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Abstract

We consider a simplified model of first-passage percolation, involving two families of
i.i.d. random variables {ξij} and {ηij} corresponding to the weights of the horizontal
and vertical edges respectively. We obtain an explicit formula for the limiting shape
of the first-passage distance expressed in terms of the corresponding limit shapes
of the two sets of weights for the Seppäläinen–Johansson model. We also study the
limiting fluctuations of this model when at least one of the sets of weights is Bernoulli
distributed.
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1 Introduction

Let Bij , i, j ≥ 0 be i.i.d Bernoulli(p) random variables, and ξij , ηij i, j ≥ 0 be families
of random variables that are all independent, that is

{Bij : i, j ≥ 0} ∪ {ξij : i, j ≥ 0} ∪ {ηij : i, j ≥ 0}

is independent. We assume that the ξij ’s are non-negative, integrable and have a common
distribution, and likewise for the ηij ’s (though the distribution of the ξij ’s can be different
of that of the ηij ’s). We place weights on the edges e of Z2

≥0 as follows.

• If e is the horizontal edge joining (i− 1, j) to (i, j), then e has weight ωe = Bijξij .

• If e is the vertical edge joining (i, j − 1) to (i, j), then e has weight ωe = (1−Bij)ηij .

So for any vertex (i, j) ∈ Z2
>0, one of the two “incoming” edges (i − 1, j) → (i, j) or

(i, j − 1)→ (i, j) will have weight 0. Given an up-right path π (i.e a sequence of adjacent
vertices which only goes up or right), we define its weight S(π) as

S(π) =
∑

e∈E(π)

ωe
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Limit shape formulas for a generalized Seppäläinen–Johansson model
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Figure 1: An upright path from (0,0) to (4,3). The weight of this path is B1,0ξ1,0 + (1−
B1,1)η1,1 + (1−B1,2)η1,2 +B2,2ξ2,2 +B3,2ξ3,2 + (1−B3,3)η3,3 +B4,3ξ4,3.

where the sum is taken over the set of edges E(π) that π traverses; see Figure 1. For
two points (a, b) and (m,n) with a ≤ m and b ≤ n, we define the first-passage value from
(a, b) to (m,n) as

F (a, b;m,n) = min
π:(a,b)→(m,n)

S(π) (1.1)

where the minimum is taken over all up-right paths π started at (a, b) and finishing at
(m,n). We write F (m,n) for F (0, 0;m,n). A path which achieves the minimum in (1.1) is
called a geodesic.

The function F defines a directed metric on Z2
≥0 × Z2

≥0, in the sense that for any
point (m,n), we have F (m,n;m,n) = 0, and F satisfies the triangle inequality, but the
distance can only be measured in one direction; F (a, b;m,n) is only defined when a ≤ m
and b ≤ n.

The special case when all the Bij ’s are equal to one (i.e p = 1 and only horizontal
edges have non-zero weights) is known as the Seppäläinen–Johansson (SJ) model. It
was introduced by Seppäläinen in [11] as a simplified model of directed first-passage
percolation, and Johansson showed in [6] that in the special case of Bernoulli weights,
the model is completely solvable. Indeed, the law of the last-passage value (that is where
we take maximum instead of minimum in (1.1)) is the same as that of the top point of the
Krawtchouk ensemble, a discrete orthogonal polynomial ensemble.

By Kingman’s subadditive ergodic theorem, there exists a deterministic function f on
R2
≥0 (which depends on the distribution of the weights) such that

F (bnxc, bnyb)
n

→ f(x, y)

almost surely for all x, y ≥ 0. We will refer to f as the limit shape. It follows from the
translation invariance of this model that f must be homogeneous (i.e f(cx, cy) = cf(x, y)

for all c ≥ 0), and together with the triangle inequality for F , we have that f also satisfies
a triangle inequality:

f(x1 + x2, y1 + y2) ≤ f(x1, y1) + f(x2, y2).

