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ASYMPTOTIC DISTRIBUTIONS OF SOME
MULTIVARIATE TESTS!

By R. J. MUIRHEAD

The University of Adelaide

1. Introduction and summary. In this paper it is shown how the systems of partial
differential equations developed by the author [15] for the hypergeometric functions
of matrix argument may be used to obtain asymptotic expansions for some dis-
tributions occurring in multivariate analysis. In particular expansions are derived
for the distributions of Hotelling’s generalized T,-statistic, Pillai’s ¥'® criterion,
and the largest latent root of the sample covariance matrix.

2. Notation and preliminary results. It will be seen later that the functions
occurring in the distribution problems mentioned above are matrix generaliza-
tions of the confluent hypergeometric functions (see Erdélyi et al., Chapter 6 [6]).
As in the case m = 1, there are two types of confluent function. The first is the ; F
function which can be defined by a power series expansion (Constantine [2]), or
by the integral representation (Herz [9])

(2.1) F(a;c;R)

= [[(0)/T (@) (c—a)] [§=o etr (RS)(det S)* P det (I - S)*~*~FdS,
and the other confluent function we define by the integral
2.2 ¥(a, ¢; R) = [1/T,(a)] fs>oetr (—RS)(det S)*~Pdet (I +S)°~*~7dS,

where R is an m X m symmetric matrix, etr(X) = exp(tr X), and, throughout
this paper, p = (m+1)/2. (2.2) is valid for Re(R) > 0. In the case m =1 these
functions are both solutions of the confluent differential equation (see [6]). A
system of partial differential equations satisfied by ,F,(a; c; R) has been given by
Muirhead [15] (Equation (5.1)). We shall see shortly that W(a, c; R) also satisfies
this system. Firstly we obtain ¥ as a limiting function from the matrix generalization
of the Gaussian hypergeometric function, ,F;(a, b; c; R).

LEMMA.
(2.3) lim,, o ,F(a, b; c; I—cR™') = (detR)*¥(b, b—a+p; R)

This can easily be proved using the integral representation for ,F; given by
Herz [9). Now, from the system of partial differential equations satisfied by
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»Fi(a, b; c; R) (see Muirhead [15]) it is readily verified that (det R)™*,F,(a, b; c;
I—cR™1) satisfies the system

R2( ¢ oty R;
ML SR B PR — Im—1)—=R.+—(ga—b—
; <R 1>6Ri2+{b a+1+i(m—1)—R;+ p (a—b-1)

» 1§ RRU-gR) O 1 2 RA-dR) iy
2cj=1,j¢i Ri_Rj aRl 2cj=l,j¢i Ri—Rj 6RJ
b
=<b_“7>y (=1,2,, m).

Letting ¢ — oo the system (2.4) tends to the system

0%y « R 1oy & R

2.5) Ri=5+{b—a+1—-R;+} — -3 =
@) iaR;2+{ ¢ ‘+2j=1Z'j¢iRi—Rj}aRi ®j=f7+Ri—R;0R;

(i=12-+,m)

by

which, by (2.3), must be satisfied by W(b, b—a+p; R). But (2.5) is exactly the
system satisfied by ,F(b; b—a+p; R), (see [15]). Hence we conclude that

THEOREM. |Fi(a; c; R) and ¥(a, c; R) both satisfy the same system of partial
differential equations.

3. Hotelling’s generalized T,2. Hotelling’s generalized 7T,2-statistic is used
as a test of significance in the multivariate analysis of variance and is defined as

(3.1) T= Toz/n2=tI'Sl SZ_]’

where the m x m matrices S; and S, are independently distributed on », and n,
degrees of freedom respectively, estimating the same covariance matrix, with S,
having the Wishart distribution and S, having the (possibly) non-central Wishart
distribution. Constantine [3] has obtained the exact distribution of 7,2 over the
range |T| < 1 as a power series involving generalized Laguerre polynomials. The
distribution of T,? tends to that of y2 on mn, degrees of freedom for large n,,
and Ito [10] has derived asymptotic expansions both for the percentage points
and for the cumulative distribution function (cdf) of T,2. This latter expansion
has also been obtained independently by Davis [4].

