THE LAW OF THE ITERATED LOGARITHM FOR A MARKOV PROCESS

R. P. PAKSHIRAJAN AND M. SREEHARI

University of Mysore

1. Introduction. The purpose of this paper is to prove the law of the iterated logarithm for a sequence $\{f(x_n)\}$, where f is a real-valued function defined on the state space of a discrete Markov Process $\{x_n\}$ satisfying Doeblin's hypothesis [3].

Most of the known results concerning the law of the iterated logarithm are obtained for a sequence of independent random variables and the proofs mainly depend on (i) the rate of convergence in the central limit theorem and (ii) certain inequalities due to Kolmogorov/Lévy [5]. In Section 3 we obtain the rate of convergence of $n^{-\frac{1}{2}}\sum_{j=1}^{n} f(x_j)$ to the normal distribution. In Section 5 we obtain the rate of convergence of the maximum of the partial sums of the random variables $f(x_j)$ to the positive normal distribution and use this rate in the place of Kolmogorov/Lévy inequalities.

2. Preliminary assumptions and lemmas. Let X be a space of points ξ and let \mathscr{F}_X be a Borel field of subsets of X. Let $\{x_n\}$ be a Markov process with state space X and stationary transition probabilities:

(2.1)
$$P(\xi, A) = P(x_{n+1} \in A \mid x_n = \xi).$$

That is, $\{x_n\}$ is a sequence of measurable functions from some probability space (Ω, \mathcal{B}, P) to X such that (2.1) holds where the transition function $p(\xi, A)$ is a measurable function of ξ for fixed $A \in \mathcal{F}_X$ and is a probability measure on \mathcal{F}_X for fixed ξ . The initial distribution π is defined by $\pi(A) = P\{x_1 \in A\}$ and the n-step transition probabilities are given by $P^{(n)}(\xi, A) = P\{x_{n+1} \in A \mid x_1 = \xi\}$. Throughout the following discussion Doeblin's condition will be assumed. In fact, we shall assume the hypothesis (D_0) :

- (a) Doeblin's condition is satisfied.
- (b) There is only a single ergodic set and this contains no cyclically moving subsets.

It is known that if (D_0) holds then there exist positive constants γ and ρ , $\rho < 1$, and a unique stationary absolute distribution p such that $|p^{(n)}(\xi, A) - p(A)| < \gamma \rho^n$ for all $\xi \in X$ and $A \in \mathcal{F}_X$ and $n \ge 1$. Throughout the following discussion we shall make the assumption:

$$(2.2) \pi = p.$$

Let C_1 , C_2 , \cdots be absolute constants. We shall now obtain two lemmas which will be used in the later analysis. Let $_r\mathcal{F}_m$ denote the σ -field generated by the random variables (rv's) x_r , \cdots , x_m .

Received March 28, 1969.

LEMMA 2.1. If f is measurable with respect to $_1\mathcal{F}_m$ and g is a bounded function measurable with respect to $_{k+m}\mathcal{F}_{\infty}$, $|g| \leq M$, then $|E\{g|f\} - E\{g\}| \leq 2M\gamma\rho^k$.

PROOF. Since
$$E\{g | f\} = E\{E(g | x_1, \dots, x_m) | f\}$$

 $|E\{g | f\} - E\{g\}| \le E\{|E\{g | x_1, \dots, x_m\} - E\{g\}| | f\}.$

The result follows from Lemma 7.2 page 224 of [3].

COROLLARY 2.1. If
$$A \in {}_{1}\mathscr{F}_{m}$$
 and $B \in {}_{k+m}\mathscr{F}_{\infty}$ then $|P(B|A) - P(B)| \leq 2\gamma \rho^{k}$.

LEMMA 2.2. If $A \in {}_{1}\mathscr{F}_{m}$ and g is a function measurable with respect to ${}_{k+m}\mathscr{F}_{\infty}$ and if x is a possible value of the rv g then $|P(A \mid g = x) - P(A)| \leq 2\gamma \rho^{k}$.

PROOF. Define for each integer m the events

$$H_m(x) = \{ [x2^m]2^{-m} \le g < ([x2^m] + 1)2^{-m} \}$$

where [a] is the largest integer less than or equal to a. Notice that $P(H_m(x)) > 0$ for all m. It is known (page 335 of [5], that $P(A \mid g = x) = \lim_{m \to \infty} P(A \mid H_m(x))$. Then we have by Lemma 7.1 page 222 [3]

$$|P(A \mid g = x) - P(A)| = \lim_{m \to \infty} |P(A \mid H_m(x)) - P(A)|$$

$$= \lim_{m \to \infty} |E(\chi_A \chi_{H_m}) - E(\chi_A) E(\chi_{H_m})| E^{-1}(\chi_{H_m})$$

$$\leq \lim_{m \to \infty} 2\gamma^{1/s} \rho^{k/s} E^{1/r}(\chi_A) E^{1/s}(\chi_{H_m}) E^{-1}(\chi_{H_m})$$

for r, s > 1, (1/r) + (1/s) = 1.

Take $s = 1 + (1/m)E(\chi_{H_m})$. Then $s(m, x) \to 1$ and $E^{1/s}(\chi_{H_m})E^{-1}(\chi_{H_m}) \to 1$ as $m \to \infty$. We therefore have from (2.3)

$$|P(A \mid g = x) - P(A)| \le 2\gamma \rho^k$$
.

