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STOPPING TIMES OF SPRTS BASED ON
EXCHANGEABLE MODELS!

By ROBERT H. BERK?

Columbia University

0. Summary. Let X;,X,, - - be a stochastic sequence and 2 and 2, two
composite parametric hypotheses (models) under which the X; are i.i.d. We
consider SPRTs of 2 vs 2 that depend on a sequence of exchangeable densities.
Included are SPRTs obtained by the method of weight-functions (Bayesian
procedures) and many SPRTs obtained by invariance reduction. Conditions are
established under which the stopping time of such a procedure is almost surely
finite and has a nontrivial mgf.

The ideas are illustrated using the sequential ¢-test.

1. Introduction. Let X, X, X,, -+ be a sequence of abstract random variables
and Z and 2, two hypotheses under which the random variables are i.i.d. (indepen-
dent and identically distributed). We consider SPRTs of 2 vs 2 that depend on
sequences of exchangeable densities. As discussed below, these can arise in two
conceptually distinct ways. Both & and 2 are dominated parametric families
indexed by a parameter 6 which ranges in the parameter space ®. (The parameter
spaces for 2 and 2 can differ, but for convenience, we denote both by ®.) We
denote the generic density in 2 (respectively 2) for X by p(‘l@) (respectively
q(- | 0)), taken with respect to some dominating o-finite measure.

A general prescription for obtaining SPRTs, entailing exchangeable densities, is
Wald’s method of weight-functions. Let <7 be a o-field of subsets of ® and P and
0, two measures (weight-functions) on (®, «). Wald (1947) suggested the following
type of sequential procedure. At stage n, consider

(11) Ln = pn(Xl,“'axn)/qn(xl,'“sxn),
where
(1.2) Pu(x1,e %) = fo [ T4 p(x:| 0) dP(6)

and g, is similarly defined with (g, Q) replacing (p, P). One terminates as soon as
L, leaves an interval (4, B)=(0, c0). Such a procedure can arise in a Bayesian
context if P and Q are priors on ©. Then but for the initial odds factor, L, is the
posterior odds favoring 2. Hence the procedure amounts to terminating as soon
as the posterior odds favoring either hypothesis becomes sufficiently large. The
salient fact about the above procedure is that composite hypotheses, under which
the data are i.i.d., are replaced by simple hypotheses, under which they are
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980 ROBERT H. BERK

exchangeable. (For when P and Q are proper (i.e., probability measures), { p,} and
{q,} are consistent families of exchangeable densities (in the sense of Kolmogorov).
Even when P and/or Q is improper, we may say that {L,} is a sequence of exchange-
able likelihood ratios.)

By assuming an associated group structure for £ and 2 another method of
obtaining simple hypotheses (and hence SPRTs) arises: invariance-reduction. (See
Lehmann (1959) for the facts about invariance mentioned here.) Let (%, #) denote
the common sample space of the X;. Suppose both 2 and 2 are generated by the
same group G. That is, G is a group of one-one bimeasurable transformations of &
onto itself and # = {P, g~ ':ge G} (respectively 2 = {Q, g~ ':geG}), where the
choice of P,e 2 (respectively Q, € 2) is arbitrary. It then follows that 2 and 2 are
simple hypotheses about any G-invariant functions of X,, X,, -+ ; in particular,
about {M,}, where M, = M, (X, - -+, X,) is a maximally G-invariant function of
X,, -+, X,. We may thus establish a sequential test based on {M,} by considering
at stage n, L,, the likelihood ratio of (M, - -, M,) under £ and 2. The procedure
terminates the first time L, leaves (4, B). (The arbitrary choice of weight-function
is thus replaced by a data reduction.) It should be noted that when i < n, M, is an
invariant function of X, -+, X,, so that (M, -+, M, _,) is a function of the
maximally invariant M,. Hence

(1.3) L, = p.(M,)/q,(M,,),

where p, and g, denote densities for M,, under £ and 2 respectively. Under a fairly
mild condition on G, we may relate (1.1) and (1.3). Specifically, M, may be
identified with an exchangeable sequence derived from X,, X,, - -

THEOREM 1.1. Suppose there is a positive integer v and a PU2-null subset, N,
of &', so that every g in G is determined by its values at the r coordinates of any
point of X"—N. Then, letting M(x,, ", X,,,) denote a maximally G-invariant
function of xq, ", X,+1, @ maximally G-invariant function of X, ", Xy, > 1, IS
Mn(xl, Y X") =(M(xy, ", X, xr+1)s s M(xl, T Xy xn))'

ReMARK. In a typical application of this theorem, Z is a vector space and N is
the set of points with linearly dependent coordinates.

