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THE CONSISTENCY OF NONLINEAR REGRESSIONS!

By E. MALINVAUD

1. Introduction. A sample of T observations on the variables x, z;, z,, ",
z(j =1, 2---m) has been generated according to the model:

(n Xe=g(Z1ps Z2¢" " " Zmes %15 0‘2"'“17)"'8:,

in which x,, z,,, z,," * - z,,, designate the values taken by the variables in observation
t(t=1,2--T), a;, %, ", are p unknown parameters to be estimated (k =1,
2-+-p), & is an unobservable random variable with zero expected value and ¢
is a known function of its m+ p arguments. By a regression on model (1) we mean
the computation of estimates &,, &, - - - &, that minimize the mean square deviation
of x from g:

(2) T—ILT(O‘) =T7! ZtT= 1 [xt_g(zlr' C Zpygy Og 'ap)]z'

The regression is said to be linear if the function g is linear in the vector a with
components o, &, ' * * &,, a situation extensively explored in the literature.

Cases of model (1) with nonlinear functions g occur in various areas of applied
statistics. They are frequent in econometrics, where the model often results from
rather specific theories implying special forms for the dependence between the
variables z;, considered as exogenous and the variable x, taken to be endogenous.

An important particular case of model (1) occurs when the function g is linear
with respect to the variables z;,:

3) X, =Z;p=1 ajog o) zpte

a; being known functions of the parameters. In econometrics, distributed lag models
are of this type, whereas any overidentified simultaneous equation system has a
reduced form corresponding to the multivariate generalization of model (3), a
generalization about which I shall make some comments in the concluding section.

The regression method for estimating the «, is of widespread use and has some
a priori appeal.? As is well known, important properties of linear regressions do
not depend on the particular form assumed by the distribution of the random term
&, a feature that has definite advantages in most fields of applied statistics and that
extends to asymptotic properties of nonlinear regressions.

Such being the case one may be surprised to realize how little developed is the
statistical theory of nonlinear regressions. Research has been concentrated on the
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! This paper was written in the spring of 1967 during a visit at Berkeley and was supported by
the Office of Naval Research under Contract Nonr-222(77) with the University of California.

21 probably should mention here, even though I shall not refer to it again, that the regression
method gives maximum likelihood estimates if the & are normally, independently and identically
distributed with zero expected value.
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problems raised by the computation of the estimates minimizing Lp(x). But little
effort has been spent in exploring the conditions under which nonlinear regressions
perform well.

We cannot reasonably expect to build a small sample theory that would apply
when g is not linear and the distribution of ¢, is not fully specified. On the other
hand, an asymptotic theory seems to be well within reach. As is often asserted, the
minimizing vector & should have the same asymptotic stochastic properties as a
vector & minimizing an expression similar to Lp(x), but in which g(z,,""*z,,;
oy --+a,) would be replaced by a linear approximation around the true value
a® of a:

p
@ 9z Zm 0 )+ Y (ak—ak")ig(zlt"'zm;a1°"'°6,,°)~
k=1 da,

The limit properties of such a vector & directly follow from linear regression theory.
It is, however, clear that such an asymptotic equivalence between & and & cannot
be established unless one has first proved the consistency of &, i.e., the tendency of
@ to a° as T increases indefinitely. This note is intended to explore the conditions
under which consistency holds; it is thus concerned with the first and essential step
in the statistical theory of nonlinear regressions.?

Before the general theory is approached, two examples in which consistency
does not hold may be considered briefly; they will provide a background for the
following discussion.

ExampLE 1. Consider the relation
(3) X, =e “+tg,

where x, is the observed value of x for period ¢ (the periods being numbered
t=1,2---T), ais a positive number to be estimated, the ¢, are independently and
identically distributed random variables having expected value zero and standard
deviation o.

The regression estimate @ satisfies the following equation:

O] Yieite ™ (x,—e™") =0,

3 When writing my book, E. Malinvaud (1966), I found it useful to base the presentation of
various econometric methods on the theory of nonlinear regression. I therefore devoted one chapter
to this theory (Chapter 9). The present paper studies more deeply the question of consistency. On
the other hand, the implications of consistency for other asymptotic properties of & may be found
in the above reference.

