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WEAK CONVERGENCE OF PROBABILITY MEASURES
ON THE FUNCTION SPACE CJ0, )}

By WARD WHITT?

Yale University

1. The space C[0, ). Let C = C[0, o) be the set of all continuous functions on
[0, c0) with values in a complete separable metric space (E, m). Stone (1961, 1963)
has obtained simple criteria for weak convergence of sequences of probability
measures on %, the o-field generated by the open subsets of C, when C is endowed
with the topology of uniform convergence on compacta, cf. [4] page 229. We shall
obtain further properties of (C, ¥) by defining a metric p on C which induces this
same topology. .

For any two functions x and y in C, let p : C x C — R be defined as

p(x, y) = Y 5212700, W1+ pAx, )]s
where p(x, y) = supg <, <; m[x(), y(t)].

THEOREM 1. The function space (C, p) is a complete separable metric space in which
lim,, , p(x,, x) = 0 if and only if lim,_, , p(x,, x) =0 for all j = 1.

COROLLARY 1. The metric topology in (C, p) is the topology of uniform convergence
on compacta.

Since the proofs of Theorem 1 and Corollary 1 are straightforward, we omit
them.

Let . ,(C) be the set of all probability measures on . A net of probability
measures {P,} in .#,(C) is said to converge weakly to a probability measure P in
M (C) if

lim, [ofdP, = |cfdP

for every bounded continuous real-valued function f on C, and we write P,= P.
Since (C, p) is a complete separable metric space, cf. [5] II. 6,

COROLLARY 2. The space . (C) with the topology of weak convergence is

metrizable as a complete separable metric space.
~ The metric defined by Prohorov (1956) is one such metric, cf. [1] page 237.

We now wish to characterize the o-field ¥. For each t = 0, let , : C — E be the
coordinate projection, defined for any xe C by r,(x) = x(¢). Let E be a measurable
space with the o-field generated by the open subsets and let E* be the k-fold product
of E with itself endowed with the product topology and the corresponding o-field
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generated by the open subsets of E*. Finally, let o(n,) be the smallest o-field of
subsets of C with respect to which all coordinate projections are measurable.

THEOREM 2. The o-fields € and o(n,) coincide.
Proor. Follow the argument for C[0, 1] of [5] page 212.

COROLLARY 3. If P, and P, are two probability measures on (C, ), then a necessary
and sufficient condition for P, = P, is that P,n;\.. , = P,n; .., for all k and
all ty,+,t,€[0, 00), where Pr; L.. , is a measure on E* induced by P through the
map w,, ... ,:C— E¥, defined for any xe C by m,, ... ,(x)=[x(t,), ", x(t,)].

Proor. Follow the argument for C[0, 1] of [5] page 213.
COROLLARY 4. The Wiener measure W exists on (C, ‘5) with E = R.

Proor. Use the standard construction on (C, o(r,) ) given in [3] page 12. It is also
possible to use [1] pages 62, 96.

Recall that a subset IT of .# (C) is tight if for any positive & there exists a com-
pact set K< C such that P(K) > 1—e¢ for all PeIl.

THEOREM 3. If P, (n=1,2,:-*) and P are probability measures on (C, ¥), then
P,=> P if and only if:

(i) the finite-dimensional distributions of P, converge weakly to those of P, and
(ii) the sequence {P,} is tight.

Proor. The argument used for C[0, 1] with E = R applies, cf. [1] pages 35, 54,
241.

We now want to relate weak convergence of probability measures on C[0, o)
to weak convergence of associated probability measures on C; = C[0, j]. Define
the metric p; on C; by setting p;(x, y) = supo <,<;m[x(t), y(t)] for any functions x
and y in C;. Let %; be the o-field generated by the open subsets of C;. Let
r;: C[0, ) — C[0, j] be the simple projection or restriction to [0, j]; that is, for
any xeC, let rj(x)(¢) = x(t), 0 £ t < j. Since r; is continuous and thus measurable,
we can use r; to induce measures on (C;, %;). For each j = 1 and any probability
measure P on %, define Pr;”! on %, by setting Pr;”'(4) = P(r;”'(4)) for each
A€%;. By the continuous mapping theorem [1] Theorem 5.1, if P,= P, then, for
allj = 1, P,r;~' = Pr;”'. We want to establish an implication in the other direction.
For this purpose, let w,7/ : (0, j]— [0, c0) be the modulus of continuity of a function
x in C}, defined by w,/(8) = sup, <, 1<, 1s—11 <o MX(2), x(5)],0 < 6 < j, cf. [1] page 54.

