WEAK CONVERGENCE OF PROBABILITY MEASURES ON THE FUNCTION SPACE $C[0, \infty)^1$

By Ward Whitt²

Yale University

1. The space $C[0, \infty)$. Let $C \equiv C[0, \infty)$ be the set of all continuous functions on $[0, \infty)$ with values in a complete separable metric space (E, m). Stone (1961, 1963) has obtained simple criteria for weak convergence of sequences of probability measures on \mathscr{C} , the σ -field generated by the open subsets of C, when C is endowed with the topology of uniform convergence on compacta, cf. [4] page 229. We shall obtain further properties of (C, \mathscr{C}) by defining a metric ρ on C which induces this same topology.

For any two functions x and y in C, let $\rho: C \times C \to R$ be defined as

$$\rho(x, y) = \sum_{j=1}^{\infty} 2^{-j} \rho_j(x, y) / [1 + \rho_j(x, y)],$$

where $\rho_i(x, y) = \sup_{0 \le t \le i} m[x(t), y(t)].$

THEOREM 1. The function space (C, ρ) is a complete separable metric space in which $\lim_{n\to\infty} \rho(x_n, x) = 0$ if and only if $\lim_{n\to\infty} \rho_i(x_n, x) = 0$ for all $j \ge 1$.

COROLLARY 1. The metric topology in (C, ρ) is the topology of uniform convergence on compacta.

Since the proofs of Theorem 1 and Corollary 1 are straightforward, we omit them

Let $\mathcal{M}_p(C)$ be the set of all probability measures on \mathscr{C} . A net of probability measures $\{P_\alpha\}$ in $\mathcal{M}_p(C)$ is said to converge weakly to a probability measure P in $\mathcal{M}_p(C)$ if

$$\lim_{\alpha} \int_{C} \int dP_{\alpha} = \int_{C} \int dP$$

for every bounded continuous real-valued function f on C, and we write $P_{\alpha} \Rightarrow P$. Since (C, ρ) is a complete separable metric space, cf. [5] II. 6,

COROLLARY 2. The space $\mathcal{M}_p(C)$ with the topology of weak convergence is metrizable as a complete separable metric space.

The metric defined by Prohorov (1956) is one such metric, cf. [1] page 237.

We now wish to characterize the σ -field \mathscr{C} . For each $t \ge 0$, let $\pi_t : C \to E$ be the coordinate projection, defined for any $x \in C$ by $\pi_t(x) = x(t)$. Let E be a measurable space with the σ -field generated by the open subsets and let E^k be the k-fold product of E with itself endowed with the product topology and the corresponding σ -field

939

Received May 15, 1969.

¹ This work was supported by Office of Naval Research Contract Nonr-225(53) while the author was visiting Stanford University in the Department of Operations Research during the 1968–1969 academic year.

² The author is now in the Department of Administrative Sciences at Yale University.

generated by the open subsets of E^k . Finally, let $\sigma(\pi_t)$ be the smallest σ -field of subsets of C with respect to which all coordinate projections are measurable.

THEOREM 2. The σ -fields \mathscr{C} and $\sigma(\pi_t)$ coincide.

PROOF. Follow the argument for C[0, 1] of [5] page 212.

COROLLARY 3. If P_1 and P_2 are two probability measures on (C, \mathcal{C}) , then a necessary and sufficient condition for $P_1 = P_2$ is that $P_1 \pi_{t_1, \dots, t_k}^{-1} = P_2 \pi_{t_1, \dots, t_k}^{-1}$ for all k and all $t_1, \dots, t_k \in [0, \infty)$, where $P\pi_{t_1, \dots, t_k}^{-1}$ is a measure on E^k induced by P through the map $\pi_{t_1, \dots, t_k} : C \to E^k$, defined for any $x \in C$ by $\pi_{t_1, \dots, t_k}(x) = [x(t_1), \dots, x(t_k)]$.

PROOF. Follow the argument for C[0, 1] of [5] page 213.