3. Convergence of partial sums. Let f be a real-valued function measurable with respect to \mathscr{F}_X such that $E\{f(x_1)\}=0$ and $E\{f^2(x_1)\}=\sigma^2$. In view of (2.2) we have for every k, $E\{f^2(x_k)\}=\sigma^2$. Without loss of generality σ may be taken to be 1 which we do. Then

$$\lim_{n\to\infty} E\{(n^{-\frac{1}{2}}\sum_{j=1}^{n}f(x_{j}))^{2}\} = \sigma_{1}^{2}$$

exists. If $\sigma_1^2 > 0$ and if

$$(3.1) E\{|f(x_1)|^{2+\delta}\} < \infty$$

for some $\delta > 0$ then it has been proved (Theorem 7.5 page 228 [3]) that

(3.2)
$$\lim_{n \to \infty} P(S_n \le x\sigma_1 n^{\frac{1}{2}}) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^x e^{-(\frac{1}{2})t^2} dt = \Phi(x)$$

where $S_n = \sum_{j=1}^n f(x_j)$. Throughout this paper we shall assume that $\sigma_1^2 > 0$ and that (3.1) holds for some $\delta \le 1$.

The purpose of this section is to obtain an estimate of the difference between the distribution of $(S_n)/\sigma_1 n^{\frac{1}{2}}$ and the standard normal distribution.

Let $\alpha_n = [n^{\frac{3}{4}}]$ and $\beta_n = [n^{\frac{1}{4}}]$. Then $\mu_n = [n(\alpha_n + \beta_n)^{-1}] \sim \beta_n$. For notational convenience we shall ignore the suffix n and write $\alpha_n = \alpha$, $\beta_n = \beta$ and $\mu_n = \mu$. Define

(3.3)
$$y_{m} = \sum_{j=(m-1)(\alpha+\beta)+\alpha}^{(m-1)(\alpha+\beta)+\alpha} f(x_{j}) \qquad m = 1, 2, \dots, \mu$$

$$y_{\mu}' = \sum_{j=(m-1)(\alpha+\beta)+\alpha+1}^{m(\alpha+\beta)} f(x_{j}) \qquad m = 1, 2, \dots, \mu$$

$$y'_{m+1} = \sum_{j=\mu(\alpha+\beta)+1}^{n} f(x_{j}). \qquad \text{Write}$$

(3.4)
$$T_r = \sum_{m=1}^r y_m \text{ and } V_n = \sum_{m=1}^{\mu+1} y_m'.$$

Under the assumption (2.2) y_m 's are identically distributed. Let F(x) denote the distribution function of y_1 .

THEOREM 3.1. There exists N_0 such that for $n \ge N_0$

$$\sup_{x} |P(S_n \le x\sigma_1 n^{\frac{1}{2}}) - \Phi(x)| \le C_4 \max\{n^{-\delta/8}, n^{-1/12}\}.$$

PROOF. Let $\eta = \eta(n)$ be an arbitrary positive number.

$$P(S_n \le x\sigma_1 n^{\frac{1}{2}}) = P(T_\mu + V_n \le x\sigma_1 n^{\frac{1}{2}}, |V_n| \le \eta\sigma_1 n^{\frac{1}{2}})$$

$$+ P(T_\mu + V_n \le x\sigma_1 n^{\frac{1}{2}}, |V_n| > \eta\sigma_1 n^{\frac{1}{2}})$$

$$\le P(T_\mu \le (x + \eta)\sigma_1 n^{\frac{1}{2}}) + P(|V_n| > \eta\sigma_1 n^{\frac{1}{2}}).$$

$$(3.5)$$

Also

$$(3.6) P(S_n \le x\sigma_1 n^{\frac{1}{2}}) \ge P(T_u \le (x-\eta)\sigma_1 n^{\frac{1}{2}}) - P(|V_n| > \eta\sigma_1 n^{\frac{1}{2}}).$$

Now consider

$$P(T_{\mu} \le u) = \int_{-\infty}^{\infty} P(T_{\mu} - y_1 \le u - x_1 \mid y_1 = x_1) dF(x_1)$$

= $\int_{-\infty}^{\infty} P(T_{\mu} - y_1 \le u - x_1) dF(x_1) + \theta_1(n)$, say.

By Corollary 2.1, $|\theta_1(n)| \le 2\gamma \rho^{\beta}$. Also $P(T_{\mu} - y_1 \le u - x_1) = \int_{-\infty}^{\infty} P(T_{\mu} - y_1 - y_2 \le u - x_1 - x_2) dF(x_2) + \theta_2^*(n)$ so that

$$P(T_{\mu} \leq u) = \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} P(T_{\mu} - y_1 - y_2 \leq u - x_1 - x_2) dF(x_2) \right\} dF(x_1) + \theta_1(n) + \theta_2(n)$$
where $|\theta_2(n)| \leq \int_{-\infty}^{\infty} |\theta_2^*(n)| dF(x_1) \leq 2\gamma \rho^{\beta}$.

Proceeding as above we get

(3.7)
$$P(T_{\mu} \leq u) = P(Z_1 + \dots + Z_{\mu} \leq u) + \sum_{j=1}^{\mu-1} \theta_j(n)$$

where Z_1, \dots, Z_{μ} are independent random variables each distributed like y_1 and $|\theta_j(n)| \le 2\gamma \rho^{\beta}$, $1 \le j \le \mu - 1$. Also $E(Z_1 \alpha^{-\frac{1}{2}} \sigma_1^{-1})^2 \to 1$ as $n \to \infty$. It therefore follows that

$$\lim_{n\to\infty} P(Z_1+\cdots+Z_{\mu} \leq x\sigma_1 n^{\frac{1}{2}}) = \Phi(x).$$

In fact using Esseen's estimate [4] we get

(3.8)
$$\sup_{x} |P(Z_{1} + \dots + Z_{\mu} \le x\sigma_{1} n^{\frac{1}{2}}) - \Phi(x)| \le C_{2} \mu^{-\delta/2} = C_{2} n^{-\delta/8}$$
 where C_{2} does not depend on n .

