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Abstract

Let Λ∗ be the rate function in the large deviation principle for the sums X1 + · · · +
Xn of independent identically distributed random variables X1, X2, . . .. It is shown
that Λ∗(x) ∼ − lnP(X1 ≥ x) (as x → ∞) if and only if lnP(X1 ≥ x) ∼ L0(x) for
some concave function L0. The main ingredient of the proof is the general, explicit
expression of a suitable quasi-minimizer in t ≥ 0 of the Bernstein–Chernoff upper
bound e−txEetX1 on P(X1 ≥ x), which is amenable to analysis and, at the same time,
is close enough to a true minimizer.
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Let X,X1, X2, . . . be i.i.d random variables, and let Sn := X1 + · · ·+Xn for natural n.
By a large deviation principle (LDP) – see e.g. [3, Corollary 2.2.19], for all real x

`(x) := lim
n→∞

1

n
lnP(Sn ≥ nx) = − inf

y∈[x,∞)
Λ∗(y), (1)

where

Λ∗(y) := sup
t∈R

(ty − Λ(t)) and Λ(t) := lnEetX , (2)

so that Λ∗ is the Fenchel–Legendre transform of Λ. In particular, for each real x the limit
`(x) in (1) always exists (and is ≤ 0), but may take the value −∞. We let ln 0 := −∞.

For a formulation of a general LDP and corresponding historical notes, see e.g. [3,
Sections 1.2 and 1.3]. The LDP allows one to find the asymptotics of the logarithm of
small probabilities of regular enough sets. Under additional assumptions, it is in some
cases possible to find the asymptotics of small probabilities themselves; see e.g. [5,
Chapter VIII] and [1, 4]; these results go back to Cramér (1938) [2].

What can be said about the asymptotics of `(x) (as x→∞)?
Before answering this question in the main result of this note, let us first do some

light cleaning:

Proposition 1. If Λ(t) =∞ for all real t > 0, then Λ∗(y)→ 0 as y →∞.
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Asymptotics of the rate function

Proof. If Λ(t) = ∞, not only for all real t > 0, but also for all real t < 0, then, by the
definition of Λ∗(y) in (2), Λ∗(y) = 0 for all real y, so that the conclusion of Proposition 1
holds.

It remains to consider the case when Λ(t0) <∞ for some real t0 < 0. The condition
that Λ(t) =∞ for all real t > 0 and the definition of Λ∗(y) imply

Λ∗(y) = sup
t≤0

(ty − Λ(t)). (3)

Since the function Λ is convex and > −∞ and Λ(0) = 0, it follows that Λ is real-valued
on the interval [t0, 0]. So, on the interval (t0, 0) the function Λ has a nondecreasing
(say) right derivative Λ′. (In this case, it is easy to see, using dominated convergence,
that Λ is differentiable on (t0, 0).) So, for each s ∈ (t0, 0) and all real t we have Λ(t) ≥
Λ(s) + Λ′(s)(t− s) = Λ(s)− Λ′(s)s+ Λ′(s)t. Hence, in view of (3),

Λ∗(y) ≤ −Λ(s) + Λ′(s)s+ sup
t≤0

t(y − Λ′(s)) = −Λ(s) + Λ′(s)s

if y ≥ Λ′(s), which implies that

lim sup
y→∞

Λ∗(y) ≤ −Λ(s) + Λ′(s)s, (4)

for each s ∈ (t0, 0). By dominated convergence, Λ(s)→ Λ(0) = 0 as s ↑ 0. Also, since Λ′ is
nondecreasing and real-valued on the interval (t0, 0), there exists lims↑0 Λ′(s) ∈ (−∞,∞].
It follows that lim sups↑0 Λ′(s)s ≤ 0 and hence lim sups↑0(−Λ(s) + Λ′(s)s) ≤ 0. So, by (4),
lim supy→∞ Λ∗(y) ≤ 0. On the other hand, by (say) (3), Λ∗(y) ≥ 0t− Λ(0) = 0 for all real
y. This completes the proof of Proposition 1.

It follows from Proposition 1 and the nonnegativity of Λ∗ (mentioned at the end of
the proof of Proposition 1) that, if Λ(t) =∞ for all real t > 0, then, by (1), `(x) = 0 for all
real x ≥ 0.