COROLLARY 4. The Wiener measure W exists on (C, \mathcal{C}) with E = R.

PROOF. Use the standard construction on $(C, \sigma(\pi_t))$ given in [3] page 12. It is also possible to use [1] pages 62, 96.

Recall that a subset Π of $\mathcal{M}_p(C)$ is tight if for any positive ε there exists a compact set $K \subset C$ such that $P(K) > 1 - \varepsilon$ for all $P \in \Pi$.

THEOREM 3. If P_n $(n = 1, 2, \dots)$ and P are probability measures on (C, \mathcal{C}) , then $P_n \Rightarrow P$ if and only if:

- (i) the finite-dimensional distributions of P_n converge weakly to those of P, and
- (ii) the sequence $\{P_n\}$ is tight.

PROOF. The argument used for C[0,1] with E=R applies, cf. [1] pages 35, 54, 241.

We now want to relate weak convergence of probability measures on $C[0, \infty)$ to weak convergence of associated probability measures on $C_j \equiv C[0, j]$. Define the metric ρ_j on C_j by setting $\rho_j(x, y) = \sup_{0 \le t \le j} m[x(t), y(t)]$ for any functions x and y in C_j . Let \mathscr{C}_j be the σ -field generated by the open subsets of C_j . Let $r_j: C[0, \infty) \to C[0, j]$ be the simple projection or restriction to [0, j]; that is, for any $x \in C$, let $r_j(x)(t) = x(t)$, $0 \le t \le j$. Since r_j is continuous and thus measurable, we can use r_j to induce measures on (C_j, \mathscr{C}_j) . For each $j \ge 1$ and any probability measure P on \mathscr{C}_j , define \Pr_j^{-1} on \mathscr{C}_j by setting $\Pr_j^{-1}(A) = P(r_j^{-1}(A))$ for each $A \in \mathscr{C}_j$. By the continuous mapping theorem [1] Theorem 5.1, if $P_n \Rightarrow P$, then, for all $j \ge 1$, $P_n r_j^{-1} \Rightarrow \Pr_j^{-1}$. We want to establish an implication in the other direction. For this purpose, let $w_x^j: (0, j] \to [0, \infty)$ be the modulus of continuity of a function x in C_j , defined by $w_x^j(\delta) = \sup_{0 \le s, t \le j, |s-t| \le \delta} m[x(t), x(s)], 0 < \delta \le j$, cf. [1] page 54.

LEMMA 1. A subset A of C has compact closure if and only if

- (i) $\{x(t), x \in A\}$ has compact closure in E for each $t \ge 0$, and
- (ii) for all $j \ge 1$, $\lim_{\delta \to 0} \sup_{r_i(x) \in r_i(A)} w_x^j(\delta) = 0$.

PROOF. This is just one version of the classical Arzelà-Ascoli Theorem, cf. [4] Theorem 7.18.

THEOREM 4. Let $\{P_n\}$ be a sequence of probability measures on $C[0, \infty)$. The sequence $\{P_n\}$ is tight if and only if these two conditions hold:

(i) For each $t \ge 0$ and each positive η , there exists a compact set K in E such that

$$P_n\{x \in C : x(t) \in K_t\} > 1 - \eta, \qquad n \ge 1.$$

(ii) For each $j \ge 1$ and positive ε and η , there exists a δ , with $0 < \delta < 1$, and an integer n_0 such that

$$P_n\{x \in C: w_x^j(\delta) \ge \varepsilon\} \le \eta, \qquad n \ge n_0.$$

PROOF. This proof will follow [1] Theorem 8.2. Suppose $\{P_n\}$ is tight. Given j, ε , and η , choose a compact set K in $C[0, \infty)$ such that $P_n(K) > 1 - \eta$ for all n. For each $t \ge 0$, let the compact set K_t in E be $\pi_t(K)$. Since $\{x \in K\} \subseteq \{x : x(t) \in \pi_t(K)\}$, condition (i) holds. For small enough δ , $K \subset \{x : w_x^j(\delta) \ge \varepsilon\}$. Hence, condition (ii) holds. This proves the necessity of (i) and (ii).