From relations (3.5) to (3.8) we have

(3.9)
$$\Phi(x-\eta) - C_2 n^{-\delta/8} + \sum_{j=1}^{\mu-1} \theta_j(n) - P(|V_n| > \eta \sigma_1 n^{\frac{1}{2}})$$

$$\leq P(S_n \leq x \sigma_1 n^{\frac{1}{2}})$$

$$\leq \Phi(x+\eta) + C_2 n^{-\delta/8} + \sum_{j=1}^{\mu-1} \theta_j(n) + P(|V_n| > \eta \sigma_1 n^{\frac{1}{2}}).$$

But $|\Phi(x) - \Phi(x \pm \eta)| \le \eta$. Following the discussion to prove (7.16), page 229 [3] we obtain $E(V_n^2) = O(n^{\frac{3}{2}})$. Applying Tchebyshev's inequality we get

$$P(|V_n| > \eta \sigma_1 n^{\frac{1}{2}}) < C_3 \eta^{-2} n^{-\frac{1}{4}}$$

where C_3 depends on σ_1 only.

We have then from (3.9)

$$\sup_{x} \left| P(S_n \le x \sigma_1 \, n^{\frac{1}{2}}) - \Phi(x) \right| \le \eta + C_2 \, n^{-\delta/8} + 2\gamma \mu \rho^{\beta} + C_3 \, \eta^{-2} n^{-\frac{1}{4}}.$$

Taking $\eta = \max\{n^{-\delta/8}, n^{-1/12}\}\$ we get for n large, say, $\geq N_0$

$$\sup_{x} |P(S_n \le x\sigma_1 n^{\frac{1}{2}}) - \Phi(x)| \le C_4 \eta.$$

4. An approximation theorem for a multidimensional distribution. Set

$$\varepsilon_1 = 1/(3+\delta), \ \varepsilon_2 = \varepsilon_1 \, \delta/4, \ \eta_1(n) = n^{-\varepsilon_2/2} (\log n)^{(1+\delta/2)\varepsilon_1}$$
 and $k(n) = [n^{\varepsilon_2} (\log n)^{\varepsilon_1}].$

Define $\mu_i = [i\mu/k], i = 1, 2, \dots, k$.

In this section we approximate the distribution function of $(T_{\mu_1}, \dots, T_{\mu_k})$ with an appropriate k-dimensional normal distribution function. We follow the method of Chung [2].

Consider independent rv's ξ_1, \dots, ξ_k where ξ_j is distributed like $T_{\mu_j} - T_{\mu_{j-1}}$, $1 \le j \le k$. $(T_{\mu_0} = 0)$.

Denote $\zeta_i = \sum_{j=1}^i \xi_j$. Then

$$P(T_{\mu_{1}} \leq x_{1}, \dots, T_{\mu_{k}} \leq x_{k})$$

$$= \int_{-\infty}^{\infty} P(T_{\mu_{1}} \leq x_{1}, \dots, T_{\mu_{k-1}} \leq \min(x_{k-1}, x_{k} - u_{k}) | T_{\mu_{k}} - T_{\mu_{k-1}} = u_{k}) dP(\xi_{k} \leq u_{k})$$

$$= \int_{-\infty}^{\infty} P(T_{\mu_{1}} \leq x_{1}, \dots, T_{\mu_{k-1}} \leq \min(x_{k-1}, x_{k} - u_{k})) dP(\xi_{k} \leq u_{k}) + \Delta_{1}(n)$$

where $|\Delta_1(n)| \le 2\gamma \rho^{\beta}$ by Lemma 2.2. Also

$$\begin{split} P(T_{\mu_1} &\leq x_1, \, \cdots, \, T_{\mu_{k-1}} \leq \min \left(x_{k-1}, \, x_k - u_k \right) \right) \\ &= \int_{-\infty}^{\infty} P(T_{\mu_1} \leq x_1, \, \cdots, \, T_{\mu_{k-2}} \\ &\leq \min \left(x_{k-2}, \, x_{k-1} - u_{k-1}, \, x_k - u_k - u_{k-1} \right) \left| \, T_{\mu_{k-1}} - T_{\mu_{k-2}} = u_{k-1} \right) \\ & \cdot dP(\xi_{k-1} \leq u_{k-1}) \end{split}$$

so that

$$P(T_{\mu_{1}} \leq x_{1}, \dots, T_{\mu_{k}} \leq x_{k})$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(T_{\mu_{1}} \leq x_{1}, \dots, T_{\mu_{k-2}} \leq \min(x_{k-2}, x_{k-1} - u_{k-1}, x_{k} - u_{k} - u_{k-1})) \cdot dP(\xi_{k-1} \leq u_{k-1}) dP(\xi_{k} \leq u_{k}) + \Delta_{1}(n) + \Delta_{2}(n)$$

where $|\Delta_2(n)| \leq 2\gamma \rho^{\beta}$.

