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1. Introduction. The purpose of this paper is to prove the law of the iterated
logarithm for a sequence {f(x,)}, where f'is a real-valued function defined on the
state space of a discrete Markov Process {x,} satisfying Doeblin’s hypothesis [3].

Most of the known results concerning the law of the iterated logarithm are
obtained for a sequence of independent random variables and the proofs mainly
depend on (i) the rate of convergence in the central limit theorem and (ii) certain
inequalities due to Kolmogorov/Lévy [5]. In Section 3 we obtain the rate of con-
vergence of n'%'z;;l f(x;) to the normal distribution. In Section 5 we obtain
the rate of convergence of the maximum of the partial sums of the random variables
f(x;) to the positive normal distribution and use this rate in the place of Kol-
mogorov/Lévy inequalities.

2. Preliminary assumptions and lemmas. Let X be a space of points ¢ and let
F x be a Borel field of subsets of X. Let {x,} be a Markov process with state space X
and stationary transition probabilities:

2.1) P, A) = P(x,1€4 %, = §).

That is, {x,} is a sequence of measurable functions from some probability space

(Q, #, P) to X such that (2.1) holds where the transition function p(¢, A) is a -

measurable function of ¢ for fixed 4 eF and is a probability measure on &y for
fixed £. The initial distribution = is defined by n(4) = P{x, €A} and the n-step
transition probabilities are given by P® (¢, A) = P {x,,,€A|x, = ¢}. Through-
out the following discussion Doeblin’s condition will be assumed. In fact, we shall
assume the hypothesis (Dg):

(a) Doeblin’s condition is satisfied.

(b) There is only a single ergodic set and this contains no, cyclically moving
subsets.

It is known that if (D) holds then there exist positive constants y and p, p < 1,
and a unique stationary absolute distribution p such that |p®(¢, A)—p(4)| < yp"
for all e X and Ae Fx and n = 1. Throughout the following discussion we shall
make the assumption:

(2.2) T =p.

Let C,, C,, - - - be absolute constants. We shall now obtain two lemmas which will
be used in the later analysis. Let & ,, denote the o-field generated by the random
variables (1v’s) x,, ***, X,
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946 R. P. PAKSHIRAJAN AND M. SREEHARI
LEMMA 2.1. If f is measurable with respect to | &, and g is a bounded function
measurable with respect 10 . nF o, |g| < M, then|E{g|f}—E{g}| < 2Myp*.
ProOF. Since E{g|f} = E{E(g|xy, ", x,) |/}
|E{g| f}—E{g}| S E{|E{g|x1, ", x} —E{g}|| f}.
The result follows from Lemma 7.2 page 224 of [3].
COROLLARY 2.1. If A€ &, and Be,,,F , then |P(B| A)—P(B)| < 2yp".

LEMMA 2.2. If Ae & ,, and g is a function measurable with respect to . . ., and
if x is a possible value of the tv g then |P(A|g = x)— P(A)| < 2yp*.

ProoOF. Define for each integer m the events

Ho(x) = {[x2"]2"" < g < ([x2"]+1)2™™}

where [a] is the largest integer less than or equal to a. Notice that P( H,(x)) >0
for all m. It is known (page 335 of [5], that P(4|g = x) = lim,,_,, P(A4 | H(x)).
Then we have by Lemma 7.1 page 222 [3]

|P(A] g = x)= P(A)] = lim, ., |P(A | H,,(x)) ~ P(4)|
(2.3) = 1im,, oo |E(u X1,) — EOE(ta, ) £ ()
= lim,, o, 29 *p"*EV () E "t )E ™ (1a,)
for r,s > 1, (1/r)+(1/s) = 1.
Take s = 1+(1/m)E(xy,,). Then s(m, x) > 1 and E'(xy4, )E™'(xy,) — 1 as m — oo.
We therefore have from (2.3)
|P(4| g = x)—P(4)] < 2pp".

