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FUNCTIONS OF MARKOV CHAINS'

By R. V. ERICKSON

Michigan State University

1. Introduction and statement of results. Let X = {x,, t€T,I} be a standard
Markov chain with stationary transition probabilities, where the time set T is
either [0, 00) (continuous) or {0, 1, - --} (discrete) and the minimal state space I is
countable and discrete. (The terminology here and below is that of Chung [2].)
The above statements about X are abbreviated by saying that X is an M.c.; and if I
is finite, X is termed a finite M.c.

Let f be a surjection of I to J and identify f~'(«) with « in J. The process
Y=(f, X)={y,=f(x,), 1T, J} is said to be a functioh of an M.c., and its finite
joint distributions are given by

(1) P(y(tl+'“+tk) = O, k = 1, ,n) =pP(t1)Ia1“'P(tn)Ian1

where p = (P(x, = 1)), i€l, istheinitial distribution of X, P(t) = (P(x,,= j| x,=1)),
i, jel, is the transition matrix of X, I, is the matrix with (i, j) entry equal to one
if i =jef " '(x)<I and zero otherwise, and 1 is the column vector all of whose
components are one.

It is the purpose of this paper to determine necessary and sufficient conditions
under which an arbitrary finite or countable state process is (equal in joint distribu-
tion to) a function of an M.c. ,

From (1) it is clearly necessary for such a process to possess the following
property: A stochastic process Y = {y, teT, J} is matricial if there exists a
countable index set K, a real row vector a = (a,),.g, a real matrix function
R(?) = (R;j(#))i, je x> teT, with R(0) equal the identity matrix I, real matrices
A, = (4;§(0)); jaed, and a real column vector b = (b)), g such that the joint
distributions of Y are given by ‘

(2) P(y(t1+“'+tk)=ak9k=1,.“’n)=aR(t1)Aal.”R(tn)Aanb9 n; 1

(So that (2) is well defined when K is infinite, it is assumed that multiplication
begins on the left.) The set Z = {a, R(¢), A,, b} is called a representation of Y, and
size Z is used to denote the cardinality of K.

Before stating the results of this paper we give one further definition
which generalizes the notion of rank introduced by Gilbert [6]: Let Y =
{y., teT, J} be a stochastic process; for (t, &) = (¢, *, 1, a5, ", 0,)ET X F =
{¢, d} U= (T" x I, let py(t, @) = P(y(t;+ - +1t) =0y, k=1,--+, n) denote
the finite joint distributions of Y, and set py(¢, ¢) = 1; for p in J, define rank B to
be the supremum of the ranks of the matrices (py(r;s;t;, @:fy;))i j=1,... 1 Where
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844 R. V. ERICKSON

the supremum is taken over all k = 1 and all (r;s;t;, a;,fy;)€ 7 x ¢ for fixed fel,
where (rt, af) denotes (rFy, ** 'y Fpo bys " bny Uys 5 Oy Bys o, By) if (1, @) =
(Fist " P Ogy s Oy and (6, B) = (¢4, =, by By, *+* 5 Ba). The rank of the process
Y, rank Y, is defined as Y ;. rank . (States of rank zero are never entered and are
omitted from discussion.)

The first theorem is the key to extending Dharmadhikari’s results [3], [4].

THEOREM 1. Every state of a countable state process Y has finite rank iff Y is
matricial relative to some representation & = {a, R(t), A,, b} for which rank A, is
finite for each state o. In particular, Y has finite rank iff Y is matricial relative to a

representation of finite size.
Dharmadhikari’s techniques can now be applied to prove the following.

THEOREM 2. Let Y be a process with discrete time set and countable state space. If
each state has finite rank, then Y is a function of an M.c., and a state has a finite
pre-image if it is polyhedral (as defined below).