PROOF. It is clear that M, is invariant; we show it is maximal. Suppose (xy,"*, X,)
and (x,’,-'-, x,’) represent two possible outcomes of (X;, -, X,) for which
M(xy, 0, %) = My(x{', -+, x,/). Then M(xy, -, x,, x;) = M(x,', -, %/, xi’),
i=r+1,:-,n, and since M is maximal, there exist g,e G so that (g;x,* ", 9g: %,
gix) =, ", x/,x/), i=r+1, -, n. We may assume that (x, -, x,) and
(x5, x,/)eZ"— N, then as (g;x, ", g; X,) = (x{, -+, x,/) for all i, g,41 =
cr=g,=g (say). Thus (x,, ", x,)=(gxy, ", gx,), showing that M, is
maximal. []

Letting Y, =M X, -, X,, X,4+1), M,,,=(Y;, ", Y,) and the sequential
procedure defined by (1.3) is seen to depend on the likelihood ratios for the
successive initial segments of the exchangeable sequence Y,, Y,, *--.

The following SPRT, the sequential f-test, illustrates invariance-reduction:
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Suppose that under Py, the X; are N(50, 6%), while under Qy, they are N (5’0, 6°),
where 0 £ 8’ < d and @ = (— o0, 0)U(0, 00) (or (0, o0) if 8’ = 0). (Thus the hypo-
theses are |u/o’| = § or &) Both hypotheses are invariant under changes of scale
(X > ¢X, c #0) and are generated by these transformations. The condition in
Theorem 1.1 with » = 1 is easily seen to hold provided the origin is removed from
& = (— 0, ). As X,/x, is a maximally invariant function of (x,, x,), we see that
(Y, Yy, -+ 0) = (X,/Xy, X3/Xy, -+ +) is a maximally invariant exchangeable sequence
guaranteed by the theorem. Thus the hypotheses may be tested sequentially by
considering, at stage n+ 1, the likelihood ratio of M, = (Y, * -, Y,) under the
hypotheses. (In fact, a further simplification is possible. As X, =3"1X;/n and
S,2 =Y (X;—X,)? are jointly sufficient for X, ---, X, (under 2U2), the theory
in [4] shows that a maximally invariant function of (X,, S,) is sufficient for M,.
This sufficient invariant may be taken to be |T,| = |X,/S,|; hence the procedure
reduces to considering a sequence of likelihood ratios for successive -statistics.)
It is readily checked that other normal theory SPRTs based on invariance-reduction
also have this exchangeable structure. These include the sequential y*, F and
T?-tests. In these cases, groups of linear transformations are involved and these all
satisfy the hypothesis of Theorem 1.1.

The foregoing conceptual link between invariance-reduction and weight-function
likelihood ratios is an instance of deFinetti’s representation theorem for exchange-
able distributions. The theorem, as extended by Hewitt and Savage (1955) shows
that in most cases of interest, an exchangeable distribution for a data sequence is a
mixture of i.i.d. distributions and is then said to be presentable. In the present
instance, conditioned on X,, -, X,, Y;, Y,, --- are i.i.d. and one obtains their
marginal exchangeable distribution by mixing with respect to the marginal distri-
bution of X, - -+, X,. Thus for the t-test, one mixes the conditional i.i.d. normal
distributions, given X;, of X,/X;, X3/X, - -. There is another conceptual link of
use in the present context. Unlike the preceding, it often involves improper mixing
measures. It is well known that the likelihood ratios for certain invariant SPRTs
can be obtained by mixing the corresponding joint densities for X;, X,, - - with
appropriate measures. This is shown implicitly for the sequential z-test by Wald
(1947) and Barnard (1952). The reason for this is expounded by Wijsman (1967a),
who shows under general conditions that the probability density for a maximally
invariant function of X, - --, X,, is proportional to

(1.4) JeITi p(X:| g0) dv(g),

where 0 is a reference point in ® and v is absolutely continuous with respect to
Haar measure on G. (The omitted factors involve constants and Jacobians, but
nothing depending on 2.) Typically, v is improper. Unlike the representation given
by Theorem 1.1 and (1.3), (1.4) shows L, to be symmetric in X, - -, X,. Thus in
treating invariance-reduction SPRTs, one often has the option of using the
representation (1.2) for the i.i.d. sequence X, X, - - - or the exchangeable sequence
Y, Y,, -, with P possibly improper.