3. Convergence of partial sums. Let f be a real-valued function measurable with
respect to Fy such that E{f(x,)} =0 and E {f*(x,)} = ¢%. In view of (2.2) we
have for every k, E { f%(x,)} = o?. Without loss of generality ¢ may be taken to be
1 which we do. Then

lim, ., E{(n Y f(x/))*} = 0,2

exists. If 0,2 > 0 and if

(3.1 E{|/(x)]***} < 0
for some ¢ > 0 then it has been proved (Theorem 7.5 page 228 [3]) that
(3.2) lim, ., P(S, < xo, n¥) = 2n) ¥ [* , e~ D dt = d(x)

where S,=Y"_,f(x;). Throughout this paper we shall assume that ¢,”> >0 and
that (3.1) holds for some 6 < 1.

The purpose of this section is to obtain an estimate of the difference between the
distribution of (S,)/o,n* and the standard normal distribution.
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Let o, =[#*] and B, = [n*]. Then p,= [n(o,+pB,) ']~ B,. For notational
convenience we shall ignore the suffix » and write o, = «, 5, = f and p,, = p. Define

ym=2§"é?nf’-‘°{)+(5’+*b§+1f(xj) m=1,2,-,pu
(3.3) v = Z?La(:rnl}—)1)(a+ﬂ)+a+1f(xj) m=1,2,,p
Ymi1 = Di=ua+py+ 1S (X)) Write

(3.4) T,=Ym=1ym and V,=3010y,"

Under the assumption (2.2) y,’s are identically distributed. Let F(x) denote the
distribution function of y,.

THEOREM 3.1. There exists N, such that for n = N,

sup, |P(S, < x0, n*)—®(x)| £ C, max {n““’/s, n~112y
PROOF. Let # = n(n) be an arbitrary positive number.

P(S, < xa, n*) = P(T,+V, < xo, n*, |V,| < no, n?)

+P(T,+V, < xoyn*, |V,| > noy n?)

(3.5) < P(T, < (x+n)ay n¥)+ P(|V,| > no; nt).
Also
(3.6) P(S, < x0,n%) 2 P(T, < (x—n)ay )= P(V,| > o, n*).

Now consider
P(T,Su)= [, P(T,—y, S u—x;|y; = x,)dF(x;)
= [, P(T,—y; S u—x,)dF(x,)+0,(n), say.

By Corollary 2.1, |0,(n)| < 2yp”. Also P(T,—y, Su—x;)= [, P(T,~y,—y, <
u—x; —x,)dF(x,)+0,%(n) so that

P(T, S u)=[2 {[20 P(T,—y,—ys S tt—X; —X;) dF(x,)} dF(x,)+0,(n) +02(n)
where |0,(n)| £ 2, |0,*(n)| dF(x;) < 2yp”.
Proceeding as above we get
(3.7 P(T,Su)=PZ+ +Z,Su)+y4210,n)

where Z,, ---, Z, are independent random variables each distributed like y, and
|0,(m)]| < 2vp%, 1 Sj<Spu—1. Also E(Z;a7%,"")*—>1 as n— 0. It therefore
follows that

lim, ., P(Z;+" " +Z, < xo, n*) = O(x).

In fact using Esseen’s estimate [4] we get
(3.8) sup, |P(Z, +++2, < xo, nH) = @(x)| £ C,u %% = C,n %"

where C, does not depend on #.
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From relations (3.5) to (3.8) we have
(3.9) D(x—n)—Coyn B Y1 0,(n)—P(|V,| > no n*)
< P(S, < xa, n*)
SD(x+n)+Con 2B YEZ10,(n)+ P(|V,| > no, n?).

But |®(x)— ®(x £ )| < 7. Following the discussion to prove (7.16), page 229 [3] we
obtain E(V,?) = O(n*). Applying Tchebyshev’s inequality we get

P(|V,| > no,n*) < Cs3n~?n7*
where C; depends on o, only.