At the present time we are unable to prove a version of Theorem 2 for continuous
time processes because of difficulties in constructing continuous parameter semi-
groups. We can give, however, necessary and sufficient conditions for a process
to be a function of a finite M.c. with discrete or continuous time parameter. These
conditions, which allow us to obtain nonnegative solutions to certain equations,
are phrased in terms of polyhedral cones, that is, cones which are generated by
nonnegative linear combinations of a finite number of given vectors. Given any
representation # = {a, R(¢), 4,, b}, denote by row % the set of row vectors
{aR(t,)4,, " R(t,)A4, R(s)}, where t;, seT, q;€J, i=1,"-,n,n 2 1. Z is said to
be polyhedral relative to % if there exist finitely many vectors {c;} =span row %
such thatfor @ = cone {c;} (= cone generated by {c;}) wehave (i)ae %, (ii) ¥R(¢) =¥
for each teT, (iii) ¥4,=% for each aeJ, and (iv) cb > 0 for all ce%\{0}. A state
a is polyhedral iff cone [(row #)A,] is contained in a cone %, =span [(row %£)4,]
generated by finitely many vectors such that %,R(t)4,=%, and cb >0 for all
ce%,\{0} (see Theorem 2 above). (When size £ is finite and the 4,’s form a
supplementary set of orthogonal projections, it is clear that if each state is poly-
hedral, then % is polyhedral relative to cone {c,'4,|c,’ generate %,, acJ}.) If
Y is matricial relative to £, the preceding adjectives will often be applied to Y.

The transition matrix of a continuous time finite M.c. is a uniformly continuous
semigroup. To insure that a process Y of finite rank is matricial relative to some
representation # = {a, R(¢), 4,, b} for which R(?) is a uniformly continuous semi-
group, the following is sufficient: Say that Y has continuous distributions if
py(rst, aPy) is continuous as a function of s in T for all e J and all (rt, ay)e T X 7.
This is automatically satisfied if T is discrete.

THEOREM 3. Let Y be a process with finite state space and discrete or continuous
time set. Y is a function of a finite M.c. iff Y is a polyhedral process with continuous
distributions and finite rank. In particular, Y is a function of a finite M.c. if Y has
continuous distributions and each state has rank one or two.
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COROLLARY. Let Y be as in Theorem 3. Then Y is a finite M.c. iff Y has continuous
distributions and each state has rank one.

For discrete time set the “if”” part of Theorem 3 is proved by Dharmadhikari [4]
and the “only if” part by Heller [8]. Fox and Rubin [7] show, also for the discrete
time case, that finite rank alone does not imply the result, for they construct a
(countable state) M.c. X and a function f'such that ¥ = (f, X) has rank four and is
a function of no finite M.c. Our Theorem 2 shows that every such example of this
phenomenon must be of this type.

Section 6 gives results similar to Fox and Rubin [7] and Dharmadhikari [5] on
splitting states of a process into Markovian states.

2. Proof of Theorem 1. The proof of Theorem 1 is patterned on a construction
used by Dharmadhikari [3] for discrete T. Assume first that rank f=n; < ©
for each feJ. Then there exist sequences (hereafter fixed) (rp;sp;, %4:f) and
(s v5)€T X F,0,j=1, -, ngsuchthatthens x n, matrix

Py = (py(rpispitsj, % B755))

has rank n;. Define row,(rs, «f) as the 1 x n; row vector with entries py(rsty;,
apfyg;), and col, (t,y) as the ny;x 1 column vector with entries py(rp;spt.o:57),
and Pgs(u) as the ny x n; matrix with rows row, (r;s5;4, ag; f0), i,j=1,""", ng,
B,oed, (xr,a),(t,y)eT x ¢,seT. Note that Pgs(u) = (py(rp; sp; tuts;, ag; f6755)) so
that Py = Pg,(0) and that Py,(0) = 0 for g # . For each f € J the matrix