LeMMA 1. 4 subset A of C has compact closure if and only if

(i) {x(t), xe A} has compact closure in E for each t = 0, and
(i) for all j = 1, lim;_,; SUP, (x)er ) Wi'(6) = 0.

Proor. This is just one version of the classical Arzela-Ascoli Theorem, cf. [4]
Theorem 7.18.
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THEOREM 4. Let {P,} be a sequence of probability measures on C[0, 00). The
sequence {P,} is tight if and only if these two conditions hold:

(i) For each t = 0 and each positive n, there exists a compact set K in E such that
P{xeC:x(t)eK,} > 1—1, nzl.
(ii) For each j = 1 and positive ¢ and n, there exists a 0, with 0 <6 < 1, and an
integer ny such that

PixeCiw/(®)ze} <y, nzn,.

Proor. This proof will follow [1] Theorem 8.2. Suppose {P,} is tight. Given
J» & and #, choose a compact set K in C[0, oo) such that P,(K) > 1—n for all n.
For each 7 2 0, let the compactset K,in Ebe n,(K). Since {xe K} < {x : x(¢)en(K)},
condition (i) holds. For small enough 6, K< {x: w,/(5) = ¢}. Hence, condition
(i1) holds. This proves the necessity of (i) and (ii).

Since each individual probability measure P is tight, cf. [1] Theorem 1.4, it
suffices to consider n, =1 in (ii) when proving sufficiency. Assume that {P,}
satisfies (i) and (ii) with n, = 1. Let the sequence {#;} be an enumeration of a count-
able dense subset of [0, o). Itis easy to show, in the presence of (ii), that {x(¢), xe A}
has compact closure in E for all ¢ > 0 if and only if it has compact closure for all ¢
in {t;}. Givenn > 0, choose compact sets K,, in E so that, if B; = {xe C: x(1;)e K, }
then P,(B;) 2 1—n27C*? for all n 2 1. Then choose §,, so that, if B, = {xeC':
w,/(8;) < 1/k}, then P,(B,) = 1—n2"U***? for all n. If K is the closure of
N:Z1 B; 0 N1 Nj=1 By,, then P,(K) = 1—7 for all n. By Lemma 1, K is compact.
Hence {P,} is tight.

COROLLARY 5. The sequence {P,} is tight if and only if the sequence {P,r;~'} is
tight for eachj = 1. ’

ProoF. Conditions (i) and (ii) of Theorem 4 can be expressed in terms of {P,r;~ 1
Combining Theorem 3 and Corollary 5 gives

THeorEM 5. If P,(n=1,2,---) and P are probability measures on (C, €), then
P,=Pifand only if P,r;"'=Pr;”! forall j 2 1.

Finally, we obtain the same conditions given by Stone (1963):

THEOREM 6. If P(n= 1,2, :-*) and P are probability measures on (C, €), then
P,= P if and only if

(i) the finite-dimensional distributions of P, converge weakly to the finite-dimen-
sional distributions of P as n — o0 ; and

(ii) for every e > 0andj= 1,

lim,, o 50 Pu{xeC:w,J(8) > ¢} =0.

Proor. It is only necessary to observe that condition (i) above implies condition
(i) of Theorem 4. Since the finite-dimensional distributions converge weakly, they
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are tight in E*. Hence, for each ¢ and 7, the appropriate compact set K, can be
constructed.

2. Product spaces. We shall now change our notation slightly in order to treat
product spaces. In particular, let (C[0, «), E) represent C[0, co) with range E and
let (C[0, ), E)* be the k-fold product of (C[0, o0), E) with itself. On all our product
spaces S; X '+ x S, = S generate the product topology with the metric d, defined
for any x = (xy," "+, x) and y = (yy,* -, y) in S by d(x, y) = max1§i§kdi(xi’ yo),
where d; is the metric on S;. Let p; be the metric so generated on (C[0, ), E)* and
let p, be the metric so generated on (C[0, ), E¥).

THEOREM 7. The sets (C[0, ), E)* and (C[0, ), E*) have the same elements and
the metrics p, and p, are uniformly equivalent.

Proor. Let AT denote the set of all functions with domain 7" and range 4. Then
(A4 x B)T = AT x BT is an elementary identity. Since xe(4 x B)T is continuous if
and only if the projections 7 ,(x)e AT and 7nz(x)e BT are both continuous, cf. [4]
page 91, (C[0, ), E)* = (C, [0, ), E) as sets of functions.

