.9s)‘

We do not examine here the conditions under which the integral in (2.8) converges
or the system (2.12) has a unique solution.

It should be remarked that the assumption of differentiability of 7' can be
relaxed. We do not attempt to obtain a very general result of this nature, but
content ourselves with a discussion of one special case. If s = 1 and T is monotonic,
with inverse function 77, let y, = T(x,)—a. Then (2.2) and (2.3) can be written

ZZ =1 =0
Yi=19/T ' (n+a),a) =0.
This functional equation for ¢, has the solution ([1], page 47)

¢T ™ (y+a),a) = cy = c[T(x)—a],

which is (2.5) with s = 1.
Finally, we note that the potential function, V(a), is just the directed divergence
between f(x; a) and f(x; a°). Let

I(F,Fo) = J_ wf (x;a) logj{(():;;g) dx
or
m k.
I(F,Fo) = ¥, [(x*;0)log ff((;i;’aao))

when Fis respectively a continuous function or a step function. It now follows from
(2.7) and the fact that f'is chosen to satisfy (1.2) that

(2.13) I(F,F,) = V(a).

3. Minimum discrimination information estimation. We now show that f(x; @),
defined by (2.7) or (2.11), minimizes I(F, F,) subject to the constraint (1.2). In fact,
this result is an immediate consequence of the minimum discrimination informa-
tion theorem of Kullback.
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Let G be any other probability distribution which is such that [*, TdG = a.
Then

(3.1) {20 (i T)dG = i-a,

where A is a solution of (2.12). But the minimum discrimination information
theorem [10] shows that I(G, F,) = I(F, F,) for any G satisfying (3.1).

Hence, the distribution, F, which was produced by an application of Gauss’s
principle is also the distribution which minimizes I(F, F,) subject to the constraint

3.1).
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