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Abstract

We prove that every locally finite vertex-transitive graph G admits a non-constant
Lipschitz harmonic function.
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1 Introduction

In this paper we are interested in the space of Lipschitz harmonic functions on a
graph (precise definitions will be given below). The structure of the space of such
functions played a crucial role in Kleiner’s proof of Gromov’s theorem [4, 8, 10] and
has thus attracted some attention [11, 5]. In particular, Kleiner showed that any Cayley
graph supports a non-trivial Lipschitz harmonic function. Our purpose in this paper is to
generalize this fact to vertex-transitive graphs. Any Cayley graph is vertex-transitive,
but the opposite is not true. In fact, there exist vertex-transitive graphs which are quite
far from Cayley graphs in a precise sense [1]. Generalizing results from Cayley graphs
to vertex-transitive graphs is sometimes challenging, see for example [12].

In this note we prove the following theorem, answering a problem of Georgakopoulos
and Wendland [2, Problem 1.1] (who also proved a partial result, see [2, Proposition
3.1]). Another partial result was proved much earlier by Trofimov [13], who showed that
any infinite vertex-transitive graph supports a non-constant harmonic function, but with
weaker control on the growth of the function.

Theorem 1.1. Every infinite, locally finite vertex-transitive graph G admits a non-
constant Lipschitz harmonic function.

2 Proof of Theorem 1.1

We start with some standard definitions.

Definition 2.1. For a function f : V → C we define ∇f to be a function on the directed
edges of the graph V by ∇f(v, w) = f(v) − f(w). We define ∆f to be a function on V

by ∆f(v) =
∑

w∼v(f(v) − f(w)). A function f : V → C on a graph G = (V,E) is called
harmonic if ∆f ≡ 0. We will say that f is Lipschitz if ∇f ∈ `∞(E).
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With the theorem now completely defined we can start the proof, but, before starting
the proof, let us discuss shortly the issue of unimodularity. A locally compact group is
called unimodular if its left and right Haar measures are identical, and a vertex-transitive
graph is called unimodular if its automorphism group, with the topology of pointwise
convergence, is unimodular. Unimodularity can play an important role in studying
probability on vertex-transitive graphs, see for example, [6, Chapter 12]. Contrariwise,
non-unimodular vertex-transitive graphs have the so-called modular function which can
also aid in their analysis, see e.g. [3]. What we will use below is the fact, first proved in
[9], that any amenable vertex-transitive graph is unimodular.

Definition 2.2. A graph G = (V,E) is called amenable if there exists a sequence of
subsets Xn ⊆ V such that

lim
n→∞

|∂Xn|
|Xn|

= 0,

where ∂X = {v ∈ V \X : ∃ w ∈ X,w ∼ v} is the outer vertex boundary of X.

Note that outer vertex boundary in this definition can be changed to any other type
of boundary. The following fact is well-known, and we include its proof for completeness
of the exposition.

Lemma 2.3. Any bounded degree amenable graph G = (V,E) admits a sequence of
functions fn such that

‖∇fn‖`2(E) = 1, ‖∆fn‖`2(V ) → 0.

Proof. We first show that the spectrum of the operator ∆ contains 0. This is well-known
(sometimes called Buser’s inequality), but let us give the proof nonetheless. We take
hn := 1√

|Xn|
· 1Xn to be the normalized characteristic functions of the sets Xn from

Definition 2.2. They satisfy

‖hn‖`2(V ) = 1, ‖∆hn‖2`2(V ) ≤
|∂Xn| · (max deg(G) + 1)

|Xn|
→ 0.

Thus indeed 0 is in the spectrum of ∆ (as an operator on `2(V )). Further, by the maximum
principle there is no zero eigenfunction.

By the spectral theorem, the positive self-adjoint operator ∆ is unitary equivalent to a
multiplication operator MF on L2(Y, ν) (for some measure space (Y,F , ν)) that multiplies
by some non-negative function F (y). That is, there is a unitary operator U : `2(V ) →
L2(Y, ν) such that U∗MFU = ∆. The argument above shows that ν(F−1((0, ε])) > 0 for
any ε > 0. Define fε = U∗1F−1((0,ε]). Then

〈∆fε,∆fε〉 =

∫
F−1((0,ε])

F 2(y) dν(y) ≤ ε
∫
F−1((0,ε])

F (y) dν(y)

= ε〈fε,∆fε〉

where the equalities follow from the unitary equivalence. Since 〈f,∆f〉 = ‖∇f‖2`2(E), this
gives us a sequence of functions fn on G such that

‖∇fn‖`2(E) = 1, ‖∆fn‖`2(V ) → 0.