In Section 2 we consider the termination of the SPRTs discussed above. Section
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3 gives (stronger) conditions that guarantee the existence of a non-trivial mgf for
the stopping time. Section 4 illustrates the general theory with the sequential s-test
and Section 5 presents some further examples to indicate the limitations of the
theory discussed here.

2. Termination. We consider the almost sure termination of SPRTs based on
exchangeable likelihood ratios, as given by (1.1) and (1.2). Many parametric
SPRTs that have been proposed are of this ilk. Unless specified otherwise, we
assume that the data sequence, X;, X,, - - is i.i.d. F will denote the true (joint)
distribution of the data sequence. For invariance-reduction SPRTs, we may also
consider the reduced data sequence, Y,, Y,, -+, whose exchangeable joint distri-
bution will be denoted by F,. Clearly F; is just the restriction of F to the o-field
generated by Y,, Y,, - - -. Expectations, if not otherwise specified, are under F.

Termination of parametric SPRTs has been considered by many writers. Some
have dealt with specific procedures, others with a class of procedures. Among the
former, we mention the termination proofs given by David and Kruskal (1956),
Jackson and Bradley (1961) and Ray (1957). Among the latter, Wald (1947)
provided a general result when £ and 2 are simple, showing termination under any
i.i.d. F for which the successive increments to the log likelihood ratio do not almost
surely vanish. Wirjosudirdjo (1961) considered SPRTs depending on a real
(sufficient) statistic and real parameter and established termination when the
model obtains. Ifram (1965) obtained improved conditions, again assuming F to
be in the model. Wijsman (1967b) showed that SPRTs based on multivariate
normal models terminate for a large class of F. The present development sets forth
a general approach to the parametric termination problem and gives unified results
for many of the SPRTs that have been proposed. The methods used here differ
from those of previous writers, although the results, when they overlap, are
comparable. (Establishing termination for the sequential z-test, whether by the
methods of David and Kruskal, Wijsman or the present writer, seems to entail the
assumption EX? < 0.) In the work of Ifram, Wijsman and Wirjosudirdjo, as well
as in the present effort, termination is obtained as a consequence of certain results
about the asymptotic behavior of L,. (Results used in other termination proofs may
be interpreted in this way too.) In this area, one frequently encounters “‘exceptional
points” (i.e., F’s) that entail added difficulty. The present approach avoids this
problem; correspondingly, one learns slightly less about the behavior of L,.
However, the extra detail seems unnecessary for the application to sequential
analysis. (This point is further discussed after Theorem 2.5.)

An important preliminary for our termination result is the material in Berk
(1970). We adopt the definitions and notation of that paper, indicating references
to it with an asterisk. (See especially, Definition 1.1*.) Treating P as a prior, let
P, denote the formal posterior distribution on (@, &), given X, ---, X,.. (See
Equation (1.1)*.) We shall say

DerINITION 2.1. {P,} is consistent at 0,€®, [F] if F(P, converges weakly to
P*) =1, where P * is the probability distribution on ® degenerate at 6,.
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REMARK. In order that weak convergence have meaning, ® must be a topological
space and o/ must contain the open sets. (See the paragraph preceding Definition
3.5*.) Sufficient conditions for {P,} to be consistent are given in Berk (1970). We
also say

DEFINITION 2.2. p remains bounded if, whenever Psup[]} p(xi|0) < o0, then
for all integers kK > n and x,, 4, ", X3, Psup H'j p(x; | 0) < co. Here, Psup means
Pesssup over ©; see Definition 1.1 (4)* and the discussion following Lemma 2.2*.
Let 7 be the first integer n = 1 for which Psup [} p(X; | 0) < o0. © is a possibly
infinite stopping time on X;, X,, *-*. Let T be the last time Psup[]]p(X; | 0)=
+o00; we take T = 0 if the expressions are finite for all #. T is a possibly infinite
reverse stopping time on X;, X,, -+ and 7 < T+1, with equality holding if p
remains bounded. We call t the time that p becomes baunded.