Since each individual probability measure P is tight, cf. [1] Theorem 1.4, it suffices to consider $n_0=1$ in (ii) when proving sufficiency. Assume that $\{P_n\}$ satisfies (i) and (ii) with $n_0=1$. Let the sequence $\{t_i\}$ be an enumeration of a countable dense subset of $[0,\infty)$. It is easy to show, in the presence of (ii), that $\{x(t), x \in A\}$ has compact closure in E for all $t \ge 0$ if and only if it has compact closure for all t in $\{t_i\}$. Given $\eta > 0$, choose compact sets K_{t_i} in E so that, if $B_i = \{x \in C : x(t_i) \in K_{t_i}\}$ then $P_n(B_i) \ge 1 - \eta 2^{-(i+2)}$ for all $n \ge 1$. Then choose δ_{k_j} so that, if $B_{k_j} = \{x \in C : w_x^j(\delta_{k_j}) < 1/k\}$, then $P_n(B_{k_j}) \ge 1 - \eta 2^{-(j+k+2)}$ for all n. If K is the closure of $\bigcap_{i=1}^{\infty} B_i \cap \bigcap_{k=1}^{\infty} \bigcap_{j=1}^{\infty} B_{k_j}$, then $P_n(K) \ge 1 - \eta$ for all n. By Lemma 1, K is compact. Hence $\{P_n\}$ is tight.

COROLLARY 5. The sequence $\{P_n\}$ is tight if and only if the sequence $\{P_nr_j^{-1}\}$ is tight for each $j \ge 1$.

PROOF. Conditions (i) and (ii) of Theorem 4 can be expressed in terms of $\{P_n r_j^{-1}\}$. Combining Theorem 3 and Corollary 5 gives

THEOREM 5. If $P_n(n=1, 2, \cdots)$ and P are probability measures on (C, \mathcal{C}) , then $P_n \Rightarrow P$ if and only if $P_n r_j^{-1} \Rightarrow \Pr_j^{-1}$ for all $j \ge 1$.

Finally, we obtain the same conditions given by Stone (1963):

THEOREM 6. If $P_n(n = 1, 2, \dots)$ and P are probability measures on (C, \mathcal{C}) , then $P_n \Rightarrow P$ if and only if

- (i) the finite-dimensional distributions of P_n converge weakly to the finite-dimensional distributions of P as $n \to \infty$; and
 - (ii) for every $\varepsilon > 0$ and $j \ge 1$,

$$\lim_{n\to\infty,\ \delta\to 0} P_n\{x\in C: w_x^j(\delta) > \varepsilon\} = 0.$$

PROOF. It is only necessary to observe that condition (i) above implies condition (i) of Theorem 4. Since the finite-dimensional distributions converge weakly, they

are tight in E^k . Hence, for each t and η , the appropriate compact set K_t can be constructed.

2. Product spaces. We shall now change our notation slightly in order to treat product spaces. In particular, let $(C[0, \infty), E)$ represent $C[0, \infty)$ with range E and let $(C[0, \infty), E)^k$ be the k-fold product of $(C[0, \infty), E)$ with itself. On all our product spaces $S_1 \times \cdots \times S_k = S$ generate the product topology with the metric d, defined for any $x = (x_1, \dots, x_k)$ and $y = (y_1, \dots, y_k)$ in S by $d(x, y) = \max_{1 \le i \le k} d_i(x_i, y_i)$, where d_i is the metric on S_i . Let ρ_1 be the metric so generated on $(C[0, \infty), E)^k$ and let ρ_2 be the metric so generated on $(C[0, \infty), E^k)$.

THEOREM 7. The sets $(C[0, \infty), E)^k$ and $(C[0, \infty), E^k)$ have the same elements and the metrics ρ_1 and ρ_2 are uniformly equivalent.

