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STRUCTURAL ANALYSIS FOR THE FIRST ORDER
AUTOREGRESSIVE STOCHASTIC MODELS
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1. Summary and introduction. The response variables of a first order auto-
regressive stochastic process with autocorrelation p can be constructed as a
location-scale transform of a set of error variables whose distribution depends on
the autocorrelation parameter, and the model can be treated as a composite response
model with an error quantity p (Fraser 1968, page 192). For known value of p the
model is a conditional structural model (Fraser 1968, page 188). Inference con-
cerning p is naturally based on the marginal likelihood function of p obtained from
the marginal probability distribution of the orbit of the response. The results are
specialized to cover the normal error distribution.

For the same model with error variables having a periodic structure a suitable
transformation reduces the error variable into uncorrelated variables and the
resultant transformed model can be treated as a location-scale structural model.
The orbit of the transformed response depends on p and so inference concerning
p can be made from the marginal likelihood of p obtained from the marginal
probability distribution of the orbit. It has been found that without any approxima-
tion being used the marginal likelihood function of p thus obtained depends on the
first order circular serial correlation coefficient in general, and for normal distribu-
tion in particular.

For both the cases the general approximate distribution of the serial correlation
coefficient has been derived by likelihood modulation. Using Anderson’s (1942)
result the general exact distribution of the circular serial correlation coefficient
has also been obtained.

2. First order autoregressive model. Consider the set of responses
Xy=ptoe

2.1) X, =U+oe,

Xy = U+oe,

where the responses are assumed to have been obtained by a location-scale trans-
formation of the error variables e,’s, with E(e,) =0, (x =1, 2, -+, n), and co-
variance matrix of e, as

1 p pn -1
) 1 v p" -2
2.2) cov(e,, ep) =X = ’ ’ RE
pn -1 pn -2 1
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so that
"1 —-p 0 0 - 0]
—p 14+p> —p
T =(1=-p)" 0 —p 14p® —p
0 0 0 0 - 1]

and the probability of (ey, - -+, e,) is given by
(23) f(el"“9en:p)de1.”den'

The random variables e, constitute a first order auteregressive stochastic process
with autocorrelation parameter p. The location-scale transformation [y, o] is an
element of the group of transformation G: {g = [a, ¢]/— 00 < a < ©, ¢ > 0}. The
transformations g put the observed response into its orbit Gx = {al+cx}. The
model thus described is a composite response model with the additional quantity
p for the error variable. For known value of p the model is a conditional structural
model. Thus following Fraser (1968, Chapter 1) the conditional probability
element for e and s(e) on the orbit is obtained as (for known p)

o4 V(@)@ +5(e)a : p)s"~*(e) dEds(e);
where e=Yr_reln,  s*e)=Yn_,(e,—@)>
a=(ay, ", a),
a; = (ej—e)/s(e)

=(xj—>?)/s(x), (=1 2,0, n)

and y,”'(a) = [ f(el+sa: p)s" "2 deds;
and the structural distribution of y and o is obtained as

2.5) V@)~ Vf (6™ (x—pl) : p)s"(x) dpdo.

For known value of p the expressions (2.4) and (2.5) are the basis of inference about
u and o. These expressions have been obtained from (2.3) and properties of in-
variant differentials; and no integration with respect to the orbital variables
a, -, a, is needed. Thus, following Fraser (1968, Chapter 4, Section 3, and
problem 11) the marginal probability element for the orbital variables is obtained
by dividing (2.3) by (2.4) adjusted by the factor n* necessary to measure the
Euclidean volume on the orbit in R", as

(2:6) nty,~(a)s ™" () [Ti- 1 d eif(d(n? &) ds(e)),
which when expressed with respect to volume at x is
2.7) n, " @x))s™ ") [Ti= 1 dxi/(d(n?%) ds(x)) = nty, ™ (a(x))s ™"~ 2(x) do.
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The marginal likelihood of p is then

(2.8) L(p|x) = R*(x)y, '(a(x))

where R*(x) is the map that carries a point x into the single entity, the set R* =
(0, 00). The marginal likelihood function thus obtained provides the basis for
inference about the parameter p.

