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SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS FOR
HYPERGEOMETRIC FUNCTIONS OF MATRIX ARGUMENT!

By R. J. MUIRHEAD

The University of Adelaide
1. Introduction and summary. Many distributions in multivariate analysis can be
expressed in a form involving hypergeometric functions oF, of matrix argument
e.g. the noncentral Wishart (,F;) and the noncentral multivariate F(,F,). For an
exposition of distributions in this form see James [9]. The hypergeometric function
F, has been defined by Constantine [1] as the power series representation

. . .. (al)k e (ap)K CK(R)
(11) qu(al, ’ap, bl’ - q’R) kzog(bl)k“'(bq)x k'

where a,, -+, a,, by, -, b, are real or complex constants,
(@ =1lit1(a=3G=D),, (@) =ala+1)-(a+n-1)

and C,(R) is the zonal polynomial of the m x m symmetric matrix R corresponding
to the partition x = (ky, ky, -+, k,,), ky 2 k, = = k,, of the integer k into not
more than m parts. The functions defined by (1.1) are identical with the hyper-
geometric functions defined by Herz [5] by means of Laplace and inverse Laplace
transforms. For a detailed discussion of hypergeometric functions and zonal
polynomials, the reader is referred to the papers [1] of Constantine and [7], [8],
[9] of James.

From a practical point of view, however, the series (1.1) may not be of great
value. Although computer programs have been developed for calculating zonal
polynomials up to quite high order, the series (1.1) may converge very slowly. It
appears that some asymptotic expansions for such functions must be obtained.
It is well known that asymptotic expansions for a function can in many cases be
derived using a differential equation satisfied by the function (see e.g. Erdélyi [4]),
and so, with this in mind, a study of differential equations satisfied by certain
hypergeometric functions certainly seems justified.

In this paper a conjecture due to A. G. Constantine is verified i.e. it is shown that
the function

(a),(b). C(R)
(1.2) 2Fi(a,b;c; R) kzog ©. kI

satisfies the system of partial differential equations
(1.3) R(1-R)0O*F/oR*+{c—t(m—1)—(a+b+1—4(m—1))R,
+33 71, j#i [R(1=R)/(R;—R))]} OF |oR,
-, «[R( —R)/(R;—R})]0F|0R; = abF (i=12-",m)
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where R,, R,, -+, R,, are the latent roots of the complex symmetric m x m matrix
R. When m = 1, the system (1.3) clearly reduces to the classical hypergeometric
equation.

It appears difficult to establish this conjecture directly, and the method used has
necessitated a section devoted to a summary of the argument involved (Section 3).
The main result in the paper is summarized in Theorem 3.1 of this section. Section 4
contains proofs referred to in Section 3. Using the fact that C,(R) satisfies the partial

differential equation (James [10])
(1.4) Y RZ2Pp/ORZ+Y 1 Y =1, j#i [R*/(Ri—R))] dy[0R;
= )it kki+m—i-1)y,

James and Constantine [11] have obtained the effects of certain differential operators
on C,.(R). These results are given in Section 2 and are used in many proofs in
Section 4. Section 5 is probably of most interest statistically, for here systems of
partial differential equations similar to (1.3) are given for , F,(a; c¢; R) and (F,(c; R).
These two functions occur often in multivariate distributions. The differential
equations for ; F,(a; c; R) have been used by Constantine [3] to obtain an asymp-
totic expansion for the noncentral likelihood ratio criterion, and by the author [12]
to obtain asymptotic distributions of Hotelling’s generalized T,2 statistic, Pillai’s
V™ criterion, and for the largest latent root of the covariance matrix. The
system for (F,(c; R) is a generalization of that given by James [6] for (F,(m/2; R).

2. Notation and preliminary results. In the ensuing sections, use will be made of
the following definitions and results. Denote by (§) the coefficient of C,(R)/C,(I)
in the “binomial” expansion

@1 CulI+R)CAD) = 3= 0 2. (5) CoR)Co(D).

These coefficients have been tabulated to k = 4 by Constantine [2] and to k =8
by Pillai and Jouris [13]. We introduce the following differential operators

(2.2) E=)7",R;0/0R;

(2'3) D* = ;"=1Ri2 az/aRi2+Z?l=1 ZT:l,j;ei[Riz/(Ri_Rj)]a/aRi,

2.4) e= )" 0/OR; and
23 0% =YL Ry O*JoR + 37y i1, j=i [Ril(Ri— R )]0[0R;.

Now James [10] has shown that

(2.6) EC.(R) = kC(R) and
2.7 D*C(R) = [p,+k(m—1)]C(R) where

P = Z?”:l ki(k;—1).