<P,, coly(t,y) >
I'OWﬂ (l'S, Gﬁ) py(l'St, aﬁy)

has rank n,. Hence there is a unique row vector a(rs, af) such that (i) a(rs, af) =
row, (rs, af)P, ™', and (ii) a(rs, af)col,(t, y) = py(rst, afy). If we set R,p(u) =
P,g(u)Ps~ 1, it follows from (i), (ii) and the definition of P,(u) that R,s(u) coly (t, y) =
col,(ut, By), and by induction (iii) py(rut, afy) = a(r, «)col, (ut, fy) = a(r,
“)Raﬁ(u)Rﬂ, yl(tl) Tt Ry(n— 1), yn (tn) COIyn (¢’ ¢)’ where (t’ '}’) = (tl’ RN 7% S PR yn) If
we let a be the row vector with blocks a(0, «), let R(x) and P(u) be the matrices with
blocks R,4(u) and P,(u), let I, be the matrix with the identity in block (o, «) and
zero elsewhere, and let b be the column vector with blocks cols (¢, ¢), we have,
settingr = Oand summing over ain (iii): (iv) py(ut, By) = aRu)I; R(¢,)1, - - * R(Z,)1,,b
for all (ut, By)eJ x ¢, and R(u) = P(u)P~*, where P = P(0). This is obvious
when J is finite so that Y has finite rank, and can be shown to hold when J is
countable using well-known results concerning associativity of infinite matrices
(see Kemeny, Snell, Knapp [10]). Hence Y is matricial relative to #Z = {a, R(?),
I, b}. Since the converse of each statement of Theorem 1 is obvious, this completes
the proof.

3. Equivalent representations. Two representations of the same process are said
to be equivalent. The interrelations between equivalent representations provide the
key to the proofs of Theorem 2 and Theorem 3.

Given a representation # = {a, R(¢), 4,, b} of finite size, define col # to be the
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set of column vectors { R(¢,)A4,, ' * - R(t,) A b} where t,e T, a;eJ,i=1,---,n,n 2 1,
let N(#) = {cespan col Z | (row Z)c = 0}, let M(%) = N(#%)" (in span col ) have
basis {vy, -+, v}, let ¥ be the matrix with v; in column j, and let ¥ | # denote the
set {aV, V*R(t)V, V*A4,V, V*b} where V* is any left inverse of ¥ with V*N(2&) =

Statement (i) of the following proposition guarantees that a function of a finite
M.c. is polyhedral, thus showing that Dharmadhikari’s conditions are necessary as
well as sufficient. Statement (ii) shows that dim M(£) = rank Y is an invariant for
the class of (equivalent) representations of Y. The third and fourth statements
extend the results of Leysieffer [11] and Boudreau [1].

PROPOSITION. Let Y be matricial relative to representations # and %' =

{a’, R'(t), A,', b'} of finite size. Then

(1) V| % is a representation of Y, and if X is polyhedral relative to €, V| R is
polyhedral relative to €V,

(ii) rank Y = dim M(Z) = dim M(%') = dim M(VLQZ’) = size V| R,

(iii) if size B = rank Y, then R(s+1t) = R(s)R(t), R(t)b = b, and the matrices A,
form a supplementary set of orthogonal projections; if Y also has continuous dis-
tributions, then R(t) = exp(tR), where R =lim, o, (R(t)—R(0))/t when T is
continuous, and R(n) = [R(1)]" when T is discrete, and

(iv) if size R = size R = rank Y, there is a nonsingular matrix H such that

= {aH, H 'R()H, H ' A,H, H™'b}.