We shall consider the case when S; and S, have central Wishart distributions
and estimate different covariance matrices £, and X, respectively. In order to test
the null hypothesis Hy: X, = X,, Pillai [16], Khatri [12] studied

(3.2) T'=n2trSl SZ_I.

When H, is true, 7' = T,,%. Starting with the joint distribution of the latent roots
of §; S, ™" (see James [11]) we may readily obtain the moment generating function
(mgf) of T", as

(33) 9(1, Q) = [T,(3(n1 +12))/T,(3n,) ¥ 30y, p—3nz;5 0y 1Q)
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where Q = diag(w,, ®,, ***, ®,) and ®,, ***, o, are the latent roots of X; X, .
Since g(t, Q) is an mgf the boundary condition g(0, Q) = 1 must be satisfied. Let
us put

(34 9:1(R) = [T,(3(ny +12))/T,(3n2) ¥ (3ny, p—ins; 4nz R)

where g;(0) = 1 and g,(2tQ) = g(¢t, Q). g,(2I) is the mgf of T,%. We know from
Section 2 the differential equations satisfied by g;(R) and these will be used later
to derive an asymptotic expansion for g,(R). Using (2.2) it is easily seen that
g,(R) = det(I+ R)™*"* as n, — oo, and this limit will be helpful later.

4. Pillai’s V'™,
Pillai’s V™ criterion is also used as a test of significance in multivariate analysis
of variance and is defined as

4.1) Ve = tr[S,(S; +S,)7']

where the m x m matrices S; and S, are independently distributed on »; and n,
degrees of freedom respectively, estimating the same covariance matrix, with
S, having the Wishart distribution and S; having the (possibly) non-central
Wishart distribution. Distribution problerns associated with ¥ have been
studied by Pillai (e.g. see [16], [17], [18]) and Khatri and Pillai [13]. The properties
of the test have also been discussed by Giri [7] and Kiefer and Schwartz [14].

We shall consider the case when S, has the central Wishart distribution. Then
James [11] (Equation 146) has shown that the mgf of

“4.2) V=n,Vm
is given by
(4.3) g9(®) = (F1(3ny; 3(ny +ny); —nytl).

Clearly g(t) — (1+2t)"*™ as n, —» oo showing that the distribution of ¥ tends
to that of y2 on mn, degrees of freedom. Let us put

(4.4 92(R) = (Fi(3ny; 3(ny +n5); 3n, R),

then g,(0) = 1, g,(—2tI) = g(t), and g,(R) - det(I—R) " *"* as n, — co.
An asymptotic expansion for g,(R) will be derived later.

5. Largest latent root of the covariance matrix. Suppose X is an m x n matrix
variate whose columns are independently distributed as N(0, £). Then, putting
S = n~1XX' (the sample covariance matrix) we have, from Constantine [2]

(5.1) Pr(S<L)

= [Cu(p)3n)*™ T ,(4n + P)](det £~ 'L)¥"  F1(3n; dn+ p; —3nZ 7 L).
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When L = I this just reduces to the cdf of the largest latent root {,,,, of the covari-
ance matrix, i.e. we have

(52) Pr(lpa, <D
= [Lu(pGnb)*™(T,(3n+ p)](det£) " Fy(3n; sn+ p; —4nls™1)
= [[u(p(End)*™ /T, (3n + p)J(det £)"*"etr (— 4nlZ 1)
“1F1(p; dn+p; 4nlZ™")

using the Kummer transformation (Herz [9]) etr(—R),F;(a;b; R) = ,F,(b—a;
b; —R). Hanumara and Thompson [8] have tabulated approximate percentage
points of the largest latent root, and the density function of {,,,, has been obtained
by Sugiyama [19]. Let us put g;(R) = ,F,(p; in+p;inR). Then g,(0) = 1, and
g3(R) - det(I—R)™? as n— co. An asymptotic expansion for g;(R) will be given
later.