(2.6) follows from the fact that C,(R) is an eigenfunction of Euler’s operator E,
and (2.7) from the fact that C,(R) is an eigenfunction of the Laplace-Beltrami

operator.
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Corresponding to the partition «, let »; = (ky, kyy-*-, kj+1,+, k,) and
kP = (ky, kyy o, ki—1, -+, k,,) wherever they are admissible i.e. so long as the
parts are in decreasing order. Then James and Constantine [11] have shown that

2.3 eCUR)CD) = Yt 1 (&) Ceer(R)Ciecr(]) and
(2.9 S*CUR)CD) = Y71 (clo)(ki— 1+ 3(m = D)Cex(R)[Cicnr(D).-

The summations in (2.8) and (2.9) are over all i such that x? is admissible. This
convention will be adopted in all future summations involving x; and x(".

(2.8) is proved from first principles in the following way:

eC(R)[CAD) = 3L [OC(R)[OR;]/C(I)
= lim;_o [C.(R+AD— C(R)]/AC (D)
=lim,; o [3 7 1 («&)Cex(R)/Cy(I) +terms of higher degree in 1]
= Z'i": 1 (@) Ce (R)/Ciex(1). '

(2.9) is easily shown by noting that 6* = (¢eD* — D*¢) and applying the operators
¢ and D* to C,(R)/C.(]).

One of the most important results in this paper, and one which will be needed
later is summarized in

THEOREM 2.1. Each of the m partial differential equations in the system (1.3) has
the same unique solution F subject to the conditions

(a) Fis a symmetric function of Ry, R,,***, R,,, and

(b) Fis analytic about (0,0, -+, 0), and F(0) = 1.

Proor. It will be seen later that it is sufficient to consider the first differential
equation (i = 1) i.e.
(2.10) R, (1—-R))&*F[oR,*+{c—4(m—1)—(a+b+1—4m—1)R,
+3) 72 [Ri(1=R)/(R, —R;)]} 0F |oR,
We use the same method and notation employed by James [6] i.e. we transform
(2.11) to a partial differential equation in terms of the elementary symmetric
functions ry, ry, **+, r, of Ry, Ry, -+, R,. Let r,® for j=1,2, -+, m—1 denote

the jth elementary symmetric function formed from the variables R,, R,, ***, R,
omitting R;. Defining r, and r,'? to be 1, we clearly have

(2.11) ry=Riri2, +r)” j=12,,m-1.
Using (2.11) and the relations
0/oR; =YY" 1,2, d]or,

2 2 1 1 2
a /aRl =Z;:',v=1rfl_)1 Vf,_)la /'0V”arv,
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it is readily verified that (2.10) becomes

(2.12) Yy (0°F|or,0r) {3 7=y af)(r$L) —r;+ 1)}
+ Y {le=3G - DM +(a+b+1-1)r\V —(a+ b+ 1D)r,;} OF or
—abF =0

where (James [6] page 372) a)) = a{?, and for p < v

al)=r for 1<jsu

ptv—j
= 0 for u<j=<v
= —TFu4y-; for v<j=sp4v
= 0 for u+v<j = (G=1---,m)
1.e. the matrix
A9 = (@) =
[0 0 0 ~1 }
0 —1 — ¥,
—1 —ry —r,
0 0 -1 —rj_g —Frj_s —Fj_q4 0
0 -1 -r —Fj_s —Tj_q —Fj_3
-1 —-r, =r, —Fjoa —Fj_z —Tj_;
T; Fj+1 P
Fiv1 Tj+2 Fw 0
0
F 0 0

Clearly any solution of (2.12) satisfies condition (a). In (2.12) we can equate
coefficients of r{V, to zero for j=1,---, m (James [6] Lemma page 371) to obtain
the system of partlal differential equations

(2.13) Yu o (@) o Flor,or,+Ym o (a™ V)0 F[or, or,+(c—4(j— 1)) 0F or,;
+(a+b+1—%(j—]))(?F/arj_l—élj{z,’f,v:, 62F|or, or, Y ali)r;
+(@+b+1)Y"m  r;0F|or;+abF} = (G=12,-,m).
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As in James [6] the first two terms in (2.13) can be expressed as traces of matrices.
Now, put

(2.14) F(ro,ry, s l) = 20 o om0 @y e g Pl oy

with ogq...0=1.