When this paper was in its final stage of completion, R. I. Jenrich (1969) dealt with the same
subject, assuming throughout a compact Q. His Theorem 6 is similar to my Theorem 2 and actually
proves strong consistency of & On the other hand, he does not consider how my Assumption 4
could be derived from more basic hypotheses about the function g and the sequence of the
exogenous variables z,. The reader may also prefer my elementary but tedious proof of Theorem 2
to his more elegant proof that uses a number of non-classical mathematical properties.
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which, in view of (5), may also be written as: uy+ v+ wyg = 0 with:
up =y, te” ",
b= T te™H(e™ - ¢t
wr =Y (e —e e,

Let us suppose that & is consistent, i.e., & tends in probability to the true value a°
when T increases indefinitely. Then, if «° > 0, it can be proved that u; has a limit
distribution with a positive variance, whereas vy and wy tend in probability to zero.
This contradiction proves that & cannot be consistent.

This example is similar to the following one from linear regression theory:
x,=oaft+e, t=1,2---T, in which the variance of & tends to a positive limit,
because Y ,1/¢* does not increase indefinitely with T.

ExAMPLE 2. Let « be in the real unit interval closed on the left, open on the right,
and g(¢; «) be the rth digit in the binary expansion of «. Let the ¢, be independently
and identically distributed with the (known) binomial distribution giving proba-
bilities 3/8 and 5/8 respectively to the values —4/3 and 4/5.

We immediately see that x, can take only four values: —4/3 and 4/5 correspond-
ing to g(t; ) =0, —1/3 and 9/5 corresponding to g(¢; «) = 1. Hence « is identi-
fiable, its #th binary digit being unambiguously determined by the ¢th observation.
However, a regression will associate the digit 1 with 4/5 and 9/5, the digit 0 with
—4/3 and —1/3. The resulting estimate & will, of course, be quite different from «°.

2. A Lemma. In model (1) it is assumed that the variables zy, ' z,, are non-
random. The following compact notation will be convenient:

@) 9{0) = g(Z11 Zar """ Zymes X5 0" '“p)-
Moreover, suppose that the vector « of the parameters may be restricted a priori

to a proper subset of R?, which we shall designate by Q. The regression estimate &
wiil minimize in Q the quantity:

(8) LT(O‘) = T=1 [xt_gt(a)]z'

If either g, is not continuous or Q is not compact, & may not exist. When it exists
it may not be unique. We shall not be concerned here with these questions, but shall
consider the properties of one & minimizing (8).

We begin with a general lemma that provides a criterion for consistency. While
the meaning of this condition is not transparent, the lemma provides the foundation
for deriving more useful results.

Let us introduce some notation:

(&) gd) = g(@) _gz(ao)’

where «° is the true value of the vector a;

(10) Or(0) = Y= 1 4.7(@)-
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When Qr(a) is positive, we can also define:

(11) A(@) = q(0)/Q (),

(12) ur(a) = ZrT =1 (),

When Qn(«) is zero we shall conventionally define u;(«) as being zero. We shall
prove:

LEMMA. Suppose that, for every closed set w not containing o°,

(i) inf,., Q7(a) > O for T sufficiently large,

(ii) Pr{sup,.,ur(e) = 4} tends to zero as T increases indefinitely. Then 8 is a
consistent estimate of o°.

From the definition of &, Qr(«) and uy(«) it follows that:

ZtT= 187 = ZtT= 1 [%—g()]* 2 ZzT= 1 Xe= 98] = ZzT= 187+ Qr(@[1 —2ur(®)]-
Hence:
(13) Or(@[2ur(@)—1] 2 0;
either Q(&) =0, or u(&) = 1.

Let w be a closed set not containing «® and suppose & € w; then either inf, ., Q () = 0
Or sup, ., ur(e) = 1. But the first possibility is excluded by (i) for Tsufficiently large.
Hence:

Pr{dew} < Pr{sup,.,ur(®) = 3},

and the conclusion follows.*

The conditions of the lemma simultaneously involve properties of the random
disturbances ¢,, of the explanatory variables z;,, and of the function g. Their signi-
ficance with respect to those basic elements of the model is obscure, and we must
look for general cases in which the conditions may be proved to hold. We begin
with the simple situation of equation (3) in which g is linear with respect to the
explanatory variables z;,.