We have then from (3.9)

1

sup, |P(S, < xo, n¥)—®(x)| S n+Con™ "8 +2yup? +Cyn~2n"*.
Taking # = max {n~%8, n~1/12} we get for n large, say, = N,
sup, | P(S, < xa, n*) = O(x)| < Cyn.
4. An approximation theorem for a multidimensional distribution. Set
e, = 1/(3+9), &, =¢,6/4, n,(n)=n"""(logn)' "2 and k(n) = [n**(logn)"'].

Define y; = [ip/k],i=1,2,--, k.

In this section we approximate the distribution function of (7T,,, "+, T,,) with
an appropriate k-dimensional normal distribution function. We follow the method
of Chung [2].

Consider independent rv’s &, -+, & where &; is distributed like Tu,—Tu,«_.,
1<k (T, =0).

Denote {; = -, ¢;. Then
P(Tl.ll é .X], T, T#k éxk)
Zj‘i)wP(T,“ <x, -, T

- < min(x— g, X — )| Ty = T, = ) dP(E S wy)

Bk -1

= [, P(T,, S xy, ", T, S min(x,_ 1, x,—u)) dP(& < up) +A(n)
where |A,(n)| < 2yp”? by Lemma 2.2.
Also
P(T,, £xy, -+, T, _, Smin(x,_, Xy—u))
=2 (T, = x5 T,
S min (X, Xgo g = U g5 Xg— U= Uy 1)| Ty =Ty = 1)

“dP(&_y S tyy)
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so that
P(T, = x5 Ty S X0)
= [P |20 P(T,,, £ Xy 0y Ty S N (Xpe g5 X g — Upem 15 X~ U= Ug— 1))
“dP(& -y £ - 1) dP(& S u)+A(n)+Ax(n)
where |A(n)] < 2yp”.
Proceeding as above we arrive at
P(T,, =xy, 5 T, £ X0)
4.1) =2, 2, P(& Smin(xy, X,—uy, 7, Xp— 9 5=2Uj))
“dP(E, Sup) AP S u)+ 2521 A,n)
=P =x, 7,0 = xk)+zk IAJ(")- h
Denote Fy(xy, **, x)) = P({; = x, -, {; x),12jsk.

Let @ ; be the j dimensional normal distribution function withthesamefirstand second
order moments as F;. Let ®;* be the one dimensional normal dlstrlbutlon function
with mean zero and variance = E(¢; 2). Denote Fj(xy, -, x;)—®@i(xy, -+, X)) =
Rj(xy, "+, x;) and P({; = u)—@*(u) = Rf*(u).

In view of (3.7) and (3.8) there exists a constant C5 such that

4.2) sup|Ry| < Csk??n7%/® and sup|R;*| < Csk*?n™?® 1<j<k
for n large.
Consider
Fj+1(x19 Tt xj+1)
= |2 Fi(xq, 0y Xj—q, Min(X;, Xj44 —u))dP({; 1 S u)

= [©, {®;(xy, *, xj_ 1, min(Xj, X4 —u))
+Rj(x1"“’xj—l,min(xjaxj+1_u))}dp(€j+léu)
=2, ®(xq, ", xjo g, Min(X;, X4 —u))dO}, 1 (1)
+ 2 @; AR} + [, R;dP(&;. 1 S u).
That is
(4.3) Ripi(xy, 0, Xj4q) = [2 @;dRT, 1+ [2 RjAP(j1 1 S W)
Now
|20 R;dP(£;41 < u)| < sup|Ry|.
(20 @(xy, Xy, min(x;, X4y — 1)) AR}y 1 (1)
= jxjﬂ_qu)j(xla T xj)de+ 1(w)
e imx, @i (X150 Xjo g, X —u) AR}, 1 (u)
=@;(xg, v XPRF (X1 = X)) = Dy(xq, - s X)RT4 (X401 —X))

J+1(“)dq) (Xgy ey Xjp1—u)

—_ 0
Xj17Xj
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on integration by parts. Hence |{*,®;dR}:,|<sup|R}:,|. From (4.3) we
therefore have

sup [R; 4| < sup|R;|+sup [R}:4|.