3. The normal error. The assumption of normality is quite prominent in the
analysis of the responses from an autoregressive stochastic model. So in this section
the composite response model with autoregressive error variable is discussed with
the error variable having normal distribution with mean zero and the covariance
matrix X of Section 2:

3.1 fley, - e,: p)de = (2m)™"*|E| " *exp{—1e'T ™ 'e} de
=(2r)""?(1—p?) " Dexp {—1e'T™ e} de.
The conditional probability element of & and s(e) on the orbit is obtained as
¥,@)(2m) 31— p?) T Vs 2(e)
-exp { — (el +s(e)a)= (el +s(e)a)} d & ds(e).
The quadratic expression in the exponent of (3.2) can be simplified:
(e1+s(e)a)’=™'(e1+s(e)a)
=el'S el +261'S 7 Ls(e)a+s%(e)a’s " 'a
= (1+p)7'N(@+2eps(e)P) +(1—p*)~'s*()Q
= (1+p)"'N(@+ps(e)P)* +(1+p)~ 's*(e)[(1—p)~'Q— NP?p?],
where N=n—np+2p
P=(a,+a,)/N
Q = 1+p*—p*(a,*+a,")~2pr
r=Yasi (6= ) (esr 1 —)/s%(e)
= a1 (= D)Xy 4 1 — F)[s*(%).
Using these results the probability element for & and s(e) can be written as
¥, ()(2m) T"3(1— p?) TH T Dy 2(e)

(3.2)

3.3)

(34 N 2(0) A
—_— (e P2_ 1_ _NP2 2 )
exp{ i +p)(e+ps(e) ) it p) [0/(1-p) p ]}
Integrating over & and s(e) the normalizing constant i ,(a) can be obtained as
(35) lpp(a) = N%An— 1(1 +P)—%[Q _ (1 _p)pZPZN]-%(n- 1)

where 4,_; = 2a*®"V/[(4(n—1)) is area of the unit sphere in R"~'. The nor-
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malizing constant depends on a through r, and a, and a, only. For known value
of p the structural density for u and o is obtained as

Vo ()(27)2(1 = p?) 2B DA () exp { — NQo(1+p))
[X—p+ps(x)P]* —s*(x)26%(1+p)) " '[Q(L —p) ™' — NP?p?

and the marginal density of ¢ is obtained as

(3.6)

¥, ()2n(1—p?)) " F V(1 + p)IN 207"~ !(x)
~exp { —s*(x)(20*(1+p)) " [(1—p)~'Q—NP*p*]}
and the marginal density of u is obtained as
[N (1 —P)]* I'(3n)
I'(3(n—-1)
14572 )N = p)(X — p+ ps(x)P)(Q — (1 — p)p>NP?)~']~"/2,

Thus it is seen that for known value of p the marginal distribution of & is re-
scaled inverted chi, and the marginal distribution of u is rescaled ¢, the rescaling
factor depending on the autocorrelation paramegter p.

3.1. Inference about p. The marginal probability element for the orbital variable
a;, -, a, at the observed response is

3.7)

[s*(x){Q—(1—p)p>NP?*}]"*

(3.8)

‘o ¥, @nts™ "2 (x) dv
B N0 Uy ) [0~ (L= )N PO~ D5~ o,

The marginal likelihood of p is

(3.10) L**(p:a) = R*(@)N " *(1+p)*[Q — (1 — p)p>NP?] 7~ 1);
which when expressed as a ratio relative to p = 0 reduces to

3.11) L*(p:a) = N™¥[n(1+p)]* - [Q—(1—p)p?NP?] "+~

The marginal likelihood function L*(p | a) derived from the marginal probability
element for the orbital statistic a depends on the orbit through a,, a, and r. For
moderately large 7, a, and a, may be considered small and the factor N~ *[n(1 + p)]*
approaches the quantity (1 —p)~*(1+p)*. Hence the marginal likelihood function
can be written as approximately

(3.12) Lip:r) = [(1-p) ¥ (1+p)*]- (1 +p* =2pr) 71

If g(r: 0) is the density function for the distribution of r when p = 0, the general
distribution of r can be written as

(3.13)  g(r:p)dr =[(1—p) 21+ p)*]-(1+p*>—2pr)~* " Vg(r: 0) dr.
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The quantity » may be called a first order serial correlation. First order serial
correlation coefficient is usually defined as (Kendall 1966, page 361)

(3.14) ZZ; % (X=X )Xy 41 —fz)/{Zﬁ;i (xa_fl)z ZZ=2 (xa—x'z)z}%
where X; = Z:; 1 %/(n—1), %, = Z§=2 X4/(n—1).