Proceeding as above we arrive at

$$P(T_{\mu_{1}} \leq x_{1}, \dots, T_{\mu_{k}} \leq x_{k})$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} P(\xi_{1} \leq \min(x_{1}, x_{2} - u_{2}, \dots, x_{k} - \sum_{j=2}^{k} u_{j}))$$

$$\cdot dP(\xi_{2} \leq u_{2}) \dots dP(\xi_{k} \leq u_{k}) + \sum_{j=1}^{k-1} \Delta_{j}(n)$$

$$= P(\xi_{1} \leq x_{1}, \dots, \xi_{k} \leq x_{k}) + \sum_{j=1}^{k-1} \Delta_{j}(n).$$

Denote $F_i(x_1, \dots, x_i) = P(\zeta_1 \le x_1, \dots, \zeta_j \le x_j), 1 \le j \le k$.

Let Φ_j be the *j* dimensional normal distribution function with the same first and second order moments as F_j . Let Φ_j^* be the one dimensional normal distribution function with mean zero and variance $= E(\xi_j^2)$. Denote $F_j(x_1, \dots, x_j) - \Phi_j(x_1, \dots, x_j) = R_j(x_1, \dots, x_j)$ and $P(\xi_j \leq u) - \Phi_j^*(u) = R_j^*(u)$.

In view of (3.7) and (3.8) there exists a constant C_5 such that

$$(4.2) \sup |R_1| \le C_5 k^{\delta/2} n^{-\delta/8} \text{and} \sup |R_j^*| \le C_5 k^{\delta/2} n^{-\delta/8} 1 \le j \le k$$

for n large.

Consider

$$\begin{split} F_{j+1}(x_1, \cdots, x_{j+1}) &= \int_{-\infty}^{\infty} F_j(x_1, \cdots, x_{j-1}, \min(x_j, x_{j+1} - u)) \, dP(\xi_{j+1} \leq u) \\ &= \int_{-\infty}^{\infty} \left\{ \Phi_j(x_1, \cdots, x_{j-1}, \min(x_j, x_{j+1} - u)) + R_j(x_1, \cdots, x_{j-1}, \min(x_j, x_{j+1} - u)) \right\} \, dP(\xi_{j+1} \leq u) \\ &= \int_{-\infty}^{\infty} \Phi_j(x_1, \cdots, x_{j-1}, \min(x_j, x_{j+1} - u)) \, d\Phi_{j+1}^*(u) \\ &+ \int_{-\infty}^{\infty} \Phi_j \, dR_{j+1}^* + \int_{-\infty}^{\infty} R_j \, dP(\xi_{j+1} \leq u). \end{split}$$

That is

$$(4.3) R_{i+1}(x_1, \dots, x_{i+1}) = \int_{-\infty}^{\infty} \Phi_i dR_{i+1}^* + \int_{-\infty}^{\infty} R_i dP(\xi_{i+1} \le u).$$

Now

$$\begin{split} \left| \int_{-\infty}^{\infty} R_{j} dP(\xi_{j+1} \leq u) \right| &\leq \sup \left| R_{j} \right|. \\ \int_{-\infty}^{\infty} \Phi_{j}(x_{1}, \cdots, x_{j-1}, \min(x_{j}, x_{j+1} - u)) dR_{j+1}^{*}(u) \\ &= \int_{-\infty}^{x_{j+1} - x_{j}} \Phi_{j}(x_{1}, \cdots, x_{j}) dR_{j+1}^{*}(u) \\ &+ \int_{x_{j+1} - x_{j}}^{\infty} \Phi_{j}(x_{1}, \cdots, x_{j-1}, x_{j+1} - u) dR_{j+1}^{*}(u) \\ &= \Phi_{j}(x_{1}, \cdots, x_{j}) R_{j+1}^{*}(x_{j+1} - x_{j}) - \Phi_{j}(x_{1}, \cdots, x_{j}) R_{j+1}^{*}(x_{j+1} - x_{j}) \\ &- \int_{x_{j+1} - x_{j}}^{\infty} R_{j+1}^{*}(u) d\Phi_{j}(x_{1}, \cdots, x_{j+1} - u) \end{split}$$

on integration by parts. Hence $\left|\int_{-\infty}^{\infty} \Phi_j dR_{j+1}^*\right| \le \sup \left|R_{j+1}^*\right|$. From (4.3) we therefore have

$$\sup |R_{j+1}| \leq \sup |R_j| + \sup |R_{j+1}^*|.$$

Using the relations at (4.2) we get by induction $\sup |R_k| \le C_5 k^{1+\delta/2n-\delta/8}$ for *n* large. From (4.1) and the above result we have

$$|P(T_{\mu_1} \leq x_1, \dots, T_{\mu_k} \leq x_k) - \Phi_k(x_1, \dots, x_k)| \leq C_5 k^{1+\delta/2} n^{-\delta/8} + 2\gamma k \rho^{\beta}$$

$$\leq C_6 k^{1+\delta/2} n^{-\delta/8}.$$

We thus proved

LEMMA 4.1. There exist constants C_6 and N_1 such that for all $n \ge N_1$

$$\sup_{x_i, 1 \leq i \leq k} \left| F_k(x_1, \dots, x_k) - \Phi_k(x_1, \dots, x_k) \right| \leq C_6 \eta_1,$$

where η_1 is defined at the beginning of this section.

5. Rate of convergence of $\max_{1 \le r \le n} S_r$. Set $S_n^* = \max_{1 \le r \le n} S_r$ and $S_n^{**} = \max_{1 \le j \le \mu} S_{(\alpha+\beta)j}$. The limit distribution of S_n^* has been obtained by Billingsley [1].