The homogeneity plus triangle inequality clearly imply that f must be convex, and so in
particular it is continuous.

Seppäläinen obtained in [11] the following explicit formula for the limit shape in the
SJ model with Bernoulli(p) weights:

f(x, y) =

{
(
√
px−

√
(1− p)y)2 if x ≥ 1−p

p y

0 otherwise.
(1.2)
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Figure 2: A portion of the random walk web obtained from the Bij ’s. If Bij = 0, an edge
is placed from (i− 1, j) to (i, j); otherwise, the edge is placed from (i, j − 1) to (i, j).

Similar formulas are known in the SJ model for geometric and exponential weights; see
[9] for example. The most general cases for which we can compute explicitly the limit

shape are when ξij
d
= B ·X, where B is Bernoulli distributed, and X is a geometric or

exponential independent of B; see [8].
The generalized SJ model that we are considering first appears in [1] for ξij and ηij

exponentially distributed as the zero temperature limit of the beta polymer. The authors
show that the distribution function of a point to half-line first-passage percolation version
of this model can be written down explicitly as a Fredholm determinant, and as a result,
they obtain Tracy–Widom limiting fluctuations.

Much more is known about the SJ model for Bernoulli weights. Indeed, in [4], it
was shown that the scaled fluctuations of the first-passage value function converges in
distribution with respect to uniform convergence on compact sets to the Airy2 process.
Using this, we obtain, in the Bernoulli case, the limiting distribution of the scaled
fluctuations of F (nx, ny), for points satisfying x 6= (1− p)y/p.

Along the line x = (1 − p)y/p, the fluctuations of F behave very differently. If we
scale space diffusively, then the fluctuations of F are of order 1, and F has a completely
different scaling limit: the Brownian web distance. To see why the Brownian web is
involved, consider the subgraph of Z2 obtained by only keeping the edges e whose
corresponding weight ωe is 0. The resulting subgraph is then a system of coalescing
random walks moving in the south-west direction; see Figure 2. To each removed
edge, we associate a cost of jumping across it given by the weight of that edge. Then
F (a, b;m,n) is precisely the smallest total cost one has to pay while traversing through
the random walk web to get from (a, b) to (m,n). In the special case where the ξ′ijs and
η′ijs are all equal to 1, this is simply the smallest number of jumps one has to make
between the different random walks. The diffusive limit of the random walk web is the
Brownian web, and so F converges to a directed metric on the Brownian web. This is
proven in [12]. See [5] and the references therein for a survey on the Brownian web.

2 Main results

Let FH(m,n) be the first-passage value at (m,n) in the SJ model with weights Bijξij
on horizontal edges (i − 1, j) → (i, j) and FV (m,n) the first-passage value at (m,n)
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for the SJ model on vertical edges with weights (1 − Bij)ηij (that is, we change all
the weights on vertical edges to be 0 for FH and all the weights on horizontal edges
to be 0 for FV ). Let fH and fV be the corresponding limit shapes. Clearly, we have
FH(m,n) ≤ F (m,n), since we can simply ignore any weights picked up along vertical
edges when following a geodesic for F and this gives a valid path for FH . Similarly, we
also have FV (m,n) ≤ F (m,n). Passing to the limit, this implies the corresponding bound
on limit shapes:

max(fH(x, y), fV (x, y)) ≤ f(x, y) (2.1)

for all x, y ≥ 0. Our first result is that equality holds in (2.1).

Theorem 2.1.

max(fH(x, y), fV (x, y)) = f(x, y)

As we will see later, fH(x, y) = 0 for all x ≤ (1 − p)y/p and fV (x, y) = 0 for all
x ≥ (1− p)y/p, so Theorem 2.1 can be rewritten as

f(x, y) =

{
fH(x, y) if x ≥ 1−p

p y

fV (x, y) if x < 1−p
p y.