But in practice a more convenient estimaie is used:

(3.15) ry= Z:=1(xa_x)(xa+1_3—6)/22=1(xa"~’z)2

with x,,; = x;.

r, approximates (3.14) and is known as circular serial correlation coefficient.
Anderson (1942) has derived the exact distribution of r;, when p = 0. Moran (1948)
used a statistic somewhat similar to r: .

n—1 n
(3.16) PG RV WS

r, differs from r only by a multiplicative constant factor n/(n—1). The exact
distribution of r; derived by Anderson can be utilized to find the distribution of r,
when n = 2m (Kendall & Stuart 1966, page 440). Several people have worked on
the approximate distribution of serial correlation, mostly in the circular form.
Following Moran (1948) the distribution of r when p = 0 is obtained approximately
as

I'ti(n+2))
TG0 +1))
and ¢ = (n+ 1)¥r/(1—r?)?* has a ¢ distribution with n+ 1 degrees of freedom.

The approximate general distribution of the correlation coefficient is then

I'd(n+2)) (1=r3ie-D
i TG(n+1)) (14 p?=2pr)¥r=D
The method followed here is exactly the same as Fraser (1968, Chapter 4,

Section 3) where he has derived the distribution of correlation coefficient for
samples from bivariate normal distribution.

(3.17) g(r:0)dr = (1—=r»)Ee=D gy, —-l1<r<l;

(3.18) dr, —-1l<r<l.

(1+p)¥/(1—p)*-

4. The transformed model. Let u,(x =--- -2, —1,0, 1, 2, - --) be independently
and identically distributed random variables with E(u,) =0, Var(u) = g,
Let e, = pe,_; +u, (Where |p| < 1), then E(e,) = 0; Var(e,) = 6,°(1—p*) "' = 0?
(say) and Cov(e,, e;) = p!*"#lg®. The random variables e,’s constitute a first
order autoregressive stochastic process. Thus a sample from a first-order stochastic
process can be transformed into uncorrected random variables by a linear trans-
formation: u, = e,—pe,_,. For a sample of size n the assumption of periodic
structure is necessary so that the (n+1)th response may be identified with the
first response and the transformation becomes one to one. Data from time series
is often analyzed under such assumptions. Assuming that the composite response
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model described in Section 2 has such a periodic structure the model can be
transformed as follows:

4.1) Rx=Rpl+oRe or x,=u,1+ou,
—-p 1 0 0

0 —p 1 0

where R= 0 0 —-p 0
. . . 0
1 0 0 —-p

is a n x n transformation matrix. The transformation maps a point x in R" to
X, in R". The transformed responses may be considered to have been obtained
from the transformed error variables u,’s (x =1, 2, - -+, n) by the transformation
[4,, 6] in G. u,’s are uncorrelated with E(u,) = 0, and variance (u,) = o(1 —p?).
Further assume that u,’s have a probability distribution

(42) [12-1 9(uy: p) du,;

then for a known value of p the transformed model is a structural model. The
elements of G generate an orbit for the transformed responses through x,. So
following Fraser (1968) as in Section 2, the conditional probability element of #
and s(u) on the orbit is obtained as

(4.3) 6o (D, () [ [a=1 9@+ 5(u) dyi: p)s"~*(uw) dir ds(u);

where ¢,(D, (1)) is the normalizing constant and

Dp(u) = (dpla T, dpn)l

(4.4) = [(uy—a)/s(u), -+, (u,— @)/sw)]’
= [(xpl _xp)/s(xp)9 T (xpn _xp)/s(xp)]’
= Dy(x,);

and the structural distribution of y, and o from (4.3) is obtained as

4.5 ¢, ) [1a=19(07 (X, =, +5(x,) dpg): p)s"~ (x,)0 = "* Dy, do.

For known value of p the expression (4.5) is the basis of inference about y and o.

4.1. Inference about p. The conditional probability element of # and s(u) on
the orbit is given by the expression (4.3), which when adjusted for the Euclidean
volume on the orbit in R" reduces to

(4.6) ¢,(DIn~ 2 [[az1 g(a+s(u) d g p)s"~*(u) d(n*11) ds(u);

and as in Section 2 the marginal probability element for the orbital variables is
obtained by dividing the joint probability element (4.2) by the conditional prob-
ability element (4.6) and is obtained as

4.7 nt¢, (D, (w))s™ "~ (u) du/d(n*a) ds(u).
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The marginal probability element of the orbit at x,, rather than at u, is
(4.8) n*¢, (D ,(x,))s™ " Hx,) dx,j(d(n*X,) ds(x,).