Introduce dictionary ordering for the coefficients «;, . .. ;, on the basis of the sub-
scripts arranged in the order j, j,_, " j.j;- Substituting (2.14) in the differential
equation with j = m gives a recurrence relation which expresses «;, ... ; in terms
of coefficients whose last subscript is less than j,,, and by iteration we can thus ex-
pressa;, ..., in terms of coefficients whose last index is zero. Putting r,, = 0 in the
differential equation with j = m—1, we can then express coefficients of the form
O, ... jm_0 in terms of coefficients of the form «,, ..., _,00. Repeating this method
we can express all coefficients in terms of ay, ..., which we put equal to 1.

For example, the differential equation with j=3 and r, =+ =r, =0, is

20 F[or, 6ry—ry O2F 12 + 1y 02F[6ry? — 07F|Or, 24 1y 02F [Or 2
+2r3 02F|0r,0r; 4+ (c—1)0F|0r, +(a+ b) 0F |or, =0.
On substituting
F(ry,ra,m3) = Y 5 ) i3=0%,j2js0 - -0 11 P 72rs?

in this differential equation and equating coefficients of r,/'r,72r;/*, we get the
recurrence relation

%5200 =120 1 + D2+ Do, 41554 1j5-10- -0
+024 DU2+2)0,-1j,42j5-10--0
+U1+DU1+2%, 425, j5-10- 0
=2+ D2 +2j3+a+b=2)a;, j,41j5-10---04/(J3(iz+c— 2))

which can be iterated to express o ..o in terms of coefficients of the form

J1j2J30 +
%500 - - - 0

Clearly then, all the coefficients a;, . .. ;, in(2.14) are uniquely determined by the
recurrence relations, and Condition (b) is satisfied. Hence the differential equation
(2.10) has a unique solution F subject to the Conditions (a) and (b). But it is easily
seen that each of the m differential equations in the system (1.3) gives rise to the same
system of equations (2.13). (The proof is the same—we just equate coefficients of
rjf'_’l to zero for i = 2, - -+, m). Hence each of the differential equations in (1.3) has
the same unique solution subject to (a) and (b). This completes the proof of
Theorem 2.1.

Finally we note that coefficients in the system (2.13) of differential equations do
not involve m explicitly, so that the coefficients a;, ...;  obtained from the re-
currence relations will be functions of a, b, ¢, and j; but will be independent of m.
In fact, since r, =0 for & > m, the system (2.13) could formally be extended to
hold for all i =1, 2, -+ ad infinitum, and the upper limit m on the summations
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can be dropped. The coefficients « in (2.14) are thus defined for any number of
subscripts j,, ', j,, and are completely independent of m. Now, the series (2.14)
could be rearranged as a series of zonal polynomials

(215) F = ZI?;OZKGK CK(R)

Since the zonal polynomials when expressed in terms of the elementary symmetric
functions do not explicitly depend on m, the coefficients a, in (2.15) will also be
functions of a, b, ¢, and k but not m. Again, since C,, = 0 for any partition into more
than m non-zero parts, the a, can be defined for partitions of any number of parts,
and are therefore completely independent of m.

Summarizing, we have

COROLLARY. The solution F in Theorem 2.1 can be obtained as a series of zonal
polynomials F =Y 2o, a, C(R) with coefficients a, independent of m.

3. Summary of the argument. For simplicity, let us denote the m differential
equations in (1.3) by the obvious notation

(3.1) A;F = abF (i=1,2.-,m).

In Theorem 2.1 we proved that, subject to the condition (a) and (b), that each
differential equation in the system (3.1) has a unique solution F(R). This solution
can be expressed as a multiple power series with the elementary symmetric functions
as variables, and the coefficients in this series can be obtained recursively by means
of the differential equations (2.13). Unfortunately, we do not have an expression
for ,Fi(a, b; c; R) as a series of this type, but we do have an explicit expression as a
series of zonal polynomials given by (1.2). This suggests substituting a series of the
form

(32) F(R) = ZZO:O ZK Yx CK(R)> y(O) =1

in (3.1) to derive recurrence relations for the y,, and showing that the coefficients
in (1.2) satisfy the recurrence relations. Owing to the non-symmetry in the differen-
tial operators A;, it appears difficult to do this directly, and a rather more round-
about method must be adopted. In outline, the method is as follows.

It is easily seen that the solution F(R) of the system (3.1) must also be a solution
of the differential equation formed by summing the differential equations in the
system i.e. F is a solution of the differential equation

(3.3) Ay =YY" Ay =maby.

But the operator A splits up into a linear combination of the operators D*, E, §*,
and ¢ defined previously. In fact (3.3) is

(3.9 8*y+(c—t(m—1))ey—D*y—(a+b+1—-1(m—1))Ey = maby.