3. The constrained linear model. Let g,(o) have the form:

(14) 9i@) = Y=y a @)z

We designate by a(«) and z, the m-vectors with components a;(«) and z;,. The model
may then be written as:

(15 x, = a(e) - z,+¢,

where a(x)’ is the transpose of the column vector a(c).
The fact that « belongs to Q implies that a(e) belongs to the set 4 = a(Q) in R™.
The interesting case arises when A is a proper subset of R™. The model (15) may

4 This simple proof of the lemma was suggested by a referee.
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then be viewed as a linear regression model in which the coefficients of the variables
are subject to some constraints.
The determination of the regression estimate & may be formally decomposed
into two steps:
(i) find @ in A minimizing:®

(16) Li(a) =}/- 1 (x,~a'z)?,

(ii) find & in Q such that a(g) = a.

The proof of consistency may similarly be decomposed into two steps, one con-
cerning the convergence of 4 to a° = a(«°), the other the convergence of & to «°.

As is clear from the condition of the lemma, the fact that g is restricted to a
subset 4 of R™ does not fundamentally complicate the proof of the convergence of
4 to a°. The conditions that guarantee the consistency of regression estimates in
the unconstrained linear model should also guarantee the consistency of 4 as an
estimate of a° in the constrained model.

However, the convergence of & to a® obviously requires a condition on the vector
function a(x). The true value «° must be identified as the unique solution of the
equation a(x) = a®. Moreover, convergence of & to a®° must imply the convergence
to a® of any solution of a(x) = 4.

It is not necessary to look here for the greatest generality about the convergence
of 4 to a°. We shall limit ourselves to the two following conventional assumptions:

AssuMPTION 1. The disturbances ¢, are independently and identically distributed
with expected value zero and finite variance a2,

ASSUMPTION 2. The second-order moment matrix:
(17) Mzz= T_IZtT=lztzt'

tends to a nonsingular matrix M when T increases indefinitely.
On the m functions a;(«) we shall make the following hypothesis:

AssuMPTION 3. Given any sequence {a”} of vectors in Q (for T=1,2--- ad
infinitum), if a(«™) converges to a(«®) in R™ then o itself converges to a°. (The
inverse mapping a~ ! from a(Q)< R™ to Q is one-to-one and continuous at a(«°).)

Examples in which Assumption 3 does not hold are easily found. Withp =m =1,
the functions a(x) = a? — o« and a(x) = ae™* do not fulfill it when «® = 0; the first
one because o = 1 gives a(1) = 0 = a(«°), the second one because a(x”) tends to
a(x®) = 0 when o increases indefinitely.

We can now easily prove:

THEOREM 1. If Assumptions 1 and 2 hold, the constrained linear regression
estimate & minimizing (16) is a consistent estimate of a°. If, in addition, Assumption 3
holds, the corresponding & is a consistent estimate of o°.

% In the absence of further assumptions, @ may not exist. This is the place to point out that we
are not concerned in this paper with the problem of existence of regression estimates.
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The second assertion of the theorem follows directly from the first one and from
the fact that ¢~ ! is continuous. The first assertion will be seen to follow from the
more general Theorem 2. However, a direct and much simpler proof will also be
given here for a better understanding of the property.

Going back to the notation introduced at the beginning of Section 2, we may
write:

(18) Qr(a) = T(a—a°)'M,,(a—a°),

(19) Aa(a) = (a—a°)'z,/Qr(a),

(20) Qr(a)- IuT(a)[ = |Z,T=1(a—a°)’z,8,[ = TZ?=1 |aj_aj0| : IT_I ZtT=Ith8t|°
Assumptions 1 and 2 imply that T~'Y 7, z;.¢ tends in the mean square to zero,
hence also in probability.

Let C be any closed subset of 4 not containing a®. We shall prove that Q(a) > 0
for all ae 4 and T sufficiently large and that

(1) SUP;ec Tlaj_ajol/QT(a)

is bounded by a quantity which does not depend on 7. This and (20) imply that
SUP,ec IuT(a)I tends in probability to zero; i.e., that both conditions of the lemma
are fulfilled for a.