PrOOF. Statement (i) follows since VV*| M(%) = id, VV* | N(#) = 0 and since
A, and R(¢) map row £ into row £ : For example, forrerow %, c =m-+necol# =
M®R)DN(R), and ¢’ = A,VV*c = A,m =m’ +n’ ecol Z, we have (r4,)c = (r4,)m
=14, VV*c =rm’ =rVV*c =rVV*4,VV*c. The second part of @) is proved
similarly and uses the fact that € crow#. Given (t,a) = (t;, ", fy, 00y, ***, &) €
T x £, let R(t,a)=R(t;)Ay; "+ R(t,) Ay let R'(t,a) = R'(t)A,; - R'(¢, )Aa,,, and
let R(¢, ¢) and R'(¢, ¢) denote appropriate identity matrices. Choose a basis u; =
aR(r;, «;)R(s;) for span row £, a basis w; = R(t;, p;)b for span col %, and deﬁne
u/ = a’R'(r;, «)R'(s;) and w;’ = R'(t;, p;)b’. Decompose w; =m;+n;, m;e M(%),
and n;je N(#), and decompose w; =m; +n; similarly in M(Z)®N(#'). Let U
be the matrix with rows u;,, W and M the matrices with columns w; and mj,
respectively, and define U’, W’ and M’ in a like fashion. Clearly rank UM < rank
M; if m=) am; and Um =0, then me M(Z)NN(%) = 0 so that rank UM =
rank M. If # and &' are equivalent, then UM = UW = U'W' = U'M’, so that
dim M(2) = rank M < rank M’ < dim M(2#’). Reversing the roles of # and #',
we have the second and third equalities in (ii). If Z now denotes the representation
constructed in the proof of Theorem 1, then rank Y = size % = dim M(Z%) =
size V| # = d, say. Since the d x d matrices V*I,V, a€J, may be assumed to form
a supplementary set of orthogonal projections (just choose the v;’s so that they
form an orthonormal basis for the summands of M(%) =) ,®I,M(%)) d =
Zae ; rank V*I V. Also, the matrices considered in defining rank o have entries
aR(r;, BIV(V*LV)V*R(t;, y))b so that rank o < rank V*I,V, whence d 2 rank Y,
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and (ii) follows. We prove (iii) first for the representation constructed in Theorem 1.
again denoted by £. For # the matrices A, = I, automatically form a supple-
mentary set of orthogonal projections. The identities )., py(rstu, apdy) =
py(x[s+ 1w, ady) and Y 5 s py(rs, af) = py(r, &) then imply

*1 U[R(s)R(t)—R(s+t)]W =0 and U[R(s)—1]b=0.

Since rank Y = size # = dim M(£) implies that dim span row # = size Z = dim
span col #, U and W are nonsingular and the first part of (iii) holds for #. The
second statement is now immediate for #: since R(s) = P(s)P(0)"!, if Y has
continuous distributions R(s) is a semigroup uniformly continuous in T (see
Hille-Phillips [9]). If %' is any other representation of Y withsize #' = rank Y, then
UL, RO); W = U'4,/R(0)4, W' and ULW = U'A,/W’. But R(0) and R'(0) are
identity matrices so that UW = U'A’'W’' = U'A’A'W',whére 4’ =3 , ., A,'. Uand
W, and thus U’, W’, and A’, are nonsingular, which implies 4’4’ = A" = I and
A, = H 'I,H, where H= WW’'~!, Identity [*] now holds for #’, and this com-
pletes the proof of (iii). Statement (iv) now follows from the relations aW = a' W’
UR(H))W = U'R'(t)W', and Ub = U’b’, which hold since #Z and %' are equivalent
and R and R’ are semigroups.

Before proving Theorem 2 and Theorem 3, it is necessary to rephrase a condition
in the definition of a polyhedral process.

LEMMA. Let R be a real d xd matrix and let ¥=cone {c,**, ¢,} <R (row
vectors). Then € exp(tR)=% for t = 0 iff there is a t, > 0 such that €(I+tR)c¥
forOZt< ¢,

PrOOF. Let ¢* = {c* | cc* > 0,all ce C} = cone {c,*, - -+, ¢,s*} (column vectors)
bethedual (or polar cone) of #sothat ¥ = €**. Thenue@iffuc;* 2 0,j = 1,---,n*.
The proof is completed by noting that c;exp (tR)e;* = ¢ (I+tR)c;*+o(t) as
t—=0,i=1,---,nj=1,--, n*