We can then apply each of these operators term-by-term to the series (3.2), using
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the results in Section 2. It is readily verified that comparing coefficients of C,(R) on
both sides of (3.4) gives rise to the following recurrence relations for the y,

(3.5) Yt (Ne+ki—3i—D)Cy (D, = (mab+p, +ka+kb+3k(m+ 1) C 1)y,

The condition F(0) =1 (i.e. 7o) =1) is not sufficient to solve these relations
uniquely, since there are more coefficients of degree k+1 than of degree k. For
example, with y,, = 1, we have y.;, = ab/c, but

2(c+1)Cay(D Y2y +2(c—=DC1 ,1y(D)y1,1y = mab(mab +a+b+3(m+1))/c

which is only one equation for the two unknowns y,, and y, ;. There are, in fact,
an infinity of solutions of (3.5), and from these we have to select the correct one
i.e. the one corresponding to the solution of the system (3.1).

However, the further condition that

(c) the coefficients y, be independent of m, is sufficient to give a unique solution
of (3.5). As we saw in the corollary to Theorem 2.1, this condition is also satisfied
by the solution of the system (3.1), so that the function defined by this solution of
(3.5) must agree with the solution F of the system (3.1). (See Theorem 4.1 below).

To show that ,F(a, b; c; R) is the solution of (3.1), it is then only necessary to
prove that the coefficients in (1.2) satisfy Condition (c) and the recurrence relation
(3.5). Clearly (c) is satisfied i.e. the coefficients (a).(b),/(c).k ! are independent of m.
In Theorem 4.2 below, these coefficients are shown to satisfy the recurrence
relation (3.5) as required.

We can summarize our results in the following

THEOREM 3.1. ,F (g, b; ¢; R) is the unique solution of each of the m differential
equations

[R(1—R)JO*FIOR? +{c—}(m—1)—(a+b+1—4(m~1)R,
+325-1, ;i R(1=R)/(R,— R ) }0F |OR,
=330 j#i[R(1=R)/(R,—R)]OF|oR; = abF (i=1,2,,m)

subject to the conditions
(a) Fis a symmetric function of Ry, R,, "+, R,,, and
(b) Fis analytic about R = 0, and F(0) = 1.

4. Results and proofs. In this section, results referred to in Section 3 are proved
wherever necessary.

We have seen that in order to show that the unique solution of the system (3.1)
is in fact the unique solution of the differential equation (3.4), it is only necessary
to prove that the recurrence relations (3.5) yield a unique solution for the y,, when
the 7, are assumed to be independent of m. This is done in the following

THEOREM 4.1. Under the condition that the y, are independent of m, the recurrence
relations (3.5) have a unique solution.
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PrOOF. Since
4.1 C.(DIC(I) = (m+2k;—i+ Dxp2ea(D/2k+ Dxp2i9(1)

where y;5,;(1) is the dimension of the representation [2x] of the symmetric group
on 2k symbols (see James [9] page 478), we obtain, on substituting for C, (I) from
(4.1) into (3.5), the identity

(4.2) 3 (e + ki — 30— D)(m+2k; — i+ Dxgaea(Dre,
= 2k + 1)(mab + p, + ka + kb ++k(m + 1)) 2617

Now assume that the 7, are independent of m. Then, coefficients of m on both sides
of (4.1) may be equated to give

4.3) Y e+ k=30 — D)tp2ea(Dye, = 2k + D(ab+3K) 126 (D)7 »
while equating the constant terms in (4.2) gives
44 Y G e+ki—(i—1)/2)(2k;—i+ D21,

= (2k+ 1)(py + ka + kb + 1K)y (D,

Let N(k) be the number of partitions of k. Then (4.3) and (4.4) constitute 2N(k)
equations in the N(k+1) unknowns Vg 1y, Y1), V1,1, 1) Since 2N(k) =
N(k+1), there are more than enough equations to determine the coefficients
correctly. For example, with y, = 1, we have y) = ab/c, and (4.3) gives

2c+ D)y +He—Hra,n = 3(ab+%)ab/c,
while (4.4) gives
4(c+1)yay—He—Dra,y = 3(a+b+3%)ab/c.

These two equations in the unknowns 7,, and 7,y yield the solution 7.,y =
(@)2)(B)2y/(€)2)/2! and Y 1) = (@1.1y(B)1,1y/(©)1,1y2!- Thus the recurrence rela-
tions (3.5) yield a unique solution for the y, as required. []

Finally we show that the coefficients ()(b),/(c) k! satisfy the recurrence relations
(3.5). We require the following lemmas.