Excluding this trivial case, we will have

Λ(t1) <∞ for some real t1 > 0, (5)

and then, by (2), Λ∗(y) ≥ t1y−Λ(t1)→∞ as y →∞. Also, the function Λ∗ is convex, being
the supremum of affine functions. So, the function Λ∗ is increasing in a neighborhood of
∞ and hence, by (1), for all large enough real x > 0

`(x) = −Λ∗(x). (6)

So, in the “nontrivial” case, the asymptotics of ` reduces to that of the rate function Λ∗.
In a few cases, Λ∗ is an elementary function, and then easily analyzed. E.g., if X has

the standard normal distribution, then Λ∗(x) = x2/2 and hence

`(x) = −Λ∗(x) ∼ lnP(X ≥ x). (7)

If now X has the standard exponential distribution (with mean 1), then Λ∗(x) = x− 1−
lnx ∼ x and hence (7) holds again. Here and in what follows, all asymptotic relations are
understood to hold as x→∞, unless specified otherwise. The other relations involving
x are understood to hold eventually – that is, for all large enough real x > 0.

These examples suggest that, in the “nontrivial” case (when (5) holds), the asymp-
totics

`(x) = −Λ∗(x) ∼ L(x) := ln q(x), (8)
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where

q(x) := P(X ≥ x),

may be somewhat common – provided, of course, that the tail function q varies regularly
enough.

More specifically, since the function Λ∗ is convex, it is obvious that, for (8) to hold,
it is necessary that the function L be asymptotically equivalent to some log-concave
function. Remarkably, this necessary condition turns out to be sufficient as well:

Theorem 2. For (8) to hold (as x→∞), it is necessary and sufficient that

L(x) ∼ L0(x) (9)

for some real-valued concave function L0.

Remark 3. The relation a(x) ∼ b(x) between two expressions with values in the extended
real line is understood here as a(x)/b(x) → 1. In particular, a(x) ∼ b(x) implies that
eventually the value of |b(x)| is not in the set {0,∞}, and hence the value of |a(x)| is not
in the set {0,∞}.

Proof of Theorem 2. Part 1: Necessity: Letting L0 := −Λ∗ in a neighborhood of∞ and
recalling that the function Λ∗ is convex, we see that, for (8) to hold it is indeed necessary
that (9) be true for some real-valued concave function L0.

Part 2: Sufficiency: Assume that (9) holds for some real-valued concave function
L0. We have to show that then (8) holds as well.

The key here will be a particular choice (made in (21)) of a quasi-maximizer tx of
tx− Λ(t) in t such that the expression txx− Λ(tx) is

(i) easy enough to analyze and, at the same time,

(ii) close enough to Λ∗(x) (cf. the definition of Λ∗ in (2)).

Since L(x) → −∞ (as x → ∞), (9) impies that L0(x) → −∞. So, in view of the
concavity of L0, for some τ ∈ [−∞, 0) we have L0(x)/x → τ and hence L(x)/x → τ ,
which in turn implies (5) and therefore (6). That is, eventually

`(x) = −Λ∗(x) = ln inf
t∈R

Q(x, t), (10)

where

Q(x, t) := e−txM(t) and M(t) := EetX . (11)

It also follows that there exists µ := EX ∈ [−∞,∞). So, by Jensen’s inequality, for any
real ν > µ and all x > ν and all t < 0 we have Q(x, t) ≥ et(ν−x) > 1 = Q(x, 0). Therefore,
eventually

`(x) = ln inf
t≥0

Q(x, t). (12)

By the Markov–Bernstein–Chernoff inequality, q(x) ≤ Q(x, t) for all real t ≥ 0. So,
by (12), eventually

`(x) ≥ L(x). (13)

ECP 29 (2024), paper 12.
Page 3/6

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP584
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Asymptotics of the rate function

By the definition of M(t) in (11), for real t > 0,

M(t) = EetX = −
∫ ∞
−∞

dq(u)etu

= −
∫ ∞
−∞

dq(u)

∫ u

−∞
t dv etv

= −
∫ ∞
−∞

t dv etv
∫
[v,∞)

dq(u)

= t

∫ ∞
−∞

dv etvq(v)

= I1 + I2,

(14)

where

I1 := t

∫ x−A

−∞
dv etvq(v) ≤ t

∫ x−A

−∞
dv etv = et(x−A), (15)

I2 := t

∫ ∞
x−A

dv etve−g(v), (16)

A is a real number, depending on A (which latter is to be specified later), and

g(v) := − ln q(v) = −L(v).