Under the transformation described at (4.1) the Jacobian of the transformation
from x, to x is (1—p"). The same transformation changes the differential dnx,,
ds(x,) along the orbit to n*(1—p)dx, (1+ p*>—2pr,)* ds(x), where r, is the circular
serial correlation coefficient defined at (3.15). The Jacobian derivation uses the
relations:

X, =(1-p)x
s%(x,) = s2(x)(1+ p*—2pr).

Also under the inverse transformation the reference point D,(x) is mapped into
the point :

D(x) = R™'D,(x)
_ R‘1|: X;—X—p(x;—X)  x;—X—p(x,—X) :I’

s()(1+p2=2pr)*" 7 s(x)(L+p*—2pr,)*
=(L+p*=2pr) " H(x; = X)/s(x), -+, (X, — B)/s(x)] -

The inverse image of the reference point indexes the inverse image of the orbit
and depends on the autocorrelation parameter. It is interesting to note that the
factor involving p in D(x) comes as a multiple and thus the inverse image of
the orbit does not change direction with p. So in terms of the observed response the
probability element cross-sectional to the inverse image of the orbit is obtained as

) _l{xz-—-)?—p(xl—fc) Xy —X—p(x,—X)
49) P s +p2—2pr)t TSI+ p2—2pry)
' (L4 p? = 2pr) 20 Dg=H0=D () | — o)1 — p) L dx/(dn?% ds(x)).

Thus the marginal likelihood of p is obtained as

X, —X—p(x;—X) Xy —X—p(x,—X)
sC)(L+p2=2pr )" T s(x)(1+p%=2pry)*

((L=p")(1=p) " (1 +p>=2pr)H07 0.

It is observed that in general the marginal likelihood function of p depends on r,
the first order circular serial correlation coefficient, and does not require any
approximation.

MM@=RWwﬁ%”{
(4.10)

5. Transformed model: Normal error. Now consider that the error variables have
the probability element

n

1 n
5.1 (2n(1—p2))"%"exp{—2Tl_—pz) ; uaz} 1;[1 du,.



FIRST ORDER AUTOREGRESSIVE STOCHASTIC MODELS 977

The conditional probability element of # and s(u) is obtained as
1
. 27(1—p?)~ 3" -
(52 $,D,)2n(1-p) exp{ T
# and s(u) are independent. The normalizing constant is independent of # and
s(u) and is obtained as

(5.3 ¢,(D,) = A,_n*.

Hence the marginal likelihood of p as obtained from (4.10) is

(54) L¥(p|x) = R*(X)(1=p")(1—p)~ ‘(L +p*~2pr;) 731,
which when expressed as a ratio relative to p = 0 reduces to

(5.5 L(p|x) = (1=p")(L=p)~ (1 +p>~2pr;) "3,

The exact distribution of r; when p = 0 has been obtained by Anderson (1942)
which is difficult to use in practice. However we quote the general form of the
frequency function here as stated in [4] (page 440):

(5.6) ) =3n=3) Y (A=r I THZY (=4,
Ams1 S 71 = A nodd;
= 3(n— 3)“ 1 (4 _"1)%('l 5)/[1_[?:&”, 21) i— A1 +'ﬂti)é']

Ans1 S 11 = A neven.

(ni? +s*(u) )} s""%(u) du ds(u).

Where A’s are the roots of the equation

1 1 2 1 1 1 2
{142 {1==2 = - “l1=Z2
< +n> 2( n) n n 2< n>
1 2 1 1 2 1 1
(1=2) —[i1+= (1=-2) ... - —_
2< n) (+n) 2( n) n n
1 2 1 1 1 =0.
_<1__> _(A+_> e —_— R
2 n n n n

1 2 1 1 1 2 1
“(1=-2 = z v Z(1=2Y a4
2< n) n n 2( n> < +n>

This frequency function when modulated by the likelihood function (5.5) gives
the exact distribution of r,:

g(ri|p) = (1=p"(A=p)~ "1+ p*=2pr) *~V f(r))
Rubin (1945) derived an approximate distribution of , when p = 0 as

I'(3(n+2))
S IrG(n+1)n*"

1
n

(1=r ¥ =Dgr; —-l<r <l1;
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which is actually the distribution of ordinary correlation coefficient based on
(n+3) observations. The approximation is good for » = 10. This when modulated
by the likelihood function (5.5) gives the approximate general distribution of the
circular serial correlation coefficient.
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