Using the relations at (4.2) we get by induction sup |R,| £ Cs k' *%/>~%/8 for n large.
From (4.1) and the above result we have

IP(Tu, Sxg, 00 Ty S x)—Oplxy, o0, xk)l < CskM 92008 4 2ykp?
< CokiHoizgmos,
We thus proved
LEMMA 4.1. There exist constants Cg and N, such that for all n = N,
Supy,, lgiglek(xl’ oy X)) = Oylxg, 0 xk)l = Coy,
where 1, is defined at the beginning of this section.

5. Rate eof convergence of max,.,.,S,. Set §,*=max,.,.,S, and S**=
max; <<, Se+p);- 1he limit distribution of §,* has been obtained by

Billingsley [1].
We shall write a+ f = a,. Observe that

(5.1) P(S,* £ xa,n?) < P(S,** < xo,n?).

Let for each r, a,(j(r)—1) < r £ &, j(r). Define D, = {S;}".| < x0,n?, S, > xo, nt}
so that

(5.2) Y, P(D,) = P(S,* > xa, n?).
Write D, = D,VUD,® where D, = {D,n{|S,,;»—S,| <1, 0,n%}} and D,¥ =
{D:0{|Sasjir =S| > ny oy n?}}.
(5.3) Yr=1 P(D,Y) £ P(S,** > (x—ny)o  n?).
In order to analyze P(D,'®) we set 8, = [n**/®**] Then if o, j(r)—r > 5,
P(D,?) £ P(D,{|S4yjtry— Sr+s,| > By 04 n¥})
+P(|Sr+a,._sr| >3y o n?)
= P(Dr){P(ISalj(r)_Sr+6nl > (g 04 n¥)+2yp°}
+ C7 6n(1 "‘5/2),71 -(2 +{5)n—(1 +4/2)
by Corollary 2.1 and Tchebyshev’s inequality. Therefore
P(Dr(z)) é P(Dr){CB al(l +6/2)'71—(2 +¢5)n—(1 +6/2)+2,yp6,.}
+ C7 5n(1 +¢5/2)’71 -2 +6)n—(l +¢5/2).
Z:l= L P(Dr(z)) é Cg N -2 +6)n—(2 +4)/8 +2,yp6n+ C7 6n(l 4'(5/2)'71 -(2 +6)n—(5/2.

If o j(r)—r < §, also this inequality holds.
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We have from (5.2), (5.3) and the above inequality
P(S,* > xa,n*) < P(S,** > (x—n,)o, n?)
+ C9’11 —(2+6)n—(2+6)/8 +2,yp6n+ C7 5n(1+6/2)’11—(2+6)n—6/2.
This together with (5.1) gives
LeMMA 5.1. For n, as defined in Section 4 there exist constants C,, and N, such
that forn= N,
P(S,** < (x—n)oyn})=Ciomy S P(S," < x0yn¥) S P(S,** < x0yn).
Denote U; = y,"'+ - +y," and the event {lUjl Snontt =M, Then
P(S,** £ xo, n*) = P({S,** < xo, n*}n{N4-, M;})
PSS xo nthn N M)
(5.4) SP(max, <, <, T, £ (x+n,)0o,n*)+P(U%=, M;")
< P(max,<,<, T, < (x+ny)o n?)+Cyyny, " *n7 4
Similarly
(5.5)  P(S,** < xo,n¥) ZP(max, g g, Ty < (x—ny)oy n¥) = Cyymy ~2n 74,
From (5.4), (5.5) and Lemma 5.1 we have the following

LEMMA 5.2. For n, as defined in Section 4 there exist constants Cy, and N, such
that for n = N,

P(max1§r§u T, < (x—2n,)o, ”*)_Clz N1
< P(S,* £ xo,n?)
< P(max, .,<, T, < (x+1,)0; n)+Cy,n;.

Set T,* = max, <,<, T, and T,** = max, c;<, T,, where y;’s are as defined in
Section 4.