PROOF. Let A^T denote the set of all functions with domain T and range A. Then $(A \times B)^T = A^T \times B^T$ is an elementary identity. Since $x \in (A \times B)^T$ is continuous if and only if the projections $\pi_A(x) \in A^T$ and $\pi_B(x) \in B^T$ are both continuous, cf. [4] page 91, $(C[0, \infty), E)^k = (C, [0, \infty), E^k)$ as sets of functions.

The uniform equivalence of ρ_1 and ρ_2 is a straightforward but tedious verification. Hence, we shall only exhibit the proof in one direction. Suppose $\rho_1(x, y) < \varepsilon$. Find the integer J such that $2^{-(J+1)} < \varepsilon \le 2^{-J}$. Since $\rho_1(x, y) = \max_{1 \le i \le k} \rho(x_i, y_i)$, for all i,

$$\rho(x_i, y_i) = \sum_{j=1}^{\infty} 2^{-j} \rho_j(x_i, y_i) / [1 + \rho_j(x_i, y_i)] < \varepsilon,$$

where $\rho_j(x_i, y_i) = \sup_{0 \le t \le j} m[x_i(t), y_i(t)]$. Since $\sum_{j=J+3}^{\infty} 2^{-j} < \varepsilon/2$,

$$\sum_{j=1}^{J+2} 2^{-j} \rho_j(x_i, y_i) / [1 + \rho_j(x_i, y_i)] < \varepsilon/2$$

and $\rho_i(x_i, y_i)/[1 + \rho_i(x_i, y_i)] < 2^{j-1}\varepsilon$ for $j = 1, \dots, J+2$. Since $2^{j-1}\varepsilon < 1$ for $j \le J$,

$$\rho_j(x_i, y_i) = \sup_{0 \le t \le j} m[x_i(t), y_i(t)] < 2^{j-1} \varepsilon / [1 - 2^{j-1} \varepsilon]$$

for all i and $j = 1, \dots, J$. Since

$$\rho_2(x, y) = \sum_{i=1}^{\infty} 2^{-i} \rho_i(x, y) / [1 + \rho_i(x, y)],$$

where $\rho_j(x, y) = \sup_{0 \le t \le j} \{ \max_{1 \le i \le k} m[x_i(t), y_i(t)] \} < 2^{j-1} \varepsilon / [1 - 2^{j-1} \varepsilon]$ for $j = 1, \dots, J$,

$$\rho_2(x, y) < \sum_{j=1}^{J} 2^{-j} \frac{(2^{j-1} \varepsilon / [1 - 2^{j-1} \varepsilon])}{1 + (2^{j-1} \varepsilon / [1 - 2^{j-1} \varepsilon])} + \sum_{j=J+1}^{\infty} 2^{-j} < J \varepsilon / 2 + 2 \varepsilon.$$

Recall that J is a function of ε such that $J\varepsilon \to 0$ as $\varepsilon \to 0$.

Henceforth let $C^k \equiv C^k[0, \infty)$ with the metric ρ represent both $(C[0, \infty), E)^k$ with ρ_1 and $(C[0, \infty), E^k)$ with ρ_2 . Let $\rho_i^j : C \times C \to R$ be defined for any $x = (x_1, \dots, x_k)$ and $y = (y_1, \dots, y_k)$ in C^k by $\rho_i^j(x, y) = \sup_{0 \le t \le j} m[x_i(t), y_i(t)]$.

COROLLARY 6. The product space (C^k, ρ) is a complete separable metric space in which $\lim_{n\to\infty} \rho(x_n, x) = 0$ if and only if $\lim_{n\to\infty} \rho_i^j(x_n, x) = 0$ for each $i(1 \le i \le k)$ and $j(j \ge 1)$.

We now characterize the tightness of sets of probability measures on $C^k[0, \infty)$ in terms of the tightness of associated sets of probability measures on C[0, j], $j \ge 1$. Let $\pi_i : C^k[0, \infty) \to C[0, \infty)$ and $\pi_i : C^k[0, j] \to C[0, j]$ be defined for any $x = (x_1, \dots, x_k)$ in $C^k[0, \infty)$ or $C^k[0, j]$ by $\pi_i(x) = x_i$.