Following Definition 2.4*, we say a random variable Y is exponentially bounded
if Eexp(r|Y|) < oo for some r > 0.

LeMMA 2.3. Suppose p remains bounded. Then T is exponentially bounded <> for
some integer s 2 1,

F(Psup[]§ p(X;|6) < o0) > 0.

Proor. If T is exponentially bounded, then F(T < o) = 1; hence for some s = 1,
F(Psup[]ip(X;|6) < o0) > 0. Conversely, suppose F(Psup[]}p(X;|6) < o) =
B > 0. Then, since p remains bounded, F(T > ns) < F(Psup [ |31} p(X;|6) = oo,
k=0,1,---,n—1) = (1-p)", showing that T is exponentially bounded. [J

We collect the assumptions to be made.

ASSUMPTIONS 2.4. (a) © is a Hausdorff space and of contains the open sets.

() p(- | -) is jointly measurable in (x, 0) and for almost every x[F, is continuous
in 6.

(c) For all 6, 0'€®, F(p(XI()) = q(XIB’)) <1

(d) P, is consistent at 0,€ @, [F].

(€) 1, the time p becomes bounded, is a.s. [F] finite.
Corresponding assumptions are made for (g, Q, F).

We let T = max (t,, 7,). It follows from Assumption 2.4e that F(r < o) = 1.

Let N be the stopping time of the SPRT: N is the first integer n = 1 for which
L,¢(4, B); N = oo if no such # exists. Our main termination result is

THEGREM 2.5. Under Assumptions 2.4, F(N < ) = 1.

PrOOF. The consistency of P, entails that eventually, 0 < [[]i1p(X;|0)dP =
PXy, o0+, X,) < 0. (See Equations (1.1)* and (1.2) and the discussion at the
beginning of Section 3*.) Fixing an integer k > 1 and working with X, , 1, X, 42, """,
let S be the first n > 1 sothat0 < p,(Xes 1 s Xean) €Ki 15 Xpan) < 00.

F(S < w) =1. Then for n > k and on (S < n—k), we may formally write

Xy, X)) = Pr-tXis 15 Xp)p(Xy, o :Xklxk+1" X,
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the conditional density being formally defined by this relation. Upon taking the
ratio with the corresponding expression for ¢,, we obtain the (self-explanatory)
decomposition: on (S <n—k)

(2'1) Ln = Lnk Rnk'
Let L =limsupL,. Since L, is symmetric in X,, -+, X,, L is symmetric in
X,, X,, * (invariant under finite permutations of the sequence). By the Hewitt—

Savage (1955) zero-one law, L is.a.s. a constant, say L. We note too that the
behavior of L, is the same as that of L, (for & fixed), hence lim sup, L,, = L[F].

We now show that R,, converges [F] as n— oo by showing a similar fact for
its numerator and denominator. Treating P as a formal prior on (©, &), under
the model 2, X,, X,, - - - are conditionally (on 0) i.i.d. Thus, letting P,” denote the
posterior distribution on © given X, , 4, -**, X,,, on (S < n—k),

22) pXp, X[ X5 X) = [ KXo, X 0, X 1,0+ X,) P,/ (0)
= [T} pX;[0)dP,’.

Since P, is consistent at 0,, so is P,”. On (t < k), the integrand in (2.2) is con-
tinuous and essentially bounded (it can be replaced by max {[]p(X;|0),
Psup [% p(X;|0)} without changing the value of the integral, since P,’ < P). Thus
by weak convergence, on (t < k), as n — oo,

(23) p(xl”xklxk+la’Xn)_)HI;p(XLIOp) [FJ

Thus on (T é k)’ Rnk - Rk = H’;p(xl l Gp)/q(xt l Oq)[F]