LEMMA 5.3. We can find constants C,¢ and N, such that for n = N,
P(Tu** S (x—ny)o, "*)—Cls N = P(Tu* s X0, nt) < P(Tu** =< X0,y n*).
ProoF. It is easily seen that
(5.6) P(T* £ xo,n*) S P(T}* < xo,n?),
Define the events
E,={TX, < xo,n% T,> xo,n*}.
Then
(CN)) *_P(E)=P(T* > xo,n?).
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Suppose p;y < F = Wjpy+1- Then for any positive number 1, = n,(n)

(5.8) E.={E,~{|T,,.,..— T.| > nio,n}U{E,~{|T,,.,.,— .| S n o, n*}}
=EWYUE,?, say.
(5.9) Yo P(E®) £ P(T,** > (x—1n,)0, n?).

By Corollary 2.1

(5.10) P(E,") < P(E,){P(T,
It is easily shown as in Theorem 3.1 that

(5.11)  P(T, —T|>n,0,n*) SP(Z,+ -+ +Z,| > 1,0y n¥)+4myp’,

where m = p; . —r.

—T,| > ny0,n)+2yp"}.

J(ry+1

J(ry+1

Let B = B(n) = [n*]. If m £ B then by Tchebyshev’s ineq‘uality and Lemma 7.4, page
225, [3] we have

(5.12) P(|Zy++ +Z,| > ny0,n%) S Cyany~GHIn~C+I8R,
If m > B using Lemma 7.4 and the Esseen’s estimate we get
(5.13)  |P(1Zy+ ++ +Z,| > ny oy nh) =2 " F [Pexp(—($)2) dt| < C o B2
where C,, depends only on ¢,; and v = n, n¥m~*. Since m < p/k, v > n, k*. Now
(5.14) 2t [Pexp(—(3)t)dt < Cysv™te @ < Cp gy Lk “te ~Dmk
=C,sn, Yk i1,
F rom the relations (5.7) to (5.14) we get
P(T,* > xo, n*) < P(T,** > (x—n,)o, n¥)+ Cy61;.

This together with (5.6) gives the result.
From Lemmas 4.1, 5.2 and 5.3 we have with some constant C, ,

(5.15) D ((x—3n,)oynt, -, (x—=3n,)o, n%)—C17111 < P(S,* £ x0, n?)
S O ((x+ny)oynt, o, (x+1,)0, n?)+Cyqmy
for n =2 max (N, N5 and N,).

If {x,} is a sequence of independent Bernoulli variables defined by P(x, = +1) =}
and f(x) = x then it is well known that

(5.16) |P(S,* < x0,n*)—T*(x)| < Cygn* where
(5.17) I*(x) =2*n"% [Sexp(—(3)F*)dt.
We have ¢, =1 in this case. Applying the inequality (5.15) to the Bernoulli
variables and using (5.16) we have
(5.18) @ ((x—3ny)ayn, «--, (x—3ny)o, n*)—Cygm,

S I*(x) S O ((x+n)oy n¥, -+, (x+1,)6, 1)+ Cigny.
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Replacing x by x+44 and x— 47 and using the fact that [I*(x) — I*(x+4n)| < Cyo1;
we get from (5.15) and (5.18) the following

THEOREM 5.1. There exist constants C,o and N s such that for n = N
sup, [P(S,* < x, n¥)—I*(x)| £ C,o(logn) *%/Pn =/
where £, = 1/(3+0), ¢, = &, 6/4 and I*(x) is defined at (5.17).
6. The law of the iterated logarithm.
THEOREM 6.1.
P{limsup {(S,)/(20,*nloglogn)*} =1} = L.
PROOF. Write y(n) = (26,2nloglogn)*.
From Theorem 3.1 we get for every b
|P(S, < by(n))—®(b(2loglog n)*)| < C,; max(n~%%, n=1"'%).
Using the asymptotic relation for 1 —®(x) we get from the above inequality
(6.1 (logn)~ 19 < p(S, > by(n)) < (logn)™"*

for any positive constants 6 and b.
Corresponding to every © < 1 and integer k we can find an #, such that n, — oo as
k—ooand n,_, <t*<m, k=12, . We assume that n, = 0. Then