6. A general asymptotic expansion. From Section 2 it is clear that g,(R), g,(R),
and g;3(R) all satisfy similar systems of partial differential equations and have
similar limits as n, or n— oo. We consider now a function F which satisfies a
system of partial differential equations with arbitrary parameters and we derive
a general asymptotic expansion for F which can then be particularized to give
asymptotic expansions for g;(R), g,(R), and g3(R). The system satisfied by F is

O*F L
il —ten—L(m—1)—4nR, +1 = (7%
(61) Rl aRiz-l-{ﬂ 2€Nn z(m 1) %nR,+7j=1z,:j¢iRi_RJ}aRi
m R; OF
j —=%an (i=1’2,...’m)

-3 X
- Ti=1,j#iRi—R;0R;

where ¢ can be 1 or —1. We need only work with the first equation in the system
(6.1) (ie. i = 1) remembering that F is symmetric in Ry, R,, *+, R,,. Clearly both
the functions ;F;(«; f—4en; $nR) and ¥(a, B—4en; 4nR) satisfy (6.1). Since we
require F to be 1 at R=0 we make the convenient change of variables
W =1I—(I+¢R)™! so that Fis 1 at W = 0. Then from (6.1) with i = 1, we have
that F satisfies the differential equation

0*F m 1—
6.2) wi(1—-w,)? —2'+{ﬂ—%(m— D=2w;—tne(1—w)) ' +1 Y M}
owy j=2 Wi—Ww;
. oF m w.(l—w.)2 OF _
(11— —— =1 A ASSRAS L, 1— 1
( Wl)aw1 'Z'j;z wisw, o, Yean(1—w,)
where w, w,, - -+, w,, are the latent roots of W. The limits of g,(R), g2(R), g5(R)
all suggest that our general F should have the limit det(/— W)* as n— oo, so
putting

(6.3) F =det(I—W)*- G(W)
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it is easily verified that G satisfies the differential equation

2
wil=w)? asz+{B—%(m— 1)—4ne—w,(B—$(m—5)+20)+ w;*2a+2)
mow(L—w)(1—w)] 8G | & wil—w)* G
(6.4) +%j§2—~————wl_wj }aw, %Fz ma—
—_-[aﬁ—wl(cx2+a)—%a i wj]G.
i=2

We now look for a solution of (6.4) of the form
(6.5) GW)=1+Y2  P(W)n™*

where, for all k, P,(0) =0 so that G(0) = 1. We could now substitute the series
(6.5) into (6.4) and equate coefficients of like powers of n~! on both sides to yield
the P,(W). However a significant reduction in work is obtained if instead of G,
we consider the function

(6.6) H(W) = lnG(W) = T, Qu(W)n ™"

where Q,(0) =0 for all k. Then, using (6.4) we see that H satisfies the partial
differential equation

L(0*H. (oH\?
wi(1—wy) {W+(a—“’x> }
6.7) +{B—%(m—1)—}ne—w,(ﬁ—%(m—5)+2a)+w,2(2a+2)

+

o

m wl(l—wl)(l—wj)}i}:-]__% m wj(l—wj)Z?E

=2 Wy —w; ow, T wy—w; 0w;

=af—w (> +o0)—3a Y w;.
j=2
Now substitute the series (6.6) into (6.7). Equating constant terms gives
00, /0w, = ea{Y"_, w;+w;(2a+2)—2B} so that
(6.8) 0, = tea{c,> +(2u+1)o,—4f0,}
where 6, = w,"+w,"+ - -+ +w," since the Q, are symmetric.
Equating coefficients of n™! in (6.7) gives