(2.2)

Since the scaled first-passage functions converge to their limit shape, it follows that

F (bnxc, bnyc) = FH(bnxc, bnyc) + o(n) (2.3)

for any x > (1− p)y/p, and a similar asymptotic holds with FV when x < (1− p)y/p. Thus
the plane is divided into two regions, one where essentially only the horizontal weights
matter, and one where only the vertical weights matter. Numerical simulations seem
to show that the error term is actually of much smaller order than o(n), and that the
equality max(fH(x, y), fV (x, y)) = f(x, y) almost holds even in the prelimit.

Next we consider the special case where at least one of the ξij ’s or ηij ’s are Bernoulli
distributed (without loss of generality, we can assume it is the ξij ’s). Thus Bijξij also
follows a Bernoulli distribution; we denote by q its probability of success. In this situation,
we can show that the error in (2.3) is in fact o(n1/3). As a consequence, we obtain the
following limiting fluctuations result.

Theorem 2.2. Suppose that Bijξij follow a Bernoulli(q) distribution. Assume 0 < q < 1,
and let x, y be positive and satisfying x > (1− q)y/q. Define

χ(x, y) =

[√
q(1− q)
xy

(
√
qx−

√
(1− q)y)2(

√
(1− q)x+

√
qy)2

]1/3
.

Then
nf(x, y)− F (nx, ny)

χ(x, y)n1/3
⇒ TWGUE (2.4)

Here TWGUE is the Tracy–Widom GUE distribution.

Theorem 2.2 is known for the SJ model; this was first proven by Johansson in [6]. This
was further extended to a functional version by Dauvergne, Nica and Virág in [4]. We
state it here in our language as it will be of use in the proof of Theorem 2.2.

Theorem 2.3. [4, Corollary 6.11] Consider the Seppäläinen–Johansson model with
Bernoulli(q) weights with 0 < q < 1, and let x, y be positive and satisfying x > (1− q)y/q.
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Define

τ(x, y) = 2

[
x2

y
√
q(1− q)

(
√
qx−

√
(1− q)y)(

√
(1− q)x+

√
qy)

]1/3

χ(x, y) =

[√
q(1− q)
xy

(
√
qx−

√
(1− q)y)2(

√
(1− q)x+

√
qy)2

]1/3

ρ(x, y) = q −
√
q(1− q)y

x
.

Then
FH(nx+ τ(x, y)n2/3t, ny)− nfH(x, y)− τ(x, y)n2/3tρ(x, y)

χ(x, y)n1/3
⇒ −A1(t) (2.5)

with respect to uniform convergence on compact sets. Here A1(t) is the top line of the
Airy line ensemble.

The Airy line ensemble is a collection of continuous stochastic processes A1,A2, . . .

with the property that

A1(t) ≥ A2(t) ≥ . . . (2.6)

for all t. Präfer and Spohn first constructed a process with the same finite distributions in
[10] as the scaling limit of the polynuclear growth model, however it was only shown in
[3] that there is a version of this process with continuous sample paths that satisfies (2.6).
That is, the processes A1,A2, . . . can be coupled together in such a way that they are
almost surely non-intersecting. The top line A1 is usually called the Airy2 process, and
is the scaling limit of the largest eigenvalue in the Dyson Brownian motion; see [7]. In
particular, A1(0) follows the Tracy–Widom GUE distribution. For our purposes, this last
fact and the continuity of the paths of A1 are the only properties of the Airy2 process
that we will need.

Setting t = 0 in (2.5) shows that the fluctuations of the SJ first-passage value converge
in distribution to the Tracy–Widom GUE distribution. Our contribution is to extend this
result to the generalized SJ model. The scaling exponents and coefficients in (2.5)
are exactly the same in both models, as well as the limiting distribution. This further
reinforces this behaviour of F being almost completely determined by only one set of
weights on either side of the critical line.