THEOREM 8. The sequence of probability measures $\{P_n\}$ on $C^k[0, \infty)$ is tight if and only if the sequences of probability measures $\{P_n\pi_i^{-1}r_j^{-1}\} \equiv \{P_nr_j^{-1}\pi_i^{-1}\}$ are tight for each $i(1 \le i \le k)$ and $j(j \ge 1)$.

PROOF. A set of probability measures on a finite (or countable) product space (complete separable metric space) is tight if and only if each of the families of marginal measures is tight, cf. [1] page 41. It only remains to apply Corollary 5.

COROLLARY 7. Let $P_n(n \ge 1)$ and P be probability measures on $C^k[0, \infty)$. Then $P_n \Rightarrow P$ if and only if

- (i) the finite-dimensional distributions of P_n converge weakly to the finite-dimensional distributions of P, and
- (ii) the families of measures $\{P_n r_j^{-1} \pi_i^{-1}\}$ on C[0, j] are tight for each $i(1 \le i \le k)$ and $j(j \ge 1)$.

Proof. Apply Theorems 3 and 8.

3. Conclusion. It is now clear that many weak convergence theorems in C[0, 1] can be extended to $C[0, \infty)$ or even $C^k[0, \infty)$ with very little extra work. For example, Donsker's theorem, [1] Theorem 10.1, holds in $C^k[0, \infty)$, cf. [2]. The space $C[0, \infty)$ is also more convenient than C[0, 1] for treating first passage times. Let $T_a: C[0, \infty) \to R \cup \{+\infty\}$ be defined for each $x \in C$ by

$$T_a(x) = \inf\{t \ge 0 : x(t) \ge a\},\$$

where the infimum of an empty set is $+\infty$. The function T_a is not continuous on C, but it is measurable and continuous almost everywhere with respect to the Wiener measure, W. Therefore, we can apply the continuous mapping theorem, [1] Theorem 5.1, to obtain

THEOREM 9. Let $\{X_n\}$ be any sequence of random functions in $C[0, \infty)$. If $X_n \Rightarrow W$, then $T_a(X_n) \Rightarrow T_a(W)$, where

$$P\{T_a(W) \le t\} = (2/\pi t)^{\frac{1}{2}} \int_a^{\infty} e^{-y^2/2t} dy.$$

Limit theorems for more complicated stopping times can obviously be obtained in the same way. However, it is necessary to check that the stopping time actually constitutes a measurable function on $C[0, \infty)$ which is continuous almost everywhere with respect to the limiting measure.

Stone's (1963) major concern was not $C[0, \infty)$, but $D[0, \infty)$, the space of all right-continuous functions on $[0, \infty)$ with limits from the left and values in a complete separable metric space (E, m). The analysis of $D[0, \infty)$ is more complicated because of the discontinuities in the functions, but a metric can be defined on $D[0, \infty)$ which

makes it a complete separable metric space too. The weak convergence theory associated with $D[0, \infty)$ will be studied in a subsequent paper.

REFERENCES

- [1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
- [2] IGLEHART, D. (1968). Weak convergence of probability measures on product spaces with applications to sums of random vectors. Technical Report No. 109, Department of Operations Research and Department of Statistics, Stanford University.
- [3] Itô, K. and McKean, H., Jr. (1965). Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin.
- [4] Kelley, J. (1955). General Topology. Van Nostrand, New York.
- [5] PARTHASARATHY, K. (1967). Probability Measures on Metric Spaces. Academic Press, New York.
- [6] Prohorov, Yu (1956). Convergence of random processes and limit theorems in probability theory. *Theor. Probability Appl.* 1 157–214 (English translation).
- [7] STONE, C. (1961). Limit theorems for birth and death processes and diffusion processes. Ph.D. thesis, Stanford University.
- [8] STONE, C. (1963). Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14 694–696.