We shall write $\alpha + \beta = \alpha_1$. Observe that

(5.1)
$$P(S_n^* \le x\sigma_1 n^{\frac{1}{2}}) \le P(S_n^{**} \le x\sigma_1 n^{\frac{1}{2}}).$$

Let for each r, $\alpha_1(j(r)-1) < r \le \alpha_1 j(r)$. Define $D_r = \{S_{r-1}^* \le x\sigma_1 n^{\frac{1}{2}}, S_r > x\sigma_1 n^{\frac{1}{2}}\}$ so that

(5.2)
$$\sum_{r=1}^{n} P(D_r) = P(S_n^* > x\sigma_1 n^{\frac{1}{2}}).$$

Write $D_r = D_r^{(1)} \cup D_r^{(2)}$ where $D_r^{(1)} = \{D_r \cap \{ |S_{\alpha_1 j(r)} - S_r| \le \eta_1 \sigma_1 n^{\frac{1}{2}} \} \}$ and $D_r^{(2)} = \{D_r \cap \{ |S_{\alpha_1 j(r)} - S_r| > \eta_1 \sigma_1 n^{\frac{1}{2}} \} \}$.

(5.3)
$$\sum_{r=1}^{n} P(D_r^{(1)}) \le P(S_n^{**} > (x - \eta_1)\sigma_1 n^{\frac{1}{2}}).$$

In order to analyze $P(D_r^{(2)})$ we set $\delta_n = [n^{3\delta/(8+4\delta)}]$. Then if $\alpha_1 j(r) - r > \delta_n$

$$\begin{split} P(D_r^{(2)}) & \leq P(D_r \cap \{ \left| S_{\alpha_1 j(r)} - S_{r+\delta_n} \right| > (\frac{1}{2}) \eta_1 \, \sigma_1 \, n^{\frac{1}{2}} \}) \\ & + P(\left| S_{r+\delta_n} - S_r \right| > (\frac{1}{2}) \eta_1 \, \sigma_1 \, n^{\frac{1}{2}}) \\ & \leq P(D_r) \{ P(\left| S_{\alpha_1 j(r)} - S_{r+\delta_n} \right| > (\frac{1}{2}) \eta_1 \, \sigma_1 \, n^{\frac{1}{2}}) + 2 \gamma \rho^{\delta_n} \} \\ & + C_7 \, \delta_n^{-(1+\delta/2)} \eta_1^{-(2+\delta)} n^{-(1+\delta/2)} \end{split}$$

by Corollary 2.1 and Tchebyshev's inequality. Therefore

$$\begin{split} P(D_r^{(2)}) & \leq P(D_r) \big\{ C_8 \, \alpha_1^{(1+\delta/2)} \eta_1^{-(2+\delta)} n^{-(1+\delta/2)} + 2 \gamma \rho^{\delta_n} \big\} \\ & + C_7 \, \delta_n^{(1+\delta/2)} \eta_1^{-(2+\delta)} n^{-(1+\delta/2)}. \end{split}$$

$$\sum_{r=1}^{n} P(D_r^{(2)}) \leq C_9 \eta_1^{-(2+\delta)} n^{-(2+\delta)/8} + 2\gamma \rho^{\delta_n} + C_7 \delta_n^{(1+\delta/2)} \eta_1^{-(2+\delta)} n^{-\delta/2}.$$

If $\alpha_1 j(r) - r < \delta_n$ also this inequality holds.

We have from (5.2), (5.3) and the above inequality

$$P(S_n^* > x\sigma_1 n^{\frac{1}{2}}) \le P(S_n^{**} > (x - \eta_1)\sigma_1 n^{\frac{1}{2}})$$

$$+ C_9 \eta_1^{-(2+\delta)} n^{-(2+\delta)/8} + 2\gamma \rho^{\delta_n} + C_7 \delta_n^{-(1+\delta/2)} \eta_1^{-(2+\delta)} n^{-\delta/2}.$$

This together with (5.1) gives

Lemma 5.1. For η_1 as defined in Section 4 there exist constants C_{10} and N_2 such that for $n \ge N_2$

$$P(S_n^{**} \leq (x - \eta_1)\sigma_1 n^{\frac{1}{2}}) - C_{10}\eta_1 \leq P(S_n^{**} \leq x\sigma_1 n^{\frac{1}{2}}) \leq P(S_n^{**} \leq x\sigma_1 n^{\frac{1}{2}}).$$

Denote $U_i = y_1' + \cdots + y_i'$ and the event $\{|U_i| \le \eta_1 \sigma_1 n^{\frac{1}{2}}\} = M_i$. Then

$$P(S_n^{**} \leq x\sigma_1 n^{\frac{1}{2}}) = P(\{S_n^{**} \leq x\sigma_1 n^{\frac{1}{2}}\} \cap \{\bigcap_{j=1}^{\mu} M_j\})$$

$$+ P(\{S_n^{**} \leq x\sigma_1 n^{\frac{1}{2}}\} \cap \{\bigcap_{j=1}^{\mu} M_j\}')$$

$$\leq P(\max_{1 \leq r \leq \mu} T_r \leq (x + \eta_1)\sigma_1 n^{\frac{1}{2}}) + P(\bigcup_{j=1}^{\mu} M_j')$$

$$\leq P(\max_{1 \leq r \leq \mu} T_r \leq (x + \eta_1)\sigma_1 n^{\frac{1}{2}}) + C_{11} \eta_1^{-2} n^{-\frac{1}{2}}.$$

Similarly

$$(5.5) P(S_n^{**} \leq x\sigma_1 n^{\frac{1}{2}}) \geq P(\max_{1 \leq r \leq u} T_r \leq (x - \eta_1)\sigma_1 n^{\frac{1}{2}}) - C_{11} \eta_1^{-2} n^{-\frac{1}{2}}.$$