Let d(a) be the distance from a to a°: d*(a) = Y -, (a;—a;°)*. Then we know
that:

(22) laj_ajol < d(a),
(23) T™'Qr(a) Z vy d*(a),

where vy is the smallest characteristic root of M, (see for instance E. Malinvaud
(1966) footnote page 292). The convergence of M,, to M implies the convergence
of vy to the smallest root ¥ of M. Moreover, ¥ is positive because M is positive
definite. Hence, at least for T sufficiently large, vy > v and:

(24) T|a;—a,°|/Qr(a) < 2/¥ d(a).

Since C is closed and does not contain a°, d(a) is bounded below in C by a positive
number. Hence Qr(a) > 0 for all ae 4 and T sufficiently large, and (21) is finite,
which completes the proof of Theorem 1.

The constrained linear model covers many cases of nonlinear regression, often
after a redefinition of explanatory variables and parameters. In particular some of -
the components of o« may take only integer values or be dichotomous (¢, being
either 0 or 1). Theorem 1 then gives an asymptotic justification to the procedure
which consists in choosing the values of « so as to maximize the traditional squared
multiple correlation coefficient R2.

As an example consider the following distributed lag model discussed by I. Fisher
(1937):

(25) Xe=Yexo ay(1—t/ag)z, - +&,
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t=1,2---T referring to observations ordered in time and z,_, designating the
value of z, lagged by 7 periods. Suppose that «; may be any real number and o,
any positive integer smaller or equal to m : a, € {1, 2*--m}. Then define:

th=Z,_j+1 j=l,2'°'m
(26) aj(og, 0p) = oy (1= — 1)) j=1,2-0a,
=0 j=ay+1---m.

The regression estimate may be determined as follows:

(i) for any fixed value of a, (o, = 1, 2- - - m), compute the homogenous regression
of x, with respect to Y 525" (1 —1/a,)z,_, and compute the resulting R?;

(ii) choose for @&, the value of «, that leads to the highest value for R2.

The inverse function a™! referred to in Assumption 3 may here be determined as
giving: o, = a,, o, = a,/(a; —a,). It is continuous at a° if a,°# a,°, which is
always true if and only if a,° # 0.

4. A first general result. The proof of Theorem 1 makes direct use of the fact that
ur(e) is the sum of a finite number of terms, each of which is the product of a
nonstochastic function of « (through @) and a random variable independent of «
and converging to zero with T: see relation (20) above. Such a decomposition
cannot be applied when g,(«) is not linear in z,, We must therefore look for a
different strategy of proof in the general case.

The following one will be explored now. Given any closed set w not containing
°, can we partition it into a finite number of subsets w? (with r = 1,25, s+1)
in such a way that the conditions of the lemma hold for each »"? If we can do so
with a partition independent of 7, then the conditions of the lemma will hold for
o also. This can easily be seen. For instance with the second condition we can
write:

@7 Pr{sup, ., ur(®) Z 3} < 3721 Pr{sup, o r(®) 2 1}

because u; («) reaches £ in w if and only if it reaches it in at least one of the w". If
each term of the sum of the right-hand member tends to zero, then the left-hand
member must tend to zero.

For any two o and f contained in Q, define the function @(«, ) by:

(28) or(o, B) =T~ Y [9d)— g(BT.

We observe that Q(«) defined by (10) is equal to To(x, a°).
To Assumption 1 let us now add:

AssUMPTION 4. There is a positive number 0, a compact subset K of Q containing
«°, and a number T, such that:
(i) the following inequality holds for all « not in K and all T larger than T:

(29) T 1Q1(a) = 4062 +0;

(ii) as T increases indefinitely the function ¢1(x, f) tends uniformly on Kx K
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to a continuous function ¢(a, f); the function of « defined by (o, a°) is zero only
for a = o°.
We shall comment later on this assumption, but immediately prove:

THEOREM 2. If Assumptions 1 and 4 hold, then 8 is a consistent estimate of o°.