From (2.1) we see that on (t £ k), L = LR,, so if we assume 0 < L < oo, it
follows that R, =1 on (1 £ k). Since F(z < ) = 1, this implies F(R, - 1) = 1.
We show this leads to a contradiction. For let Z, = In[p(X;|0,)/q(X,|6,)]
Z,,Z,, - areiid and R,~ I[F] =YX Z, - O[F]. But then ) 4 Z; > O[F], which
implies Z, = O[F]. This contradicts Assumption 2.4(c), which entails #(Z, = 0) < 1.
We conclude that L = 0 or oo, which implies F(IN < w0) =1. []

REMARK. Since L is a.s. constant, it is only an apparent weakening to write the
above conclusion as F(L =0 or oo0) = 1. The above technique shows too that
liminfL, is either 0 or oo. Hence either F(L,—0)=1 or F(L—> o) =1, or
F(liminfL, = 0 and limsupL, = o) = 1. For our purposes, it does not matter
which of these three types of divergence (of InL,) occurs. In certain cases, previous
writers have given a more explicit characterization of the behavior of L, corres-
ponding to a given F. See, e.g., Ifram (1965), Wijsman (1967b) and Wirjosudirdjo
(1961).

Theorem 2.5 applies directly to weight-function SPRTs, including those
invariance-reduction SPRTs for which the representation (1.4) holds. Of course
Assumptions 2.4 must be verified; we illustrate such a verification in Section 4.
Working still with the model (1.2), Theorem 2.5 can be extended to sequences that
are actually exchangeable as follows. Let # denote the class of i.i.d. distributions
for the sequence for which Theorem 2.5 holds. Thus for Fe #, F(L=0o0r o) = 1.
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Then if F' is a mixture of elements of &, F'(L = 0 or o) = 1. Thus the theorem
holds for any exchangeable distribution that is a mixture of elements a.s. in Z.
This remark applies in particular to the representation (1.3) when Theorem 1.1
holds, for then Y,, Y,, - are exchangeable with distribution F,. The desired
conclusion follows if F; is a mixture of elements a.s. in the appropriate .

3. Exponential boundedness. We establish conditions under which N is exponen-
tially bounded (has a non-trivial moment generating function). Of relevance here
are the large-deviation results of Section 5*.

DerNITION 3.1. {P,} is exponentially bounded if for all 6 >0 and &¢>0,
{(P, 45’ > ¢)} is exponentially bounded.

REMARK. The A; defined in 1.1(i)*, are, under Assumption 3.2(e) below,
essentially a nested neighborhood system at 0, The meaning of exponential
boundedness for a sequence of events is given in 2.4*. 4’ denotes ® — 4. Theorems
5.1* and 5.3* give sufficient conditions for {P,} to be exponentially bounded. We
strengthen Assumption 2.4(a-d) to

ASSUMPTIONS 3.2. (a), (b) and (¢) as in 2.4.

(d) {P,} is exponentially bounded.

(€) The A; form a weak base at 0,€©. (See Definition 3.5*.) Similar assumptions
hold for q.

ReMARK. Corollary 3.6* shows that 3.2 (d, e) are a strengthening of 2.4(d).

Let ¢ be a positive integer and let X* denote X, - - -, X,, X* denote X,, 1, ***, X,,,
etc. We use notation such as p(X*'|60) =[], p(X;|0). The reasoning that leads to
(2.2) shows that

(3.1 p(X"| XL, XY = [ p(X"| 0)dP, - 1)(0)  [F].

By weak convergence, we would expect this to converge to p(X" | 0,), except that
the integrand may not be bounded. Nevertheless, because of the special nature of
this integrand, we can establish

Levma 33. Let Z,=In[p(X"| XY, -, X" 1)p(X"|0,)], r(X",0) =p(X"|0)/
p(X"|0,) and let B, =B, ; , denote the event (Psup {|Inr(X",0)|: 0 4,} < ¢/2).
Then if {P,} is exponentially bounded, for all € >0, {(B,, |Z,| > &)} is exponentially
bounded.