4. Proof of Theorem 3. Let Y be a polyhedral process with continuous distribu-
tions and finite rank, and let # denote the representation constructed in Theorem 1.
From the results of Section 3 we may assume that & is polyhedral relative to
% = cone {c,-|ieI}, that card I =n < oo, that ¢b=1 for iel, and that ¢/, is
either 0 or ¢, (since cone {¢,l,|iel, aeJ} = %). Let C be the matrix with rows ¢;,
so that Cb = 1. Since a€ %, there is a nonnegative row vector p such that a = pC.
Similarly, there is a nonnegative matrix P such that CR(1) = PCif T is discrete or
C(I+1,R) = PC if T is continuous (in the notation of the lemma of Section 3).
Define P(n) = P"if T is discrete and P(¢) = exp [(P—I)t/t,]if T is continuous. Then
P(¢) is a nonnegative semigroup such that P(t)C = CR(¢), teT. Since R(f)b =b,
P(#)1 = P(t)Cb = CR(t)b =Cb=1, and pl=ab=),.,py0,0)=1. Thus p
and P(¢) determine a finite M.c. X = {x,, teT, I}. If f: I > J is defined by f(i) =
aiffe; I, = c;, then (f, X)is a function of a finite M.c. equal to Yinjoint distribution.
Notice that (f, X) has a representation 2 = {p, P(t), I,"*" =Y ;=2 1"*"> 1}
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where n = size 2, and that C |2 =4. Since a representation of the type & is
polyhedral relative to 2 span row 2, where 9 is the positive orthant in R”, the
converse is obvious. In case each state of Y has rank less than or equal to two, each
state is polyhedral, which implies that Y is polyhedral. This completes the proof of
Theorem 3.

The proof of the corollary is now obvious and is omitted.

Note that if there exists another M.c. X’, with initial distribution p’ and transition
matrix P'(¢), and a function f” such that ¥ = (f”, X”) then Y has a representation
P ={p, P (1), I =Y siy=ali»1} and Z = C' | Z', where C’ is constructed as in
Section 3. Hence, given Y with polyhedral representation, every X’ and /' such that
Y = (f’, X’) can be constructed as above by choosing various generators for varjous
cones relative to which Y'is polyhedral.

It should also be pointed out that Dharmadhikari [4] has constructed a five state
M.c. X and a function fsuch that (f, X) has two states, rank four, and is a function
of no four state M.c. The number of states in any pre-image M.c. of a polyhedral
process is equal to the number of generators chosen to produce the cone relative
to which the process is polyhedral. This number is only bounded below by rank Y,
and it may never attain rank Y.

5. Proof of Theorem 2. The proof of Theorem 2 parallels that of Theorem 3.
Suppose, then, that ¥ has discrete time set T and countable state space J and that
each state has finite rank. Let # = {a, R(?), I,, b} be the representation for Y
constructed in Theorem 1. Let €, = cone {c,; | ¢,;b =1, ieJ,} denote acone relative
to which « is polyhedral, if it is; and let %, = {¢,;|i€J,} be an enumeration of the
distinct vectors in (row #)I,\{0} scaled so that ¢,;b = 1, ifx is not polyhedral.

Let I=Uj.;J; and let f: I - J be defined so that F~Y(B) = Jp. Arguing as in
the proof of Theorem 3, using £ and the matrix C with rows c,;, aeJ, ieJ,, we
construct an M.c. X such that Y and (f, X) are equal in joint distribution. Clearly,
the polyhedral states of Y have finite pre-image. This completes the proof of
Theorem 2.

6. Splitting states of processes. The following results generalize those of
Dharmadhikari [5] and those of Fox and Rubin [7] to the continuous time para-
meter case.

Let Y = {y,, teT, J} be a process with countable state space J = F+G (+ = dis-
joint union). A state S J is termed a Markovian state if rank f = 1, and for such a
state it is easy to show that py(rst, aBy)py(s, B) = py(rs, af)py(st, By), so that a
stochastic process all of whose states are Markovian is a (not necessarily standard)
Markov chain with stationary transition probabilities.