Let
g0(v) := −L0(v).

The function g0 is convex, (strictly) increasing (to∞), and <∞ in a neighborhood of
∞ – say on the interval

[a,∞)

for some real a. So, g′0 > 0 on (a,∞), where g′0 is (say) the right derivative of the convex
function g0. In what follows, by default x ∈ (a,∞).

Take now any c ∈ (0, 1) and let

A := A(x) :=
cg0(x)

g′0(x)
, (17)

so that eventually A > 0. Note also that, by the convexity of g0 on [a,∞), we have
(x − a)g′0(x) ≥ g0(x) − g0(a) (for x ∈ (a,∞)), that is, xg′0(x) − g0(x) ≥ ag′0(x) − g0(a), so
that

x−A = (1− c)x+ c
xg′0(x)− g0(x)

g′0(x)
≥ (1− c)x+ c

ag′0(x)− g0(a)

g′0(x)
. (18)

Also, again by the convexity of g0 on [a,∞), there exists limx→∞ g′0(x) ∈ (0,∞]. So,
by (18), x−A→∞ and hence wlog x−A ≥ a, which will be assumed by default in the
sequel.

Let now

k(x) := inf
v∈[x−A,∞)

g(v)

g0(v)
, (19)

so that, in view of (9) and because x−A→∞, we have

k(x)→ 1. (20)

Now comes the crucial point, which is choosing the value of t as follows:

tx := k(x)g′0(x)− 1

A
=
ck(x)g0(x)− 1

A
. (21)
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Using the convexity of g0 on [a,∞) again, we have

g0(v) ≥ hx(v) := g0(x) + g′0(x)(v − x) (22)

for real v ≥ x−A.
Letting t = tx in the rest of the proof and using (16), (19), (22), (21), (20), and (9), we

have

e−txI2 = t

∫ ∞
x−A

dv et(v−x)e−g(v)

≤ t
∫ ∞
x−A

dv et(v−x)e−k(x)g0(v)

≤ t
∫ ∞
x−A

dv et(v−x)e−k(x)hx(v)

= e−k(x)g0(x)+1(ck(x)g0(x)− 1)

= e−k(x)g0(x)(1+o(1)) = q(x)1+o(1).

(23)

Also, by (15), (21), and (20),

e−txI1 ≤ e−tA = e−ck(x)g0(x)+1 = q(x)c+o(1).

In view of (20) and because c ∈ (0, 1) was arbitrary, we now get

e−txI1 ≤ q(x)1+o(1); (24)

alternatively, everywhere above we can replace the constant c ∈ (0, 1) by a variable c(x)

such that c(x)→ 1 but (1− c(x))x→∞. It follows from (12), (11), (14), (24), (23), and
the definition of L(x) in (8) that

`(x) ≤ ln
(
q(x)1+o(1)

)
∼ ln q(x) = L(x). (25)

Finally, (8) follows from (13) and (25).
This completes the sufficiency part of the proof as well.

Remark 4. In view of (21) and (17), it appears that, for large x > 0,

t̃x := g′0(x)− g′0(x)

g0(x)
= g′0(x)

(
1− 1

g0(x)

)
(26)

should in general be a good approximation to a maximizer of tx− Λ(t) in real t – cf. (2).
The expression for t̃x in (26) is obtained from the expression for tx in (21) by replacing
there k(x) by 1 (cf. (20)) and c by 1 (cf. the sentence containing formula (24)). Possibly,
this approximation can be used in other contexts. More transparently, tx and t̃x can be
described as quasi-minimizers in t ≥ 0 of the Bernstein–Chernoff upper bound (BCub)
e−txEetX on P(X ≥ x), which are amenable to general analysis and, at the same time,
are close enough to a true minimizer of the BCub.

In particular, if X has the standard exponential distribution and g0 = g = − ln q (so
that g0 is convex), then t̃x = 1− 1/x is exactly equal, for all real x > 0, to the maximizer
of tx− Λ(t) in real t. If X has the standard normal distribution and again g0 = g = − ln q

(so that g0 is convex), then

t̃x =
ϕ(x)

1− Φ(x)

(
1 +

1

ln(1− Φ(x))

)
= x

(
1− 1 + o(1)

x2

)
, (27)

where ϕ and Φ are, respectively, the p.d.f. and the c.d.f. of the standard normal distribu-
tion, whereas the maximizer of tx− Λ(t) in real t in this case is x.
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