PROOF.
|Z,| = |In f (X", 0) dP(,_ ;) (0)] = [In [ 4, 7(X",0) dP(,_ ) +In(1+[ 4, AP, /[ 4,dP,)]
S e/2+|InPy,_ ) As|+| P, 4,

on B, Let & =1-—e "% Then P,_,,A; <& and P, A4, <& imply that
[InP,_y) 45| < ¢/4 and |In P,, 4| < e/4. Hence

(Br |Z,| > &)= (Pgy- 1y A5’ > e)O(Py Ay > &)
and both events on the right are exponentially bounded. []
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The main result of this section is

THEOREM 3.4. N is exponentially bounded under any i.i.d. F for which Assumptions
3.2 hold.

Proor. The following proofis motivated by the development found in Sethuraman
(1967). The final steps incorporate a suggestion due to R. A. Wijsman. Let a =
In B/4, R, = In[p(X*| X", -+, Xk 1)/g(X*| X", .-+, X*"")] and S, = In[p(X*|6,)/
q(X*|6,)]. Let 4, = (|R,| < a) and let B, be the intersection of the sets B, 5 , of
Lemma 3.3, one for p and one for g. We note that as § | 0, PB,’ | 0. (To wit: Since
the A; form a weak base at 0, and Inr(X*,-) is a.s. continuous at 6,, as § -0,
Psup {|Inr(X¥, )| : € 4,} — [Inr(Xk, 0,)| = O[F]. A similar fact holds for ¢.) Let
C, =[Sy < a+¢)uB,’ and D, = (B,, |[R,—S,| > ¢). Then for ¢ >0,

(3.2) A, C,uD,

and the C, are independent. Hence
(3.3) (N> 2n) = N7" A= (N"CHV(UR"Dy).

Since S, is a sum of ¢ i.i.d. random variables, and F(In [p(X|9p)/q(X|Oq)] =
0) < 1, for ¢ sufficiently large, F(|S,| < a+¢&) < 1—20 < 1. For § sufficiently small,
FB,' <a, hence FC, < 1—a. Also, by Lemma 3.3, FD, < cp* for some p < 1. It
follows from (3.3) that F(N > 2nt) <(1—a)"+Y 2"cp* < (1—a) +cp"/(1—p).
Thus N is exponentially bounded. (]

As discussed above, this result can be applied to many invariance-reduction
SPRTs as well as weight-function SPRTs, to'show that for some s > 0, Eexp (sN) <
oo. The result does not seem to extend directly to exchangeable sequences, for one
then obtains the result that N is conditionally exponentially bounded. This need
not imply that N is exponentially bounded.

4. The sequential z-test. The sequential z-test will serve to illustrate the foregoing.
We have p(x|0) = exp {—(x/0—6)?/2}/|6] (2n)* for some § > 0 and, for conven-
ience, assume 2 corresponds to § = 0. The weight-function here is dP = df/ |0| We
consider Assumptions 2.4. Conditions (a) and (b) hold. Since p(-|6) and g(-|6")
are normal densities with different means, (c) holds unless X is degenerate. (If 2
also corresponds to a §' > 0, it may happen that the means coincide, but then the
variances will differ. It then seems necessary to assume that X can take on at least
three values.) Verification of (d) proceeds essentially as in example 1 of Section 6*.
Choosing p*(x) = (2n)* exp {62/2}, I(x|6) = —x*/20>+5x/0—1In |6|. The relevant
expectations in 1.1(f)* certainly exist if EX? < co. £ is an exponential model, so
Corollary 4.2* applies. Replacing dx by «; and x* by «, in l(x[O), we obtain
Ko, 0) = —,/20% + 0, /60 —1In |6], which has a finite maximum if &, > 0. Thus (see
Section 4*) D = (a, > 0). Letting a,(x) = dx and a,(x) = x*, F(a, e D) = 1 while
apeD° unless X is degenerate at zero. Condition 4.1(ii)* holds if EX? < oo.
Referring to Definition 3.1%, we see that P becomes proper as soon as X, # 0.
(S is the waiting time until the first non-zero observation.) It may be seen directly
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(or from Proposition 4.3%) that F(S < o0) = 1 unless X is degenerate at zero. Thus
if X is not degenerate and EX? < oo, we may verify the hypothesis of Corollary
4.2%; then F(P,A;~> 1) = 1.