From (5.4), (5.5) and Lemma 5.1 we have the following

LEMMA 5.2. For η_1 as defined in Section 4 there exist constants C_{12} and N_3 such that for $n \ge N_3$

$$P(\max_{1 \le r \le \mu} T_r \le (x - 2\eta_1)\sigma_1 n^{\frac{1}{2}}) - C_{12}\eta_1$$

$$\le P(S_n^* \le x\sigma_1 n^{\frac{1}{2}})$$

$$\le P(\max_{1 \le r \le \mu} T_r \le (x + \eta_1)\sigma_1 n^{\frac{1}{2}}) + C_{12}\eta_1.$$

Set $T_{\mu}^* = \max_{1 \le r \le \mu} T_r$ and $T_{\mu}^{**} = \max_{1 \le i \le k} T_{\mu_i}$ where μ_i 's are as defined in Section 4.

LEMMA 5.3. We can find constants C_{16} and N_4 such that for $n \ge N_4$

$$P(T_u^{**} \leq (x - \eta_1)\sigma_1 n^{\frac{1}{2}}) - C_{16}\eta_1 \leq P(T_u^{*} \leq x\sigma_1 n^{\frac{1}{2}}) \leq P(T_u^{**} \leq x\sigma_1 n^{\frac{1}{2}}).$$

PROOF. It is easily seen that

(5.6)
$$P(T_{\mu}^* \leq x\sigma_1 n^{\frac{1}{2}}) \leq P(T_{\mu}^{**} \leq x\sigma_1 n^{\frac{1}{2}}).$$

Define the events

$$E_r = \{ T_{r-1}^* \le x\sigma_1 n^{\frac{1}{2}}, T_r > x\sigma_1 n^{\frac{1}{2}} \}.$$

Then

(5.7)
$$\sum_{r=1}^{\mu} P(E_r) = P(T_{\mu}^* > x\sigma_1 n^{\frac{1}{2}}).$$

Suppose $\mu_{j(r)} < r \le \mu_{j(r)+1}$. Then for any positive number $\eta_1 = \eta_1(n)$

(5.8)
$$E_{r} = \{E_{r} \cap \{\left|T_{\mu_{J(r)+1}} - T_{r}\right| > \eta_{1} \sigma_{1} n^{\frac{1}{2}}\}\} \cup \{E_{r} \cap \{\left|T_{\mu_{J(r)+1}} - T_{r}\right| \leq \eta_{1} \sigma_{1} n^{\frac{1}{2}}\}\}$$
$$= E_{r}^{(1)} \cup E_{r}^{(2)}, \quad \text{say}.$$

(5.9)
$$\sum_{r=1}^{\mu} P(E_r^{(2)}) \le P(T_{\mu}^{**} > (x - \eta_1)\sigma_1 n^{\frac{1}{2}}).$$

By Corollary 2.1

$$(5.10) P(E_r^{(1)}) \leq P(E_r) \{ P(|T_{\mu_{1}(r)+1} - T_r| > \eta_1 \sigma_1 n^{\frac{1}{2}}) + 2\gamma \rho^{\beta} \}.$$

It is easily shown as in Theorem 3.1 that

(5.11)
$$P(\left|T_{\mu_{J(r)+1}} - T_r\right| > \eta_1 \sigma_1 n^{\frac{1}{2}}) \le P(\left|Z_1 + \dots + Z_m\right| > \eta_1 \sigma_1 n^{\frac{1}{2}}) + 4m\gamma \rho^{\beta},$$
 where $m = \mu_{J(r)+1} - r$.

Let $B = B(n) = [n^{\frac{1}{4}}]$. If $m \le B$ then by Tchebyshev's inequality and Lemma 7.4, page 225, [3] we have

$$(5.12) P(|Z_1 + \dots + Z_m| > \eta_1 \sigma_1 n^{\frac{1}{2}}) \le C_{13} \eta_1^{-(2+\delta)} n^{-(2+\delta)/8} B.$$

If m > B using Lemma 7.4 and the Esseen's estimate we get

$$(5.13) |P(|Z_1 + \dots + Z_m| > \eta_1 \sigma_1 n^{\frac{1}{2}}) - 2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \int_{v}^{\infty} \exp(-(\frac{1}{2})t^2) dt| \le C_{14} B^{-\delta/2}$$

where C_{14} depends only on σ_1 ; and $v = \eta_1 n^{\frac{1}{2}} m^{-\frac{1}{2}}$. Since $m \le \mu/k$, $v > \eta_1 k^{\frac{1}{2}}$. Now

$$(5.14) \ 2^{\frac{1}{2}}\pi^{-\frac{1}{2}} \int_{\nu}^{\infty} \exp\left(-\left(\frac{1}{2}\right)t^{2}\right) dt \le C_{15} \nu^{-1} e^{-\left(\frac{1}{2}\right)\nu^{2}} \le C_{15} \eta_{1}^{-1} k^{-\frac{1}{2}} e^{-\left(\frac{1}{2}\right)\eta_{1}^{2}k}$$

$$= C_{15} \eta_{1}^{-1} k^{-\frac{1}{2}} n^{-\frac{1}{2}}.$$

F rom the relations (5.7) to (5.14) we get

$$P(T_{\mu}^* > x\sigma_1 n^{\frac{1}{2}}) \le P(T_{\mu}^{**} > (x-\eta_1)\sigma_1 n^{\frac{1}{2}}) + C_{16}\eta_1.$$

This together with (5.6) gives the result.