Given any closed set w of Q not containing «°, we must partition w into s+ 1
subsets w" in such a way that the conditions of the lemma are satisfied for each of
these subsets.

Let us first define w**?! to be the intersection of w with the complement of X in
Q. Assumption 4 implies that the first condition of the lemma holds for w**?!.
Applying the Schwarz inequality to the definition of uy(x) as given in (10)-(12),
we find:

(30) ur(@)]* S Yre? Yl Al(@) = T Y 67 1[T ™' Q)]

As T increases, the numerator of the right-hand side converges with probability 1
to ¢? in view of Assumption 1. For T > T, the denominator exceeds 462+ as a
consequence of (i) in Assumption 4. Hence the probability that there exist a point «
in **! such that the fraction is at least equal to % tends to zero with 7T, as is
required by the second condition of the lemma.

It remains now to partition wn K into a finite number s of subsets @" in such a
way that the conditions be fulfilled for each of them. The set wn K is compact, and
does not contain «°; Assumption 4 then implies the existence of two positive
numbers S? and S? such that:

€1)) S? < ¢(a, a°) < 82 for all aewnK.

Moreover, the continuity of ¢(a, f) and of 1/¢(a, a°), considered as functions of «
on the compact set wn K, implies that we can find a finite partition of wnK into
sets w", and a vector «" in each ", in such a way that:

(32) e, o) < S*/(1000%) for all wew” andall r,
(33) [P, )] —[¢(a", a)] 7| £ 1/(1068) forall wew” andall r.

We shall see that this implies the second condition of the lemma for each w", whereas
(31) obviously implies the first condition.
Indeed, consider:

(34) SUPy e or U () = SUP, e o[ Ur(e) —ur(o) ]+ u(a).
The last term tends in probability to zero because:
(35) E[ur?(e")] = 0?/Qr(") = o*/[[Tos(«", «°)]

tends to zero as @(«", a°) tends to ¢(o, «°) #0. The second condition of the lemma
will therefore be satisfied if

(36) Pr {Supaewr[uT(a)_uT(ar)] g %}

tends to zero with T.
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The equality (12) defining u(«) and the Schwarz inequality imply that

(37 [uT(oc)—uT(ac')]z =T! ZrT= AR TZL 1 [itr(“)_lrr(“r)]2~

The probability that T~ 'Ye,? exceeds 166%/9 tends to zero with 7. Hence the
probability (36) will also tend to zero if, for all T sufficiently large,

(38) suP,cor { T 21~ 1 [Ar(@) = Ar(a)]*} < 1/(160%),

a property that we are now going to prove.
By the definition of A,7(«) in (11), we can write

\ q,e)— qt(a') 1

39 A —Ar(e) = ———+4,
(39) (@)= in{®) Or(a") ()I:QT(O‘) QT(“’)]
The triangular inequality in R”, together with equations (10), (9) and (28), imply
that

T 1
40 @) = 2@ | S [Ton(e, )]
(40) I:tgl [Aer(2) = Aer(o)] ] 0, )[ (e, o)]* + 0, ) QT(a,)

To establish that (38) holds for all T sufficiently large, we need only prove the two
following inequalities:

Or¥(a).

) ) 11
(41) [or(o, a)]F = % T Or(o) forall oew” andalllarge T.

1
=38q

T
|QT(°‘) QT(O‘r)

Let us first consider (41). We can write the inequality as:

(42)

1 -1
l:i" QT(“)] for all acw" and all large T.

(43) <PT(°‘, ar) é @Tz(ar’ 0(0).

1
6402
The uniform convergence of ¢ to ¢, together with inequalities (31) and (32)
imply that, for T sufficiently large and all aew":
4

(44) (PT(O(, ar) § Py (pZ(ar’ O(O) é (pTZ(ar, aO).

<
8002 ~ 800 640?

The inequality (43) or (41) is therefore proved for all a€ " and all T sufficiently
large.
Let us now consider (42). The inequality can be written

| 1

j -

lor(a, @) @r(o, 0°)
The uniform convergence of ¢! to ¢! in ', together with the inequalities (31)
and (33) imply that

l 1 _ i
QDT(O(, aO) (pT(ar’ od )

1
(45) < gg Lor(@ a7

ERCE O P

(46)
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The inequality (45) or (42) holds therefore for all «e ®w" and all T sufficiently large.
This completes the proof of Theorem 2.