It is believed that (2.5) should be universal, in the sense that the scaling exponents
and limiting distribution should be the same for any choice of distribution of the weights
with sufficiently many moments, and thus the SJ model should be in the Kardar–Parisi–
Zhang (KPZ) universality class. As the proof of Theorem 2.2 will show, for any set of
weights for which (2.5) holds for the SJ model, the convergence of the marginal at 0 also
holds in the generalized case.

3 Proof of Theorem 2.1

Throughout the next two sections, we will usually simplify notation by omitting the
floor function when evaluating F or FH at non-integer points. It is then understood that
if a and b are not integers, then F (a, b) is defined to be F (bac, bbc). The main ingredient
which goes in the proof of Theorem 2.1 is the following curious identity.

Lemma 3.1. Let Bij ∈ {0, 1}, and let ξij , ηij be collections of real numbers. Let F (m,n)
be the first passage value from (0, 0) to (m,n) with weights ωij = Bijξij on horizontal
edges (i− 1, j)→ (i, j) and weights ω̃ij = (1−Bij)ηij on vertical edges (i, j − 1)→ (i, j),
and let FH(m,n) be the first passage value from (0, 0) to (m,n) where the weights on
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the horizontal edges are ωij and the weights on the vertical edges are 0 except for the
weights on the y-axis which are ω̃0j . Suppose that

ξij ≥ 0 for all i, j ≥ 0,

ηij ≥ 0 for all i ≥ 1, j ≥ 0,

η0j ≤ 0 for all j ≥ 0,

that is the ξij ’s and ηij ’s are all non-negative except for the ηij ’s lying on the y-axis which
are all non-positive. Then

F (m,n) = FH(m,n)

for all m,n.

Thus if one replaces the weights on the y-axis with non-positive weights, then the
first-passage value corresponds exactly to the first-passage value on horizontal edges.
That is, we can completely ignore any vertical edges not on the y-axis; given a geodesic
from (0, 0) to (m,n), it cannot pass through a vertical edge of non-zero weight except for
edges on the y-axis. Lemma 3.1 is deterministic and holds for arbitrary collections of
numbers ξij , ηij and Bij satisfying the conditions in the lemma. A similar result holds
with weights on the x-axis changed to being non-positive and first-passage on vertical
edges.

Proof. Let Xij , Yij be the horizontal and vertical increments for F :

Xij = F (i, j)− F (i− 1, j)

Yij = F (i, j − 1)− F (i, j)

and define XH
ij and Y Hij similarly for FH . If we’re given all the increments of a model, we

can deduce what the first passage values are by just adding/subtracting the increments:

F (m,n) =

m∑
i=1

Xi0 −
n∑
j=1

Ymj

(and similarly for FH). It is therefore enough to show that Xij = XH
ij and Yij = Y Hij for

all i, j. Since any path from (0, 0) to (i, j) must pass through exactly one of the vertices
(i− 1, j) or (i, j − 1), it is easy to see that F and FH satisfy the recursions

F (i, j) = min(F (i− 1, j) + ωij , F (i, j − 1) + ω̃ij)

FH(i, j) = min(FH(i− 1, j) + ωij , FH(i, j − 1)).
(3.1)

Using (3.1), we obtain recursions for Xij and Yij:

Xij = min(F (i− 1, j) + ωij , F (i, j − 1) + ω̃ij)− F (i− 1, j)

= min(ωij , Xi,j−1 + Yi−1,j + ω̃ij)

and

Yij = F (i, j − 1)−min(F (i− 1, j) + ωij , F (i, j − 1) + ω̃ij)

= max(Xi,j−1 + Yi−1,j − ωij ,−ω̃ij).