Proof of main theorem. The non-amenable case follows from Piaggio and Lessa [7]. To
be more precise, they prove that any stationary random graph for which random walk
has positive entropy has an infinite dimensional space of bounded harmonic functions.
Since vertex transitive graphs are stationary random graphs and any bounded function is
Lipschitz, it remains to show that random walk on any non-amenable graph has positive
entropy. To see this, we may assume that the random walk is lazy, and note that by
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Cheeger’s inequality [6, §7.2] non-amenability implies that the spectral radius of the
random walk is strictly smaller then 1. It follows that the transition probabilities decay
exponentially in the number of steps, and therefore the entropy of the random walk
grows linearly with the number of steps i.e. it has positive entropy. This finishes the
non-amenable case.

We therefore assume that the graph G = (V,E) is amenable. Our proof will be similar
to the proof of Shalom and Tao [8, 10].

By a well-known theorem of Soardi and Woess [9, Corollary 1], a vertex-transitive
graph G is amenable if and only if its automorphism group Aut(G) is amenable and
unimodular. We write µ for the Haar measure on Aut(G), which is bi-invariant by
unimodularity, normalized so that µ(Stab(v)) = 1 for any v ∈ V .

Let us fix some vertex o ∈ V . For any a, b ∈ V , denote by Ha,b ⊆ Aut(G) the set
of all automorphisms of G that map a to b. We will use similar notations for multiple
pairs of vertices / edges. For instance, given e, e0 ∈ E, we denote by He,e0 the set
of automorphisms of G that map e to e0 (as directed edges). Take automorphisms
fo,a, fb,o ∈ Aut(G) so that fo,a(o) = a and fb,o(b) = o. Then Stab(o) = Ho,o = fb,oHa,bfo,a,
so µ(Ha,b) = µ(Stab(o)) = 1 (since µ is bi-invariant).

Take fn from Lemma 2.3, note that∑
e0=(o,v)∈E

∑
e∈E
|∇fn(e)|2 · µ(He,e0) = ‖∇fn‖2`2(E) = 1,

so we may choose an edge e0 with origin at o such that∑
e∈E
|∇fn(e)|2 · µ(He,e0) ≥ 1

deg(G)

for infinitely many n. After passing to a subsequence we can assume that it holds for
all n.

We define new functions gn by

gn(v) =
∑
e∈E

Ce,n

∫
He,e0

fn(T−1v) dµ(T ),

where Ce,n = ∇fn(e). By construction

∇gn(e0) =
∑
e∈E
|∇fn(e)|2 · µ(He,e0) ≥ 1

deg(G)
.

We want to estimate ‖∇gn‖`2(E) and ‖∆gn‖`2(V ). For this purpose define H(e,e0w,v) to be
the set of automorphisms that take the edge e to e0 and the vertex w to v. Note that
µ(H(e,e0w,v)) ≤ µ(He,e0) ≤ 1. Therefore

|∆gn(v)| ≤
∑
e∈E
|Ce,n|

∑
w∈V

∫
H(

e,e0
w,v)

|∆fn(T−1v)| dµ(T )

=
∑
e∈E

∑
w∈V
|Ce,n| · µ (H(e,e0w,v))) · |∆fn(w)|

≤ ‖(Ce,n)e‖`2(E) ·
∥∥∥(µ (H(e,e0w,v)))e,w

∥∥∥
`2(V )→`2(E)

· ‖∆fn‖`2(V )

≤ ‖∆fn‖`2(V ) → 0.

The second inequality follows by using Cauchy-Schwarz for the sequences (Ce,n)e and∑
w∈V µ (H(e,e0w,v))) · |∆fn(w)| (note that the second norm is the operator norm). On the
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last step we used the Riesz-Thorin inequality ‖A‖2 ≤ ‖A‖1 · ‖A‖∞ and the fact that∑
e∈E

µ (H(e,e0w,v)) = µ(Hw,v) = 1,
∑
w∈V

µ (H(e,e0w,v)) = µ(He,e0) ≤ 1.

Define ∇̂ by
∇̂f(v) :=

∑
w∼v
|f(w)− f(v)|.

Denoting by e+ the origin of the edge e, the same reasoning gives us

|∇gn(e)| ≤ |∇̂gn(e+)| ≤ ‖∇̂fn‖`2(V ) ≤
√

deg(G) · ‖∇fn‖`2(E) =
√

deg(G).

Let us sum everything up. We have ‖∇gn‖l∞(E) ≤
√

deg(G), ‖∆gn‖`∞(V ) → 0 and
∇gn(e0) ≥ 1/deg(G). After adding constant functions we can assume that gn(o) = 0. Since
∇gn is bounded, gn(v) is bounded (with a bound that depends on v) and we can use
compactness to pass to a subsequence where gn converges pointwise to some function g.
It follows that ‖∇g‖`∞(E) ≤

√
deg(G) and ∆g = 0. Finally, |∇g(e0)| > 1/degG so g is not

constant. This finishes the proof.
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