Let us now examine Assumption 4, which was used in the proof of this theorem.
We easily see that it is not satisfied in the two examples of inconsistency given at the
beginning of this note.

In Example 1, ¢(a, B) tends to zero with T for all («, ) (the convergence is
uniform only in subsets of Q that are bounded away from zero). Indeed, if for
instance o < f8:

0r(o, ) = T™ YTy (€7 =e ™2 = T EL 71— ele=P1]?
é T—l ZtT=I e—2ar é T—l e—Za/(l _e—Za)‘

The nonnegative sequence ¢r(«, ) is bounded above by a sequence tending to zero
with 7. It therefore tends to zero. Neither condition (i) nor condition (ii) of
Assumption 4 is satisfied.

In Example 2, ¢(a, ) will not tend to a limit for all (o, 8). Even if we restrict
Q to a dense subset for which convergence holds, the limit ¢(a, ) will not be con-
tinuous. If, for example, a°® = 1, there exists an increasing sequence «" converging
to «° from below (n = 1, 2 - - ad infinitum) and such that ¢(«", «°) tend to 1 with n,
whereas ¢(a, a°) = 0.

However,® Assumption 4 does hold in the unconstrained linear model x, =
o'z, +¢, satisfying Assumptions 1 and 2. Indeed ¢r(a, f) = (a—B) M, (a—p);
(e, «°) will exceed 4%+ 0 outside of an appropriate compact domain K, for all
T sufficiently large. The function ¢ (a, f) tends to the continuous function
(¢—pB)'M(a— p) that is zero only for o =p, and the convergence is uniform in
K x K. Thus Theorem 1 is a consequence of Theorem 2.

5. A second general result. Assumption 4 does not involve the random disturbance
g,; but it is not yet directly expressed in terms of the basic elements of the model:
the function g, the set Q and the sequence of the z,. We must now look for more

6 It may be worth recording here an example that does not satisfy Assumption 4 and for which
I was not able to prove either consistency of the regression estimate or its inconsistency. Let
x, = sin at + ¢, where Q is the open interval (0, 27). If Assumption 1 holds for ¢, the parameter «
is identifiable in Q. One easily sees that ¢r(x, f) tends to zero if « = B, to 2 if «+f =27 and
a#mtoyifa=mn, f# mor f=mn, « # B, and to 1 in all other cases. Hence ¢(«, ff) is not con-
tinuous and the convergence is not uniform at the points of discontinuity.

It seems intuitively likely that the regression estimate a is consistent. However, a direct study
of the problem leads to the condition that Pr{sup,..|wr(«)| = 4} should tend to zero for all
closed @ < Q not containing «°, where wr(«) = T~'Y7_, & sin «f. The random function wr(«)
tends to zero for all «; but this does not imply that the sup of wr(«) in a given domain also tends
to zero unless one a priori limits Q to a finite number of points in the interval (0, 27).

Note added in proof. It seems that consistency of & in this model can be proved with the technique
used by A. M. Walker in “On the estimation of a harmonic component in a time series with
stationary residuals. I. Independent variables”, The Manchester—Sheffield School of Probability
and Statistics, September 1969,
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basic assumptions from which Assumption 4 could be derived. The ones listed below
are rather strong, and could perhaps be somewhat relaxed. They exhibit, however,
a general class of problems in which consistency of nonlinear regression will hold.

The main difficulty seems to arise from the choice of the hypotheses to be made
on the sequence of the z,. Unless some rather specific conditions are imposed on the
function g, it seems necessary to require that, as 7 increases, all vectors z, remain
within a compact set Z and that their distribution exhibits some stability. In order
to formalize the latter requirement, we shall first associate with each finite sequence
a measure pp on R™ giving the proportion of the T first vectors z, that belong to
any Borel set; we shall then assume that this measure weakly converges to a limit
u. Whereas p has by definition a finite support for each T, the limit measure y may
very well be diffuse over Z.