0 820,
‘é‘va—j = 28{W1(1 —Wl)2 an12+[lg—%(m—1')—wl(ﬂ—%(m_5)+2a)

W 2Qa42)+ Y, W______l(l‘wl)(l‘wt)]%%

ji=2 (Wl—Wj)

™ wi(l—w,)’ %}

=P

=2 wi—w; Ow;
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which gives, after substituting dQ,/ow, and 92Q,/0w,? obtained from (6.8) and
integrating,

(6.9) Q, = +50{60,%0,+3(20+1)0,%+12(20+1)a, 65 +3(8¢* + 100+ S)o,,
—80,°—24Q2u+2B+ 1), 6, —8(4o> +60f + 60+ 3B +4)a5
+6(2u+6B+1)5, 2 +6(120f + 4% + 20+ 68+ 3)o, —484%c, }.

Similarly equating coefficients of #~2 in (6.7) and integrating gives

(6.10) Q; = 15e0{60,%0,% +40,%0;+2(20+1)0,> + 2420+ 1)6, 0, 05
+18Qa+1)6,20,+2(160% + 180+ 7)0 52 +6(8a% + 100+ 5) 06,0,
+12(80 + 10+ 5)0; 0’5 + 2(400> + 880> + 1040+ 41)0¢
—2406,%0,—24(4a+ B +2)0, 0,2 —24(60+ f+ 3)0, %0,

—24(8a* +40f+ 100+ 2B+ 5)0, 05

—24(120 + 6af + 160+ 38 +9)0, 0,

— 24(82> + 80 f + 200 + 10 + 28a + 58+ 12)0 5 + 155, *

+6(340+ 208+ 17)a %0, + 3(400% + 5608 + 8% + S4o. + 288+ 31)5,2
+48(60* + 10 + B>+ 90+ 58+ 6)0, 04

+6(200> + 800% B+ 24032 + 68a% + 10808 + 122 + 1270+ 62+ 61)0,
—8(60+ 108+ 3)5 > —24(4a> + 220+ 8%+ 8a+ 118+ 7)o, 0,

— 8(400% B+ 480> + 48> + 120% + 660, + 2482 + 420+ 498 +24) 55
+6(1608 +24p% + 20+ 88+ 3)5,2

+6(4808% + 168> + 160 +24B2 + 60+ 24+ 5)o, — 9635, }.

Coefficients of higher powers of n~! may be obtained in a similar manner.
Thus we have

(6.11) InF=aln[det(I-W)]+n ' Q,+n"2Q,+n"3 Q3+ O(n™*)

where Q,, Q,, O, are given by (6.8), (6.9) and (6.10). Specifying the parameters
a, B, e will yield the expansions for In g,(R), In g,(R), and In g,(R) to be given in
the next section.

7. The final asymptotic results. From the previous sections it is clear that putting
o=4%n, f=14n,, e=—1, n=n,, and R=2tI in (6.11) yields an asymptotic
expansion for the cumulant generating function ¢(t) of ¥ = n, /™, which may be
expressed in the form

(7.1) ¢() = tmn, In(1+20+n,"'Qy +n,72Q,+n, Q3+ 0(n, ™)
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where
A, 4,
= _ 2 (A, +4,),
&% 1+2t+(1+2t)2 (A1+42)
B, B, B,
= —(B,+B;+B,),
= a g Tarant (BB tBY
0= 4 G G G coic4ci4Cy)
PT+20° T (1+20*  (1420)° (Q+2n)8 VT TAT ST TR
with

Ay =gmn(m+1), A= —gmn(m+n,+1),
B, = tmn [2m*+ m(n, +4)+(n, +2)],

By = —Lmn,[4m*+3m(2n, +3)+(n,* +6n, +7)],
B, = gmn;[2m®+5m(n; +1)+(2n,* +5n,+5)],

Cy = Lmn [5m*+2m*(3n +8)+ m(n,>+12n, +19)+(n,> +6n, +8)],

C, = —imn,[15m*+2m*(17n;+27)+ m(14n,* +73n, +87)
+(n+14n,2 +49n, +52)],

Cs = Lmn [3m®+2m*(5n,+6)+m(7n,> +23n,+24)

+(n>+7n%+19n,+17)],
Ce = —i5mn,[5m?+22m*(n; + 1)+ 2m(11n,* +27n, +26)
+(5n,>+22n,%+52n, +41)]].