(6.2) n~1t and n—n_, ~n(r—1)/r.
We have from Theorem 5.1 for any £ > 0
P(SE > (1+8)x(n) £ 1 =I*((1+&)(2loglog n)?) + Cyo(log m)* %/ ¥n, ~22/2

For k large, say, = K, the right-hand side
< C,5(2loglogmy) " *(logny) = 9%+ Cyo(log n)™ ! 320, m /2
é C23 k—(1+§)z+C24 ke'(l+6/2)‘l'_k£2/2
so that
(6.3) Yitx P(Sy, > (1+Ox(m)) < 0.
Let ¢ be an arbitrary positive number. Consider
P(S, > (1 +&)y(n)i.0.) £ P{max,, _,<ngm Sn > (1+&)x(n—y)i.0.}
< P{max, ¢, <p, S, > (1+&)x(ne—1)i.0.}

By (6.2) {x(m)}/{x(m-)} £ (@t—1)* for large k. Let t be chosen such that
(14+e)(2t—1)"%* > 1+¢. Then

(6.4) P(S, > (1+8)x(n)i.0.) < P(SE > (1+&)x(n)i.0.).
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By the Borel-Cantelli lemma we get from (6.3) and (6.4)
(6.5) P(S, > (1 +e)y(n)i.o.)=0
for any ¢ > 0.

Proof of the theorem will be complete if we show that P(S, > (1 —¢)x(n)i.0.) =1
for any ¢ > 0.

Let us denote y(n,) = [20*(m— 1) loglog (m—n,_)I*. Set my, = [n,_; +7*'°%4],
Consider for any positive ¢ < 1

P(W,) = P(Sp,— S, > (1= (1)
(6.6) 2 P({S, > (1= (DEW @)} A (S, > DY ®)))
2 P(S,, > (1= (DEOWn)) — P(Sy, > BEW(ny).
Now {¥(n)}/{x(m)} — (e D* and {(n)}/{x(n)} » (== 1)j)* < 1. Using (6.1)

we then have from (6.6) for any positive constant 0

- - 2 —E2(7~
P(W,) 2 (logny)™ 100~ D —(log, )77 1/
> Cys{k~HOU - _ =82-1)/5)

—(1+0)(1—(3)&)?
3(%)C25k ( (1 =($)¥)

for sufficiently large k and 7. The constant C, in the above inequality is indepen-
dent of k. If we choose 6 sufficiently small so that (146)(1—(3)é)?> < 1 we obtain

S Y P(W) = .
By Corollary 2.1
'P(VVI‘! VVk—l, Y, Wl)—P(VV;c)Ié 2‘})pt2|°gk,

Since Y52, p** '*#* converges, we get from (6.7) YL x P(W, | Wi—y, -+, Wy) = 0.
Then by Corollary 2 page 324 [3] we have

6.8.) P(W,i.0)=1
for any positive ¢ < 1. Now as k — o0
(L= OW(n) —2x(m) ~ {(1 =) (x— D™= 27 H}y(my).

If ¢ is an arbitrary fixed positive constant, we can choose positive numbers ¢ and
7 50 that (1 =¢)(t—1)¥1"%~27"% > 1 —¢. Then

P(S,, > (1 —=¢)x(n,)io.)
2 P(S,, > (1 =yY(n)—2x(my)i.0.)
2 P(S,,—Sp, > (1= OY(ny)i0.)
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because from (6.5) |S,| < 2x(n) for n = N(w) and all weQ except for a set of
probability measure zero. It now follows from (6.8) that

(6.9) P(S,, > (1-¢)x(n)io) = 1.
The assertion is an immediate consequence of (6.9).

Note. By standard arguments we relax the assumption (2.2) that the initial
distribution is the stationary absolute probability distribution.

Acknowledgment. We thank the referee for his comments which led to an
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