From Lemmas 4.1, 5.2 and 5.3 we have with some constant $C_{1.7}$

$$(5.15) \qquad \Phi_{k}((x-3\eta_{1})\sigma_{1} n^{\frac{1}{2}}, \cdots, (x-3\eta_{1})\sigma_{1} n^{\frac{1}{2}}) - C_{17}\eta_{1} \leq P(S_{n}^{*} \leq x\sigma_{1} n^{\frac{1}{2}})$$

$$\leq \Phi_{k}((x+\eta_{1})\sigma_{1} n^{\frac{1}{2}}, \cdots, (x+\eta_{1})\sigma_{1} n^{\frac{1}{2}}) + C_{17}\eta_{1}$$

for $n \ge \max(N_1, N_3 \text{ and } N_4)$.

If $\{x_n\}$ is a sequence of independent Bernoulli variables defined by $P(x_n = \pm 1) = \frac{1}{2}$ and f(x) = x then it is well known that

(5.16)
$$|P(S_n^* \le x\sigma_1 n^{\frac{1}{2}}) - I^*(x)| \le C_{18} n^{-\frac{1}{2}}$$
 where

(5.17)
$$I^*(x) = 2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \int_0^x \exp\left(-\left(\frac{1}{2}\right)t^2\right) dt.$$

We have $\sigma_1 = 1$ in this case. Applying the inequality (5.15) to the Bernoulli variables and using (5.16) we have

(5.18)
$$\Phi_k((x-3\eta_1)\sigma_1 n^{\frac{1}{2}}, \dots, (x-3\eta_1)\sigma_1 n^{\frac{1}{2}}) - C_{18}\eta_1$$

$$\leq I^*(x) \leq \Phi_k((x+\eta_1)\sigma_1 n^{\frac{1}{2}}, \dots, (x+\eta_1)\sigma_1 n^{\frac{1}{2}}) + C_{18}\eta_1.$$

Replacing x by $x+4\eta$ and $x-4\eta$ and using the fact that $|I^*(x)-I^*(x\pm 4\eta)| \le C_{19}\eta_1$ we get from (5.15) and (5.18) the following

THEOREM 5.1. There exist constants C_{20} and N_5 such that for $n \ge N_5$

$$\sup_{x} |P(S_n^* \le x\sigma_1 n^{\frac{1}{2}}) - I^*(x)| \le C_{20} (\log n)^{\varepsilon_1 (1 + \delta/2)} n^{-\varepsilon_2/2}$$

where $\varepsilon_1 = 1/(3+\delta)$, $\varepsilon_2 = \varepsilon_1 \delta/4$ and $I^*(x)$ is defined at (5.17).

6. The law of the iterated logarithm.

THEOREM 6.1.

$$P\{\limsup \{(S_n)/(2\sigma_1^2 n \log \log n)^{\frac{1}{2}}\}=1\}=1.$$

PROOF. Write $\chi(n) = (2\sigma_1^2 n \log \log n)^{\frac{1}{2}}$.

From Theorem 3.1 we get for every b

$$|P(S_n \le b\chi(n)) - \Phi(b(2\log\log n)^{\frac{1}{2}})| \le C_{21} \max(n^{-\delta/8}, n^{-1/12}).$$

Using the asymptotic relation for $1 - \Phi(x)$ we get from the above inequality

(6.1)
$$(\log n)^{-(1+\theta)b^2} < P(S_n > b\chi(n)) < (\log n)^{-b^2}$$

for any positive constants θ and b.

Corresponding to every $\tau < 1$ and integer k we can find an n_k such that $n_k \to \infty$ as $k \to \infty$ and $n_{k-1} < \tau^k \le n_k$, $k = 1, 2, \cdots$. We assume that $n_0 = 0$. Then

(6.2)
$$n_k \sim \tau^k \quad \text{and} \quad n_k - n_{k-1} \sim n_k (\tau - 1) / \tau.$$

We have from Theorem 5.1 for any $\xi > 0$

$$P(S_{n_k}^* > (1+\xi)\chi(n)) \leq 1 - I^*((1+\xi)(2\log\log n_k)^{\frac{1}{2}}) + C_{20}(\log n_k)^{\varepsilon_1(1+\delta/2)}n_k^{-\varepsilon_2/2}.$$

For k large, say, $\geq K$, the right-hand side

$$\leq C_{22} (2 \log \log n_k)^{-\frac{1}{2}} (\log n_k)^{-(1+\xi)^2} + C_{20} (\log n_k)^{\epsilon_1 (1+\delta/2)} n_k^{-\epsilon_2/2}$$

$$\leq C_{23} k^{-(1+\xi)^2} + C_{24} k^{\epsilon_1 (1+\delta/2)} \tau^{-k\epsilon_2/2}$$

so that

$$(6.3) \qquad \sum_{k=K}^{\infty} P(S_{n_k}^* > (1+\xi)\chi(n_k)) < \infty.$$

Let ε be an arbitrary positive number. Consider

$$P(S_n > (1+\varepsilon)\chi(n) \text{ i.o.}) \le P\{\max_{n_{k-1} \le n_k} S_n > (1+\varepsilon)\chi(n_{k-1}) \text{ i.o.}\}$$

$$\le P\{\max_{1 \le n \le n_k} S_n > (1+\varepsilon)\chi(n_{k-1}) \text{ i.o.}\}$$

By (6.2) $\{\chi(n_k)\}/\{\chi(n_{k-1})\} \le (2\tau - 1)^{\frac{1}{2}}$ for large k. Let τ be chosen such that $(1+\varepsilon)(2\tau - 1)^{-\frac{1}{2}} > 1+\xi$. Then

$$(6.4) P(S_n > (1+\varepsilon)\chi(n) \text{ i.o.}) \leq P(S_{n_k}^* > (1+\xi)\chi(n_k) \text{ i.o.}).$$

By the Borel-Cantelli lemma we get from (6.3) and (6.4)

(6.5)
$$P(S_n > (1+\varepsilon)\chi(n) \text{ i.o.}) = 0$$

for any $\varepsilon > 0$.