Now, suppose that Xi,j−1 and Yi−1,j are both non-negative. By definition of the model, at
least one of ωij or ω̃ij must be 0. If ω̃ij = 0, then Yij = max(Xi,j−1 + Yi−1,j − ωij , 0). If
ωij = 0, then because Xi,j−1 + Yi−1,j and ω̃ij are non-negative,

Yij = max(Xi,j−1 + Yi−1,j ,−ω̃ij) = Xi,j−1 + Yi−1,j

= max(Xi,j−1 + Yi−1,j − ωij , 0).
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Likewise, if both Xi,j−1 and Yi−1,j are non-negative and ω̃ij = 0, then

Xij = min(ωij , Xi,j−1 + Yi−1,j),

and if instead ωij = 0, then

Xij = min(0, Xi,j−1 + Yi−1,j + ω̃ij) = 0 = min(ωij , Xi,j−1 + Yi−1,j).

Note also from these recursions that Xij and Yij are then both non-negative. Using (3.1)
for FH and the fact that vertical edges have weight 0 in this model, we find

XH
ij = min(XH

i,j−1 + Y Hi−1,j , ωij)

and
Y Hij = max(0, XH

i,j−1 + Y Hi−1,j − ωij).

So the increments for F and FH satisfy the exact same recursion provided the increments
for F are non-negative. The increments are indeed non-negative; this is clear when i = 0

or j = 0 since ξij ≥ 0 and ηi0 ≤ 0 for all i and j, and the general case follows by double
induction on (i, j). Finally the boundary conditions are the same since the weights on
the edges of both axes are the same.

We apply Lemma 3.1 to the special case where the weights on the y-axis are zero.
Since the first-passage value is the same as FH(m,n) when we change all the weights
on the y-axis to be zero, there must be a geodesic π for FH(m,n) which does not pass
through any vertical edge of non-zero weight except possibly on the y-axis. We obviously
have S(π) ≥ F (m,n), and the only difference between these two are the extra weights
picked up by π along the y-axis:

F (m,n) ≤ S(π) = FH(m,n) +

Z(π)∑
j=1

(1−B0j)η0j

where Z(π) = min{k ≥ 0 : (1, k) ∈ π} is the position where π exits the y-axis (when
Z(π) = 0, we interpret the sum as being 0). Since π is a geodesic for FH(m,n), we have
Z(π) ≤ D(m,n), where D(m,n) is the top-most departure point from the y-axis that a
geodesic for FH can take:

D(m,n) = max{Z(π) : π is a geodesic for FH(m,n)}
= max{k ≥ 0 : FH(0, k;m,n) = FH(m,n)}.

Note that D(m,n) is independent of the ηij ’s since it is defined completely in terms of
first-passage percolation with the weights Bijξij on horizontal edges. Thus, along with
the inequality (1−B0j) ≤ 1, we have the upper bound

F (m,n) ≤ FH(m,n) +

D(m,n)∑
j=1

η0j . (3.2)

Together with the obvious lower bound F (m,n) ≥ FH(m,n), Theorem 2.1 will be proved
for y ≤ (1− p)x/p provided that we can show

1

n

D(nx,ny)∑
j=1

η0j → 0 (3.3)

in probability (this will imply F (nx, ny)/n→ fH(x, y) in probability, but since we know
that F (nx, ny)/n→ f(x, y) almost surely by the subadditive ergodic theorem and almost
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sure convergence implies convergence in probability, we thus have F (nx, ny)/n →
fH(x, y) almost surely). As mentioned above, D(m,n) is independent of the ηij ’s, so by
the law of large numbers, (3.3) is equivalent to

D(nx, ny)
n

→ 0 (3.4)

in probability. It will be more convenient to work with the bottom-most entry point
E(m,n) to the line x = m:

E(m,n) = max{k ≥ 0 : FH(m,n− k) = FH(m,n)}.