For any Borel set ¥ of R™ let uy(¥) be equal to 1/T multiplied by the number of
vectors z, that are contained in ¥ among the T first ones. The weak convergence of
Uy to a measure y means that, for any bounded continuous real function f(z), the
integral [f duy, which is the average value of fin the sample, tends to [fdu as T
increases indefinitely.

AsSUMPTION 5. The vectors z, are all contained in a compact set Z of R™. The
measure p weakly converges to a measure u. ,

We shall restrict attention to the case in which the function g(z; «) is continuous
with respect to all its m+p arguments z; and o, simultaneously. Hence:

AssumpPTION 6. The function g(z; ) is continuous on Z x Q.

We still need to remove explicitly a situation that corresponds to multicollinearity
in linear regression, namely the situation in which the z, would be such as to make
two distinct values of o (asymptotically) undistinguishable by observation of the
sample.

AssuMpTION 7. The sequence {z,} separates Q in the sense that, given any two
distinct vectors « and f in Q, the set of all z such that g(z; ) # g(z; B) has a positive
measure f.

Finally we must add a condition to the effect of checking (i) in Assumption 4,
namely that, outside of a compact set K and for sufficiently large T, T~ *Q(a) be
bounded below by a number larger than 40%. We could assume this condition
explicitly, but it may appear unsatisfactory because it depends on the unknowns
a® and o2. We shall therefore make an assumption that is sufficient for our purpose
but obviously not necessary. We shall require that g(z; «) increase indefinitely with
« in the following sense:

AssUMPTION 8. There is some T, such that for any T >T, and any positive
number G, the set of all « such that

(47) T™'Y10%(z50) =G

is bounded ; furthermore, this bound is uniform in 7.
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We can now state:

THEOREM 3. If Assumptions 1, 5, 6, 7 and 8 hold, then & is a consistent estimate of
0

ol.

We must prove that Assumptions 5 to 8 imply Assumption 4. Let us first check
that for any positive number 0 we can find a compact set K so that (i) in Assumption
4 holds with the number T, specified in Assumption 8. Suppose such were not the
case; there would then exist an unbounded sequence of vectors " (withn =1,2---
ad infinitum) such that

(48) T Q") < 46?40 for arbitrarily large T.

Now, apply the triangular inequality in RT to: g(z,; «") = [g(z,; &™) —g(z,; o®)] +
g(z,; o®). We obtain:

(49) [T 'Y 9%z o] S[TTOHNF+ [T~ Y, 6%z a3,

which contradicts Assumption 8 because {a"} is unbounded whereas the right-
hand term of (49) is, for arbitrarily large T, bounded by a number G independent
of T. Indeed, the first term is bounded by (402 +0)* as a consequence of (48),
whereas the second one is also bounded because of the compactness of Z and the
continuity of g(z; «°).

In order to prove the second part of Assumption 4, let us now assume K is any
compact set. By Assumption 6 the function [g(z;x) — g (z; )]? is continuous on the
compact set Zx K x K. Hence,

(50) or(e, B) = [2[9(z; @) — g(z; B)]* dur(z)
converges to:
(51) oo, B) = [[9(z; ) —g(z; B)]* du(2).

Assumption 7 implies that ¢(a, f) vanishes only when « = f. To complete the proof
of Assumption 4 we need only show that on K x K the function ¢(«, f) is continuous
and the convergence of p1(a, ) to ¢(«, f) uniform. But continuity of g(z; o) implies
continuity of ¢r(«, ), from which continuity of ¢(«, ) will follow when uniform
convergence has been proven.

The uniform convergence of ¢ to ¢ results from Theorem 1 of P. Billingsley and
F. Topsee (1967), of which the following proposition is a direct corollary.’

Let & be a family of real functions fon Z. Let F be equicontinuous and bounded.
Then [ fdur converges uniformly to [ fdy for every sequence of measures pr on Z that
converges weakly to p.