(7.1) is similar to the generalized form for the asymptotic expansion of the cumulant
generating function obtained by Box [1]. Using (7.1) Davis [S] has derived the
percentile expansion of ¥ to order n,”®. Exponentiation of (7.1) yields the ex-
pansion of the mgf of ¥ which may then be inverted, using the fact that (1+42¢) %"
is the mgf of x> on r degrees of freedom, to yield the expansion of the cdf of V.
To order n,~? this is

(1.2) Pr(V > x) = Pr(2, > x)+ o

2
a;Pr(yl, 42, > %
4n2 j;o Jj (Xm 1+2j )

4
mn _
: Z bjPr(X;Znn,+2j>x)+0(n2 %)

+—_
96n,% ;<5

where
ag=n—m—1, a; =2(m+1), a,=—(m+n +1),
bo = 3m®n, —2m*(3n % —3n, +4)+3m(n,>—2n,2 +5n, —4) —4(Q2n,> —3n, - 1),
b, = —12mn,[m*—m(n; —2)—(n, —1)],
by = 6[3m3n, +2m*(3n, +4)—m(n,> —Tn, —16)+4(n; +2)],
by = —4[3m*n,; +m?*(3n,>+6n,+16)+3m(n,> +9n, +12)+4(n > +6n,+7)],
by =3[m*n; +2m*(n; 2+ n,+4)+m(n,> +2n,%+21n, +20)+4(2n,% +5n, +5)].
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The coefficient of n,” 3 in (7.2) can also be obtained from (7.1) but because of its
complexity it is not given here. We can check the expansion (7.2) numerically
when m = 2 and n,; = 3. In this case the exact probability is easily shown to be
(in the range 0 < y < 1)

Pr(V® < y) = (n,+ D[1=(1=3p)2]—n,[1 = (L —y)r=+ D],

Taking n, = 50 this gives Pr(V > 12.592) = 0.0304 while (7.2) gives Pr(V >
12.592) = 0.0302.

Similarly we may obtain the expansion of the cumulant generating function of
T,2, up to order n,” 3, by putting « =1n,, f=p, e=1, n=n,, and R=2tI in
(6.11). Davis [5] has also obtained the resulting expansion by another method,
and has used it to extend Ito’s percentile expansion to order n,”>.

Finally, putting . = p, f = p,e = — 1,and R = {7} in (6.11) and exponentiating
we obtain the expansion of g,({Z~!) which occurs in the expression (5.2) for

Pr(fmax < f). The final result, to order n, 2 is

(1.3) Pr(l,,, <1
— [T,(P)Gn)¥™ T, (3n+ p)](det £)~#etr (— ynts 1) det (I — £ 1)"PF
where |
(7.4) F=1+n"'P;+n"2P,+0(n"?) with
P, =13p{—0,’~(Q2p+1)o,+4po,} and
P, = p{3po,* +6[2p* + p+2]0,%0,+3[4p> +4p*+5p+2]o,°
+24[2p+1]6, 65+ 6[8p* +10p+5]o,—8[3p*+2]a,>
—24[2p3 + p*+6p+2]a, 0,—16[10p* +9p + 4]0,
+12[4p3+8p+1]0,2+12[16p* +8p+3]o, —96p*c, }

where the o, are the power sums of the latent roots of the matrix /—(/—{Z~)71.
The expansion (7.3) is valid over the range 0 < { < min(s;) where the s; are the
latent roots of X.
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