We can see that E(m,n) has the same law as D(m,n), since it corresponds exactly to
the bottom-most departure point for first-passage percolation with down-left paths from
(m,n) to (0, 0). So (3.4) is equivalent to showing that

E(nx, ny)
n

→ 0 (3.5)

in probability. To get Theorem 2.1 for x < (1− p)y/p, one can use the same argument as
above but with first-passage percolation on vertical edges instead and by considering
the right-most departure from the x-axis and left-most entry to the line y = n. The proof
for this case is exactly the same so we will not write it down.

Lemma 3.2. Let ωij be i.i.d. and non-negative, and let fH be the limit shape for the SJ
model on horizontal edges with weights ωij . Let p = P(ωij = 0). Then fH(x, y) > 0 if and
only if x > p

1−py.

Proof. First assume that 0 < x < py/(1 − p) (the case where x = 0 is trivial, since
FH(0, n) = 0 for all n). Note in particular that this implies p > 0 in that case. In order
for FH(m,n) to be 0, there has to be a path from the origin to (m,n) which only visits
edges of weight 0. Every time the path sees a horizontal edge of weight 0, it will take
it, otherwise it will keep moving up until it sees an edge of weight 0. The number of
up steps it needs to take before it sees such an edge has the geometric distribution on
{0, 1, . . . } with probability of success p, and it needs to take m right steps. So

P(FH(m,n) = 0) = P(Z1 + · · ·+ Zm ≤ n)

where Z1, . . . , Zm are i.i.d. Geo(p) random variables. Take bnxc and bnyc instead of m
and n. Then for θ > 0, we have, by Markov’s inequality,

P(FH(bnxc, bnyc) 6= 0) = P(Z1 + · · ·+ Zbnxc > bnyc)

= P(eθ(Z1+···+Zbnxc) > eθbnyc) ≤ E(e
θZ1)bnxc

eθbnyc

= exp(bnxc log p− bnxc log(1− (1− p)eθ)− θbnyc).

There is some 0 < ε < 1 such that x = (1− ε)py/(1− p). Take

θ := log

(
y

(1− p)(x+ y)

)
.

By this condition on x and y, we have θ = − log(1− εp) > 0. Substituting θ in the above,
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we then find

P(FH(bnxc, bnyc) 6= 0)

≤ exp

(
bnxc log p− bnxc log

(
1− (1− p)

1− εp

)
+ bnyc log(1− εp)

)
= exp((bnxc+ bnyc) log(1− εp)− bnxc log(1− ε))
≤ exp((nx+ ny − 2) log(1− εp)− nx log(1− ε))

=

(
1

1− εp

)2

exp

(
nx

[
1− εp
p(1− ε)

log(1− εp)− log(1− ε)
])

.

Let g(ε) be the expression in square brackets above. Then

g′(ε) =
(1− p) log(1− εp)

p(1− ε)2
< 0

so g is strictly decreasing. Since g(0) = 0, it follows that g(ε) < 0 for every 0 < ε < 1, and
therefore the above probabilities are summable in n. By the Borel–Cantelli lemma, it
follows that FH(bnxc, bnyc) is 0 for all but finitely many n almost surely, and thus the
limit shape must satisfy fH(x, y) = 0. This proves that fH(x, y) = 0 for all x < py/(1− p),
and by continuity, we obtain this for x = py/(1− p) as well.

Finally assume x > py/(1− p), and choose q > p such that x > qy/(1− q). Since

1− p = P(ωij > 0) = lim
s↓0
P(ωij > s),

there is some c > 0 such that P(ωij > c) > 1 − q, or equivalently that P(ωij ≤ c) < q.
Define new weights ω̃ij as follows:

ω̃ij =

{
0 if ωij ≤ c
c if ωij > c.

Then we have ωij ≥ ω̃ij for all i, j, and ω̃ij is c times a Bernoulli (1− s) for some 0 ≤ s < q.

With f̃H the limit shape of the ω̃ij ’s (which we can compute explicitly using (1.2)), we
then have

fH(x, y) ≥ f̃H(x, y) = c(
√
(1− s)x−√sy)2 > 0.