Proof of the theorem will be complete if we show that $P(S_n > (1 - \varepsilon)\chi(n) \text{ i.o.}) = 1$ for any $\varepsilon > 0$.

Let us denote $\psi(n_k) = [2\sigma_1^2(n_k - n_{k-1})\log\log(n_k - n_{k-1})]^{\frac{1}{2}}$. Set $m_k = [n_{k-1} + \tau^{2\log k}]$. Consider for any positive $\xi < 1$

$$P(W_k) = P(S_{n_k} - S_{m_k} > (1 - \xi)\psi(n_k))$$

$$\geq P(\{S_{n_k} > (1 - (\frac{1}{2})\xi)\psi(n_k)\} \cap \{S_{m_k} > (\frac{1}{2})\xi\psi(n_k)\})$$

$$\geq P(S_{n_k} > (1 - (\frac{1}{2})\xi)\psi(n_k)) - P(S_{m_k} > (\frac{1}{2})\xi\psi(n_k)).$$

Now $\{\psi(n_k)\}/\{\chi(m_k)\} \to (\tau-1)^{\frac{1}{2}}$ and $\{\psi(n_k)\}/\{\chi(n_k)\} \to ((\tau-1)/\tau)^{\frac{1}{2}} < 1$. Using (6.1) we then have from (6.6) for any positive constant θ

$$P(W_k) \ge (\log n_k)^{-(1+\theta)(1-(\frac{1}{2})\xi)^2} - (\log n_{k-1})^{-\xi^2(\tau-1)/5}$$

$$\ge C_{25} \left\{ k^{-(1+\theta)(1-(\frac{1}{2})\xi)^2} - k^{-\xi^2(\tau-1)/5} \right\}$$

$$\ge (\frac{1}{2})C_{25} k^{-(1+\theta)(1-(\frac{1}{2})\xi)^2}$$

for sufficiently large k and τ . The constant C_{25} in the above inequality is independent of k. If we choose θ sufficiently small so that $(1+\theta)(1-(\frac{1}{2})\xi)^2 < 1$ we obtain

$$\sum_{k=K}^{\infty} P(W_k) = \infty.$$

By Corollary 2.1

$$|P(W_k | W_{k-1}, \dots, W_1) - P(W_k)| \le 2\gamma \rho^{\tau 2 \log k}$$

Since $\sum_{k=1}^{\infty} \rho^{\tau^{2 \log k}}$ converges, we get from (6.7) $\sum_{k=K}^{\infty} P(W_k \mid W_{k-1}, \dots, W_1) = \infty$. Then by Corollary 2 page 324 [3] we have

(6.8.)
$$P(W_{\nu} \text{ i.o.}) = 1$$

for any positive $\xi < 1$. Now as $k \to \infty$

$$(1-\xi)\psi(n_k)-2\chi(m_k)\sim\{(1-\xi)(\tau-1)^{\frac{1}{2}}\tau^{-\frac{1}{2}}-2\tau^{-\frac{1}{2}}\}\chi(n_k).$$

If ε is an arbitrary fixed positive constant, we can choose positive numbers ξ and τ so that $(1-\xi)(\tau-1)^{\frac{1}{2}}\tau^{-\frac{1}{2}}-2\tau^{-\frac{1}{2}}>1-\varepsilon$. Then

$$\begin{split} P(S_{n_k} &> (1 - \varepsilon) \chi(n_k) \text{ i.o.}) \\ &\geq P(S_{n_k} > (1 - \xi) \psi(n_k) - 2 \chi(m_k) \text{ i.o.}) \\ &\geq P(S_{n_k} - S_{m_k} > (1 - \xi) \psi(n_k) \text{ i.o.}) \end{split}$$

.

because from (6.5) $|S_n| \le 2\chi(n)$ for $n \ge N_5(\omega)$ and all $\omega \in \Omega$ except for a set of probability measure zero. It now follows from (6.8) that

(6.9)
$$P(S_{n_k} > (1 - \varepsilon)\chi(n_k) \text{ i.o.}) = 1.$$

The assertion is an immediate consequence of (6.9).

NOTE. By standard arguments we relax the assumption (2.2) that the initial distribution is the stationary absolute probability distribution.

Acknowledgment. We thank the referee for his comments which led to an improvement of the paper.

REFERENCES

- [1] BILLINGSLEY, P. (1956). The invariance principle for dependent random variables. *Trans. Amer. Math. Soc.* 83 250–268.
- [2] CHUNG, K. L. (1947). On the maximum partial sum of sequences of independent random variables. Proc. Nat. Acad. Sci. USA 33 132-136.
- [3] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [4] Esseen, C. G. (1945). Fourier analysis of distribution functions. Acta. Math. 77 1-125.
- [5] PARZEN, E. (1960). Modern Probability Theory and its Applications. Wiley, New York.
- [6] Petrov, V. V. (1968). On the law of the iterated logarithm without assumptions about the existence of moments. *Proc. Nat. Acad. Sci. USA* **59** 1068–1072.