The uniform equivalence of p; and p, is a straightforward but tedious verifica-
tion. Hence, we shall only exhibit the proof in one direction. Suppose p,(x, ) < .
Find the integer J such that 27¢*1 < ¢ < 277, Since p,(x, y) = max, <;<;, p(x;, Y1)
for all i,

p(x; ¥) = Z;o=1 2_jpj(xi, yWI[l+pi(x, y)] <e,
where p;(x;, y;) = supo << ;mlxi(?), y(t)]. Since ) 72 ;,3277 < ¢/2,
Zfif 2_jpj(xi’ yI[1+pi(x; y)] <e/2
and p;(x;, )/[1+pj(x;, y)] <2/ e for j=1,---, J+2. Since 2" e < 1 for j < J,
pi(Xis ¥i) = SuPo <, < ;mx(0), yi()] < 27 'e/[1-277"¢]
foralliand j=1,---, J. Since
pa(x, y) = 35127 p(x, Y)[L+pix, )],

where pj(x, y) = supg << ;j{max; <; <, mlxi(t), yi(1)]} < 277 1g/[1-2/"1¢] for
j = 1’ v .’ J’

J j—1 j—1 ©

(@I [1—2" 1)) .

x,y) < 277 — — —+ 277< Jg/2+ 2e.
p2( y) jzll 1+(2J 18/[1_21 18]) j=;+1 /
Recall that J is a function of ¢ such that Je > 0 as ¢ —» 0.
Henceforth let C* =C*[0, co) with the metric p represent both (C[0, ), E)*

with p; and (C[0, ), E*) with p,. Let p/:C x C— R be defined for any
x=(xg, 7, x) and y = (y;,°*, y) in C* by p/(x, y) = supo<.<;mlxi(t), yi()]-

COROLLARY 6. The product space (C*, p) is a complete separable metric space in
which lim,_, , p(x,, X) = 0 if and only if lim,_, .p/(x,, x) = 0 for each i(1 £ i< k)
and j(j = 1).
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We now characterize the tightness of sets of probability measures on C¥[0, o)
in terms of the tightness of associated sets of probability measures on C[0, j],
j2 1. Let x;: C*0, o0) » C[0, ) and =; : C¥[0, j]1— CI[0, j] be defined for any
x = (x4, x) in C¥0, o) or C¥[0, j] by 7i(x) = x;.

THEOREM 8. The sequence of probability measures {P,} on C*[0, o0) is tight if and
only if the sequences of probability measures {P,n;”'r;"'} = {P,yr;"'n,” '} are tight
foreachi(l1<i<k)andj(j=1).

PROOF. A set of probability measures on a finite (or countable) product space
(complete separable metric space) is tight if and only if each of the families of
marginal measures is tight, cf. [1] page 41. It only remains to apply Corollary 5.

COROLLARY 7. Let P (n = 1) and P be probability measures on C¥[0, o0). Then
P, = P if and only if

(i) the finite-dimensional distributions of P, converge weakly to the finite-dimen-
sional distributions of P, and

(ii) the families of measures {P,r;”'n,”'} on CI0, j] are tight for each i(1 £ i < k)
and j(j 2 1).

Proor. Apply Theorems 3 and 8.

3. Conclusion. It is now clear that many weak convergence theorems in C[0, 1]
can be extended to C[0, c0) or even C*[0, o) with very little extra work. For
example, Donsker’s theorem, [1] Theorem 10.1, holds in C*[0, o), cf. [2]. The
space C[0, o) is also more convenient than CJ[0, 1] for treating first passage times.
Let T, : C[0, o0) > Ru{+ o0} be defined for each xe C by

T, (x) = inf{t =2 0:x(t) = a},

where the infimum of an empty set is + co. The function 7, is not continuous on C,
but it is measurable and continuous almost everywhere with respect to the Wiener
measure, W. Therefore, we can apply the continuous mapping theorem, [1]
Theorem 5.1, to obtain

THEOREM 9. Let {X,} be any sequence of random functions in C[0, o). If X, =W,
then T (X,)= T (W), where

P{T (W) <t} = (2/nt)* [P e~/ dy.

Limit theorems for more complicated stopping times can obviously be obtained
in the same way. However, it is necessary to check that the stopping time actually
constitutes a measurable function on C[0, co) which is continuous almost every-
where with respect to the limiting measure.

Stone’s (1963) major concern was not C[0, o), but D[0, o), the space of all right-
continuous functions on [0, oo) with limits from the left and values in a complete
separable metric space (E, m). The analysis of D[0, c0) is more complicated because
of the discontinuities in the functions, but a metric can be defined on D[0, <o) which
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makes it a complete separable metric space too. The weak convergence theory
associated with D[0, o) will be studied in a subsequent paper.
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