Lemma 3.3. With the hypotheses of the previous lemma and the assumption that
p > 0, we have for any fixed x that the function y 7→ fH(x, y) is strictly decreasing on
[0, (1− p)x/p].

Proof. Let 0 ≤ y1 < y2 < (1− p)x/p, and pick any z > (1− p)x/p. Then there is a t ∈ (0, 1)

such that y2 = (1 − t)y1 + tz. By Lemma 3.2, fH(x, y1) > 0 and fH(x, z) = 0. Since
y 7→ fH(x, y) is convex, it follows that

fH(x, y2) = fH(x, (1− t)y1 + tz) ≤ (1− t)fH(x, y1) + tfH(x, z)

= (1− t)fH(x, y1) < fH(x, y1).

We are now ready to show (3.5) and conclude the proof of Theorem 2.1. Let q =

P(Bijξij = 0). Then for a point (x, y) satisfying x > qy/(1− q), we have that the function
z 7→ fH(x, z) is strictly decreasing in a neighbourhood of y by Lemma 3.3. So for all ε > 0

small enough, fH(x, y − ε) > fH(x, y), and because

FH(nx, ny)

n
→ fH(x, y),

FH(nx, n(y − ε))
n

→ fH(x, y − ε)
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almost surely, it follows that

P(E(nx, ny) ≥ nε) = P(FH(nx, ny) = FH(nx, n(y − ε)))→ 0.

By the remarks leading up to (3.5), this shows that f(x, y) = fH(x, y) for x > qy/(1 −
q). As explained previously, a symmetric argument using first-passage percolation on
vertical edges shows that we also have f(x, y) = fV (x, y) for x < (1 − r)y/r where
r = P((1− Bij)ηij = 0). By continuity of the limit shape and Lemma 3.2, we also have
f(x, y) = fH(x, y) = 0 for x = qy/(1− q) and f(x, y) = fV (x, y) = 0 for x = (1− r)y/r.

In the case where both ξij and ηij are positive almost surely, we are done (since then
we have q = 1− p and r = p). If not, then we still have to deal with points in between
the lines x = qy/(1− q) and x = (1− r)y/r. However on those lines, we have f(x, y) = 0,
and f is non-negative and convex. So f must also be zero in between those lines, and
therefore equals both fH and fV there. This shows that f(x, y) = max(fH(x, y), fV (x, y))

in all cases and concludes the proof of Theorem 2.1!

4 Proof of Theorem 2.2

We will abbreviate things in the statement of Theorem 2.3 by writing τ = τ(x, y),
χ = χ(x, y) and ρ = ρ(x, y). Also for this particular choice of x and y, we have by
Theorem 2.1 and Equation (2.2) that fH(x, y) = f(x, y), and so we will write f instead
of fH . Write Fn(t) for the left-hand side of (2.5). Thus we have Fn(t) ⇒ −A1(t) with
respect to uniform convergence on compact sets.

By the Skorokhod representation theorem [2, Theorem 6.7], the Fn’s and A1 can
be coupled together on the same probability space such that Fn → −A1 uniformly on
compact sets, almost surely. We henceforth work with this particular coupling. Fix ε > 0

and define

tn =

ε
yn

1/3x

(n− ε
yn

1/3)2/3τ
.

Then
Fn− ε

yn
1/3(tn)→ −A1(0)

(we again use the convention that Fk = Fbkc when k is not an integer). Indeed, let K be
a compact subset of R which contains all the tn’s. Then

|Fn− ε
yn

1/3(tn) +A1(0)| ≤ sup
s∈K
|Fn− ε

yn
1/3(s) +A1(s)|+ |A1(tn)−A1(0)|.