Turning to A, let u = EX and v = EX?. Since P is equivalent to Lebesgue
measure, 6, is the point where A(0) = E/(X | ) attains its maximum. 6, =
[£(8%u®+4v)* —6u]/2 (choose the root having the same sign as u). Moreover, it is
easily seen that the 4, become a nested set of intervals decreasing to 6, and hence
form a weak base there. By Corollary 3.6*, P, converges weakly to P*[F]. Con-
dition 2.4(e) is also seen to hold since z is also the waiting time until the first
non-zero observation. Hence Theorem 2.5 applies, and we conclude for the
sequential t-test that if X is not degenerate and EX? < co, then F(N < o0) = 1. As
mentioned above, this particular result has been obtained by other writers using
different methods. .

Turning to Assumptions 3.2, we need only discuss 3.2(d). Referring to Theorem
5.1*, we see that A = D, and if X is not degenerate and X? is exponentially bounded,
the conditions of that theorem are satisfied. Hence under this more restrictive
assumption on X, we have that N is exponentially bounded. This result is slightly
stronger than that implied by Wijsman’s (1968) results for the sequential z-test since
we have no exceptional points to worry about. Wijsman (1968) gives additional
references to the exponential boundedness problem for N.

5. Further examples. We discuss two more examples to indicate further the
scope of the assumptions made in Section 2. The first is an SPRT that does not
terminate w.p.1. It is shown below that Assumption 2.4(c) fails for this procedure.
Let X, X,, - - be an exchangeable Gaussian process with all parameters known,
except for the mean u. We are interested in testing the hypotheses H': u <0 vs
K’':u>0. By rescaling, if necessary, we may assume that VarX, =1+ 6,
Cov (X, X;) = 6, where § > 0 is known. As a test of the above hypotheses (or as a
procedure in its own right), we consider an SPRT based on X, X,, - of H:u =0
vs K:u = v, where v is a specified positive number. We may consider the process
X, X;, - -+ asarising as follows: Let Y, Y,, Y,, - - - be independent normal variables;
Y ~ N(u, 6)and Y; ~ N(0, 1) for all i. Then {Y;+ Y} has the same joint distribution
as {X;} and we may replace the latter by the former. Letting P, denote the joint
distribution of Y, Y,, Y,, - - - when p obtains, we may consider the above-mentioned
SPRT as a test of whether P, is P, or P,, based on the reduced data sequence
Y +Y,Y,+Y, . We argue that for all u and v, P, and P, are equivalent
measures on the reduced sequence. Indeed, they are equivalent on the sequence
Y, Y,, '+ since only the distribution of the first coordinate can differ. Then the
restrictions of P, and P, to the (o-field generated by the) reduced sequence are
surely equivalent as well. Letting L, be the likelihood ratio under y = v and y =0
of (Y;+Y, -, Y,+Y), it follows from the martingale convergence theorem that
for p =0and v, P,(L,— L) = 1, where L is the corresponding likelihood ratio for
the entire sequence Y,+Y, Y,+Y, . (For specificity, we suppose that the
v-measure is in the numerator of the likelihood ratio.) L is a non-degenerate random
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variable, so that already this behavior of L, is not as described in Section 2 (see the
remark after the proof of Theorem 2.5). One might suspect that this test does not
terminate w.p.1. This is indeed the case, as we show next.

A straightforward computation shows that

InL, =nw(Y,+Y—v/2)/(1+n8),  where Y,=)1Y,/n.

For given a > 0, let N be the first #n > 1 so that [InL,| 2 a4, or be + oo if no such n
occurs. Then

5.1) PN =) = P(|Y,+Y~v2| < b,n=1,2,--),

where b = da/v. To evaluate (5.1), consider the related probability p(z) =
Pr([Y,,+g[ <b, n=1,2,--"). If |z| <b, p(z) > 0. This follows readily from the
fact that for all ¢ >0, Pr(|Y,| <c,n=1,2,--) 2 Pr((W(1)| <¢, 01 £1)>0,
where W(t) is a standard Wiener process. (Note that the joint distributions of {Y,}
and {W(1/n)} are the same.) Evidently, (5.1) implies that P,(N =0 |Y =y) =
p(y—v/[2). Since p(y—v/2) >0 if [y—v/2| < b, and since P,(|[Y—v/2| <b) >0, it
follows that P, (N = c0) > 0. Thus SPRTs based on L, do not terminate w.p.1
under any u when the model holds.