To prove uniform convergence of @ to ¢ we apply this proposition, with fequal
to [g(z; @) —g(z; B)]?, considered as a function of z, and with the family # made
of the set of all f'such that («, f) belongs to Kx K. The continuous function g is
bounded on the compact set Z x K; hence the family & is bounded. Equicontinuity

7 This proposition and the reference to Billingsley and Tops@e were given to me by W. Hilden-
brand.
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means that for every ¢ > 0 there exists § such that ||z—w]|| < § implies | f(z)—f(w)| <&
for all fe #. Equicontinuity of & is implied here by the continuity of g and the
compactness of Z x K x K. (Indeed, assume equicontinuity does not hold. There is
then some ¢ > 0 and, for n =1, 2-- - ad infinitum, sequences 8", z", w", ", B" such
that 8" decreases to zero, ||z" —w"|| < 8" and | f"(z")—f"(w")| > ¢, f"corresponding to
(", B"). There are, however, subsequences that simultaneously converge to O,
z% = w®, 0% and B°. But continuity of g implies | /°(z°) —f°(w°)| <¢, a contradiction.)
This completes the proof of Theorem 3.

6. Multivariate regressions. Let us consider briefly the multivariate generalization
of model (1), namely:

(52) Xie = GZ10" " Zes 0y "0 00p) H 8 i=12--n

Regression estimates will now be obtained as minimizing a quadratic form of the
deviations from the x; to the corresponding g;.

More precisely let x,, g,(«) and ¢, be the n-vectors with components x;,, gi(z,; &)
and ¢;,. Let St be any, possibly random, positive definite square matrix. Finally,
let &(S;) be the vector minimizing:®

(53) LT(“a ST) = ZtT=1 [xt_gt(“)],ST[xt—gt(a)]'

We are interested in the conditions under which &(Sy) tends to the true value a°.

One may check that, if S; tends in probability to a positive definite matrix S,
the consistency proofs listed above essentially carry through with minor changes.
For instance, the notation introduced at the beginning of Section 2 is naturally
changed as follows. From the vectors g,(«) defined by (9) the quadratic form Qr(«)
is computed as:

(54) Qr(9) = Y721 4/(@)' S 440).
The vectors A,7(x) are then defined by (11) and the numbers ur() by:
(55) ur(e) = Zth 1 Ar(@)'Ste,.

The lemma of Section 2 then stands after condition (i) is replaced by:

(i) Pr{inf,., Qr(e) = 0} tends to zero as T increases indefinitely.

In Assumption 1 the variance o must be replaced by the covariance matrix Z,
and in the constrained linear model the vector a(a) replaced by a matrix A(«).
Except for these obvious changes, Theorem 1 still holds.

Similar changes are required in order to transpose Theorem 2 and Theorem 3.

8 In practice St will often be an estimate of the inverse of the covariance matrix X of . For
instance, in view of defining an asymptotically efficient procedure, one may consider the following
computations: (i) derive a(I) taking Sy as being the identity matrix, (ii) compute & = x,—g:[a (/)
and M,,=T~' 3T &&/, (iii) estimate o by & (M_}").
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Assumptions 4 to 8 read as before except that g(z; «) is now the n-vector with
components g,(z; «) and that (28), (29), and (47) are replaced respectively by:

(28" d"r(aa ﬁ) =T! ZIT= 1 [gt(a)"'gt(ﬁ)]’S[gt(‘x)—gr(ﬁ)]
(29" (e, 0% = 4tr ST+0
(47") T~ 'Y 9(z;0) Sg(z;0) £ G.

Acknowledgments. This article was discussed by many friends, in particular by
R. Radner and T. Rothenberg. I benefited from suggestions made after my presen-
tation of the paper at the Cowles Foundation and at Harvard University. The
constructive comments of a referee and the consultation given by W. Hildenbrand
about uniform weak convergence of measures were very helpful.

REFERENCES

1] BILLINGSLEY, P. and Tops@g, F. (1967). Uniformity in weak convergence. Z. Wahrscheinlich-
keitstheorie und Verw. Gebiete 7 1-16.

[2] FisHER, I. (1937). Note on a short-cut method for calculating distributed lags. Bull. Internat.
Statist. 29.

[3] JennrICH, R. I. (1969). Asymptotic properties of non-linear least-squares estimators. Ann.
Math. Statist. 40 633-643.

[4] MALINvVAUD, E. (1966). Statistical Methods of Econometrics. North-Holland Publishing
Company, translation of a book first published in French in 1964 by Dunod.