LEMMma 4.1.
4.5) syetr(R) = Y% o Y kCUR)/K!
4.6) s2etr(R) = Yo L P Cu(R)/K!
@.7) 51528t (R) = Yo Y (k= 2)p, C(R) !

where s; = Ry'+ -+ +R,,' and etr (R) = ¢"®.
Proor.
spetr(R) = Y52 o8k k! = Y o ks [k! = Y2 0 X KCR)[K!
which proves (4.5).
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Applying D* to both sides of
(4.8) etr (R) = 3 220 2 ClR)/k!

and equating coefficients of C,(R) gives (4.6). Applying E to both sides of (4.6) and
equating coefficients of C,(R) using (4.6) gives (4.7).

LEmMA 4.2.
(4.9) 21 GHC (D) = m(k+ 1)C (1)
(4.10) =1 Gk —3(i— D))C, (1) = k(k+ 1)C(I).

PRrROOF. Applying ¢ to both sides of (4.8) and equating coefficients of C,(R) gives
(4.9). Applying 6* to both sides of (4.5) and equating coefficients of C,(R) using
(4.5) gives (4.10). We are now in a position to prove the following

THEOREM 4.2. ,F (a, b; c; R) is a solution of the differential equation (3.4).
Proor. It is sufficient to show that

(4.11) e = (@) (D), /(0) k!

is a solution of the recurrence relations (3.5). Substituting (4.11) into (3.5), the
problem reduces to showing that

(4.12) it 1 Na+ki— 3= D)+ k;— (i —1)C (D)

= (k+1)(mab+p,+ka+kb++k(m+1))C.(1).
Using (4.9) and (4.10) in (4.12), it remains to prove that
(4.13) 121 (k=3 = 1))’ C () = (k+ 1)+ Fh(m+ 1) C(D).

Applying 6* to both sides of (4.6) and equating coefficients of C.(R) using (4.5),
(4.6), and (4.7) gives

(4.14) Yy Gk —3(m—)p,, C,o (1) = (k+ D[2mk + p,(k +2+3m(m—1))]C(D).

Putting p,, = p+2k;—i+1 and using (4.9) and (4.10) in (4.14) gives (4.13), as
required. []

5. Differential equations for F,(a;c; R) and (F,(c; R). We conclude by giving
systems of partial differential equations satisfied by ,F,(a; ¢; R) and ,F;(c; R).

THEOREM 5.1. [ F,(a; c¢; R) is the unique solution of each of the m differential
equations

(5.1) R;*F[oR?+{c—¥m—1)—R,+3Y"_, ;+;R,/(R;—R))} 0F|oR,;
—4Y7. j#:i[R;/(Ri—R))]0F|0R; = aF, (i=12-,m)
and (Fy(c; R) is the unique solution of each of the m differential equations
(5.2) (R)O*F[oR?+ {c—3(m—1)+1Y77- 1 j+:R/(R;—R;)} OF |OR;
"%Z?:l,j;ei[Rj/(Ri—Rj)] OF|0R; = F, (i=12,,m)
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subject to the conditions that
(a) Fis symmetric in R, R,, "+, R, and
(b) F is analytic about R =0, and F(0) = 1.

PRrROOF. We can prove this theorem with the same method used for the proof of
Theorem 3.1. For instance, the sum of the m differential equations in (5.2) is

(5.3) (c—4(m—1))eF +6*F = mF.
The recurrence relations corresponding to (5.3) analogous to (3.6) are
(5.4) =1 (e +ki=3(i = D)C (D, = MC D)y,

On substituting y, = 1/(c), k! into (5.4), the problem then reduces to proving that
(4.9) is true. This is done in Lemma 4.2. Similarly, (4.10) shows that (a),/(c).k!
satisfies the recurrence relation obtained from the sum of the differential equations
in (5.1). An alternative proof is also available using a limiting procedure. From
Theorem 3.1, ,F,(a, b; c; 1/bR) satisfies the system

(5.5) R,-(l—b_lRi)azF/aR,-2+{c—%(m—-l)_(a+b+1_%(m_1))b—1Ri
+32 71, j#i R(1=b"'R)/(R;—R))} OF |R,
-3 1, j#i[R(1=b"'R)/(Ri—=R)]OF|0R; = aF (i=1,2," ", m).

Letting b — o0, ,F,(a, b; ¢c; b"*R) - ,F,(a; c; R) and the system (5.5) tends to the
system (5.1). Similarly, since ,F;(a; c; a *R) = oF,(c; R) as a — oo, the system
(5.2) can be obtained as the limit of the system (5.1).
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