This problem is superficially different from those discussed in Section 1, for H,
and H, are simple hypotheses about a sequence {X;}, which here is not i.i.d.
However, the X; are exchangeable and, in fact, are conditionally i.i.d. given Y.
Thus this problem does, in fact, entail sequences of exchangeable densities. More-
over, we may identify p(-|-) (respectively, g(- |)) with the conditional density of
X, given Y under H, (respectively, H,) and P and Q, with the distributions of' Y
under H, and H,. Here the families p and ¢ are the same normal translation family
(with unit variance), so that Assumption 2.4(c) is patently false. What distinguishes
the (simple) hypotheses # = H, and 2 = H, here is solely the difference between
P and Q. This example suggests that when p and ¢ coincide, we should not expect
the SPRT to terminate a.s., unless P and Q have disjoint supports. Thus when
0 =0, the (degenerate) distributions of Y under H, and H, do have disjoint
supports and the separation required by 2.4(c) holds. (We have then, in fact, the
ordinary Wald SPRT for a normal mean based on independent observations.)

We consider next weight-function SPRTs of H:u = 0vs K:u > 0 for the mean
of i.i.d. normal variable with unit variance. Condition 2.4(c) is formally satisfied
by the densities in H and K. However, 2.4(d) typically fails when F is the N(0, 1)
distribution: If the weight-function P on ® = (0, c0) has 0 in its (topological)
support, one gets no convergence of P, on @, since P, converges to the point-mass
at zero. Adjoining zero to ® overcomes this difficulty but violates 2.4(c). Thus if
zero is in the support of P, the above procedures do not seem to be amenable to
our method, when the null hypothesis obtains. Nevertheless, we show that these
SPRTs do terminate under the null hypothesis. For simplicity, we suppose P is
proper. Let X;, X,, - be the data sequence, i.i.d. normal variables with unit
variance. Let F, denote their (joint) distribution when the common mean is u. For
w#0, F,1F,, since F,(X,— 0) is zero unless p =0 (and then the probability is
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one). If Fp is the P-mixture of {F,:u > 0}, it follows that Fy(X, — 0) = 0, hence
that Fp L F, too. Let F,", etc. denote the restriction of F, to the o-field generated by
(X4, -+, X,). Then the likelihood ratio for (Xy, ‘-, X,) is L, = dF,"/dF,". Let
A= (Fy+ Fp)/2. We note that F, € 4, Fp < A and that the martingale convergence
theorem implies that A(dF,"/dA" — dF,/dA) = 1. This convergence thus holds a.s.
[Fo] and a.s. [Fp]. Moreover, the orthogonality of F, and F, implies that
Fy(dFy/dA=2)=1 and Fp(dF,/dA=0)=1. We note too that dF,"/d\" =
2/(1+L,); hence it follows that Fy(L,—0)=1 and Fp(L,— o) =1. Thus an
SPRT based on L, terminates a.s. when F, obtains and also when F, obtains. This
last fact implies that the test terminates w.p.1 under almost every F,[P]. (But the
method of Section 2 establishes this termination for every p > 0. It is when F,
obtains, that Assumptions 2.4 do not hold.)

The method of Section 3 cannot be used either, of course, when F, obtains. In
fact, it is conjectured that E,N = oo unless zero is not in the support of P. The
reason for this conjecture and some additional insight into the behavior of this
SPRT is provided by Lemma 3.3. There, we see that the nth increment to the log
likelihood ratio is approximately In[p(X, | 0,)/a(X, | 60,)]. For the procedure under
discussion ¢ is the N(0, 1) density and p(x | 0) are the N(u, 1) densities. When F,
obtains, 8, = 0 too, so that the successive increments to the log likelihood ratio
become essentially zero. In this light, it is even surprising that the procedure
terminates a.s. under F.

Dr. J. Yahav observes that when F, obtains, E, N = O(1/u?), asymptotically.
Hence it is also reasonable to conjecture that under Fp, EpN < 00 <> [dP(u)/
u? < oo,

6. Acknowledgment. The author is indebted to Prof. R. A. Wijsman for a
thorough reading of an earlier version of this paper that resulted in the elimination
of some serious errors.
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