A countable state process X = {x,, te T, H+G} is termed a splitting of Y on F
if each state neH is Markovian and if there exists a function f: H+G - F+G
which is a surjection of H to F and the identity on G and is such that (f, X) and ¥
are equal in joint distribution.

In order to phrase Theorem 1, Theorem 2 and Theorem 3 in the above context,
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we need to extend the notion of a matricial process: say that ¥ = {y,, teT, F+G}
is matricial on F if there is a countable set K and functions

a: 7 x 9 x T - RX (real row vectors)
R: 7 x % x T — R¥*X (real matrices indexed on K x K),
A:F > RK*K and

b: 7 x % — RX (real column vectors) such that

pY(tlsl o 'tnsntn+19}’1(pl Yn PuVn+ 1)
= a(tl »V1s SI)A((pl) e R(tm Vns sn)A((Pn)b(tn+ 15 Vn+ 1)

for all (t;,7)eT x 9= {p, p}oU:1T"xG", (5;, 0)eT xF, i=1,-,n+l,
n=1,2, . (Multiplication is from the left if K is infinite.) The set {a, R, 4,b} =
2(F) is termed a representation of Y on F. We set row Z(F) = {a(t,, y,5,)4(¢,) "~
R(t,, 7, 5,)A}, where A =1 or A(p), (t;, y)eT x ¥4, (s;, p)eT xF, i=1,"-",n,
n =1, and define col #(F) similarly. The polyhedral property of ¥ on F is defined
analogously except that (iv) is weakened to read (iv’) cb(t, y) = 0 for ce% and
(t,y)eJ x F;the definition of a polyhedral state is changed similarly.

With these extensions we can now rephrase Theorem 1, Theorem 2 and Theorem 3
for a countable state process Y = {y,, teT, F+G}.

THEOREM 1'. Every state ¢ €F has finite rank iff Y is matricial on F relative to a
representation J(F) for which rank A(¢) is finite for each @ € F.

THEOREM 2'. If Y has discrete time and each state ¢ €F has finite rank, then there
exists a splitting process for Y on ¥, and a state has finite pre-image if it is polyhedral.

THEOREM 3'. Y, on the states ¥, has a splitting X = {x,, te T, H+G} with finite
Hiff ), . prank ¢ is finite and Y is polyhedral on F.

ProoFs. Theorem 1’ may be proved using the techniques of Theorem 1. I
Y ,cr rank ¢ is finite, then the representation %(F) constructed in Theorem 1’ has
finite size; and if 22(F) is polyhedral relative to € = cone {c;|i€ H, H finite} and
the rows of C are c;, then Y also has a representation 2(F) = {p, P, I(¢), q} on F
such that #(F) = C|2(F) and such that p, P and q are nonnegative matrix
functions and I(@) is zero off the diagonal, zero or one on the diagonal, and
Y ,erI(¢) = I = identity matrix on R¥*H. The process X = {x,, teT,H+G} is
now defined as a matricial process on H using Z(H) = {p, P, I,, q}, where [, has
entry (i, j) equal to one if i = j = n eH and zero otherwise. Z(H) satisfies consistency
requirements since 2(F) does and since Y, .z I, = I. Conversely, if X = {x,, teT,
H-+G} is a splitting of ¥ on F and H is finite, the construction of Theorem 1’ gives
a representation Z(H) = {p, P, I, q} of X on H, where the matrices of 2(H) are
nonnegative and 7, is as above. Y thus has a polyhedral representation 2(F) =
{p. P, I,=Y (=01 4} The needed parts of the proposition of Section 3 extend
to show that Y is polyhedral on F with a representation Z(F) = V| 2(F) of size
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equal ), r rank ¢ < size Z(H) < co. Theorem 2’ may now be proved as was
Theorem 2 using the above method to define the splitting process.
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