The first term on the right-hand side above converges to 0 since Fn → −A1 uniformly on
K, and the second term converges to 0 because A1 is continuous. We have

Fn− ε
yn

1/3(tn) =
FH(nx, ny − εn1/3)− (n− ε

yn
1/3)f(x, y)− ε

yxn
1/3ρ

(n− ε
yn

1/3)1/3χ
,

and so

FH(nx, ny − εn1/3)− (n− ε

y
n1/3)f(x, y)− ε

y
xρn1/3 = −χA1(0)n

1/3 + o(n1/3). (4.1)

Since Fn− ε
yn

1/3(0)→ −A1(0), we also have

FH(nx, ny)− nf(x, y) = −χA1(0)n
1/3 + o(n1/3). (4.2)

Now subtract (4.2) from (4.1) and divide by n1/3. After some rearranging, this yields

FH(nx, ny − εn1/3)− FH(nx, ny)

n1/3
=
ε

y
(xρ− f(x, y)) + o(1). (4.3)
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Since we are in the Bernoulli(q) case, f(x, y) is given by (1.2), and so we find

xρ(x, y)− f(x, y) = qx−
√
q(1− q)xy − (

√
qx−

√
(1− q)y)2

=
√
q(1− q)xy − (1− q)y > 0

by our assumption on x, y and q. This together with (4.3) implies that for all sufficiently
large n, we must have

FH(nx, ny) 6= FH(nx, ny − εn1/3).

Consequently, the bottom-most entry point E(nx, ny) is at most εn1/3, and this implies

lim sup
n→∞

E(nx, ny)
n1/3

≤ ε

almost surely. Since ε was arbitrary, it follows that

E(nx, ny)
n1/3

→ 0

almost surely, and because D(nx, ny) has the same distribution as E(nx, ny), we deduce
that

D(nx, ny)
n1/3

→ 0

in probability. By the law of large numbers, it then follows that

1

n1/3

D(nx,ny)∑
j=1

η0j → 0 (4.4)

in probability. Let us note that it is fairly straightforward to generalize the above
argument to obtain that

E(nx+ τn2/3t, ny)

n1/3
→ 0 (4.5)

uniformly for t in a compact set almost surely. However, while it is true that E(m,n) and
D(m,n) have the same distribution for a fixed endpoint (m,n), it is not the case that the
joint laws of {E(m, k) : k ∈ S} and {D(m, k) : k ∈ S} are the same for k varying in some
set of integers S. We therefore cannot conclude that (4.5) holds for D; this is the only
obstacle in obtaining uniform convergence as in (2.5) for the generalized SJ model.

We are now ready to conclude. Let G be a bounded, uniformly continuous function on
R, and let ε > 0. Then there is a δ > 0 such that |G(x)−G(y)| < ε whenever |x− y| < δ.
By (3.2),

FH(nx, ny)− nf(x, y)
χn1/3

≤ F (nx, ny)− nf(x, y)
χn1/3

≤ FH(nx, ny)− nf(x, y)
χn1/3

+
1

χn1/3

D(nx,ny)∑
j=1

η0j .

Thus if the scaled fluctuations of F (nx, ny) and FH(nx, ny) are at least δ apart from each
other, then

1

χn1/3

D(nx,ny)∑
j=1

η0j ≥ δ.
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Hence,

E

∣∣∣∣G(nf(x, y)− F (nx, ny)χn1/3

)
−G

(
nf(x, y)− FH(nx, ny)

χn1/3

)∣∣∣∣
≤ 2 sup |G|P

 1

χn1/3

D(nx,ny)∑
j=1

η0j ≥ δ

+ ε→ ε

by (4.4). Since ε was arbitrary, it then follows along with Theorem 2.3 applied with t = 0

that

lim
n→∞

E

[
G

(
nf(x, y)− F (nx, ny)

χn1/3

)]
= lim
n→∞

E

[
G

(
nf(x, y)− FH(nx, ny)

χn1/3

)]
=

∫ ∞
−∞

G(x)fGUE(x)dx

where fGUE is the Tracy–Widom GUE density. This concludes the proof of Theorem 2.2!
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