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Abstract

In this note, we establish a qualitative total variation version of Breuer–Major Central
Limit Theorem for a sequence of the type 1√

n

∑
1≤k≤n f(Xk), where (Xk)k≥1 is a

centered stationary Gaussian process, under the hypothesis that the function f has
Hermite rank d ≥ 1 and belongs to the Malliavin space D1,2. This result in particular
extends the recent works of [NNP21], where a quantitative version of this result
was obtained under the assumption that the function f has Hermite rank d = 2 and
belongs to the Malliavin space D1,4. We thus weaken the D1,4 integrability assumption
to D1,2 and remove the restriction on the Hermite rank of the base function. While
our method is still based on Malliavin calculus, we exploit a particular instance of
Malliavin gradient called the sharp operator, which reduces the desired convergence
in total variation to the convergence in distribution of a bidimensional Breuer–Major
type sequence.
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1 Framework and main result

Let us consider X = (Xn)n≥1 a real-valued centered stationary Gaussian sequence
with unit variance, defined on an abstract probability space (Ω,F ,P). Let ρ : N→ R be
the associated correlation function, in other words ρ(|k − `|) = E[XkX`], for all k, ` ≥ 1.
We will also classically denote by N (0, σ2) the law of a centered normal variable with
variance σ2. Set γ(dx) := (2π)−1/2e−x

2/2dx the standard Gaussian measure on the real
line and γd = ⊗dk=1γ its analogue in Rd. We then denote by (Hm)m≥0 the family of
Hermite polynomials which are orthogonal with respect to γ, namely H0 ≡ 1 and

Hm(x) := (−1)me
x2

2
dm

dxm
e−

x2

2 , m ≥ 1.

We denote by L2(R, γ) the space of square integrable real functions with respect to the
Gaussian measure. Recall that a real function f ∈ L2(R, γ) is said to have Hermite rank
d ≥ 0 if it can be decomposed as a sum of the form

f(x) =

+∞∑
m=d

cmHm(x), cd 6= 0.
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For integers k, p ≥ 1, we further denote by Dk,p(R, γ) the Malliavin–Sobolev space
consisting of the completion of the family of polynomial functions q : R→ R with respect
to the norm

||q||k,p :=

∣∣∣∣∣
∫
R

(
|q(x)|p +

k∑
`=1

|q(`)(x)|p
)
γ(dx)

∣∣∣∣∣
1/p

,

where q(`) is the `-th derivative of q. Given a real function f , let us finally set

Sn(f) :=
1√
n

n∑
k=1

f(Xk).

In this framework, the celebrated Central Limit Theorem (CLT) by Breuer and Major
gives sufficient conditions on ρ and f so that the sequence Sn(f) satisfies a CLT.

Theorem 1 (Theorem 1 in [BM83]). If the function f belongs to L2(R, γ) with Hermite
rank d ≥ 1 and if ρ ∈ `d(N), i.e.

∑
N |ρ(k)|d < +∞, then the sequence (Sn(f))n≥1

converges in distribution as n goes to infinity to a normal distribution N (0, σ2), where
the limit variance is given by

σ2 :=

∞∑
m=d

m!c2m
∑
k∈Z

ρ(k)m,

with (cm)m≥d being the coefficients appearing in the Hermite expansion of f .

Recently, under mild additional assumptions, a series of articles has reinforced the
above convergence in distribution into a convergence in total variation, with polynomial
quantitative bounds, see e.g. [KN19, NPY19, NZ21, NNP21]. Recall that the total
variation distance between the distributions of two real random variables X and Y is
given by

dTV(X,Y ) := sup
A∈B(R)

|P(X ∈ A)− P(Y ∈ A)|,

where the supremum runs over B(R), the Borel sigma field on the real line. To the best
of our knowledge, the best statement so far in this direction is the following

Theorem 2 (Theorem 1.2 in [NNP21]). Assume that f ∈ L2(R, γ) has Hermite rank d = 2

and that it belongs to D1,4(R, γ). Suppose that ρ ∈ `d(N) and that the variance σ2 of
Theorem 1 is positive. Then, there exists a constant C > 0 independent of n such that

dTV

(
Sn(f)√

var(Sn(f))
,N (0, 1)

)
≤ C√

n


∑
|k|≤n

|ρ(k)|

 1
2

+

∑
|k|≤n

|ρ(k)| 43

 3
2

 .
The goal of this note is to establish that the convergence in total variation in fact

holds as soon as the function f is in the Malliavin–Sobolev space D1,2(R, γ) and has
Hermite rank d ≥ 1.

Theorem 3. Suppose that f ∈ D1,2(R, γ) has Hermite rank d ≥ 1. Suppose moreover
that ρ ∈ `d(N) and that the variance σ2 of Theorem 1 is positive. Then, as n goes to
infinity

dTV

(
Sn(f)√

var(Sn(f))
,N (0, 1)

)
−−−−−→
n→+∞

0.

Note that, for the sake of simplicity, we only consider here a real Gaussian sequence
(Xn)n≥1 and a real function f but our method is robust and would yield, under simi-
lar covariance and rank assumptions, a convergence in total variation for a properly
renomalized sequence of the type

∑n
k=1 f(X1

k , . . . , X
d
k ) associated with a sequence of

Gaussian vectors (Xn)n≥1 with values in Rd and a function f in the corresponding
Malliavin–Sobolev space D1,2(Rd, γd).
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Overall strategy of the proof and novelty

The detailed proof of Theorem 3 is the object of the next section and the rest of the
paper. Let us sketch here the overall strategy of the proof and compare it to existing
approaches. As done in the above mentioned references, in order to establish the CLT in
total variation, we use the global Malliavin–Stein approach, namely we will show that
there exists a constant ν such that

lim sup
n→+∞

sup
φ
|E [Sn(f)φ(Sn(f))]− ν E [φ′(Sn(f))]| = 0,

where the supremum is taken over C1 function φ with bounded derivatives. Indeed,
this will show both the Gaussianity of the limit and the convergence in total variation.
To do so, also as classically done, we use an integration by parts formula to give an
alternative expression for E [Sn(f)φ(Sn(f))] = E

[
φ′(Sn(f))Γ[Fn,−L−1Sn(f)]

]
, where Γ

is the square field operator and L−1 is the pseudo-inverse Ornstein–Uhlenbeck operator,
see Section 2.1 below.

It is well known that several Malliavin gradients can be associated to the same Γ−
calculus. The main novelty of our approach and its efficiency then lie in the choice
of a particular gradient, the so-called sharp operator, whose definition is recalled in
Section 2.2, to express and control the quantity Γ[Sn(f),−L−1Sn(f)]. Given a random
F ∈ D1,2, the key formula (2.2) below indeed allows to relate the Fourier transform of
the gradient ]F to the Laplace transform of Γ(F, F ). With this tool at hand, one deduces
that the convergence in law (hence in probability) of Γ[Sn(f),−L−1Sn(f)] towards the
constant ν is equivalent to the convergence in distribution towards a constant vector
of the two-dimensional vector (]Sn(f), ]L−1Sn(f)). But again, thanks to our particular
choice of gradient and with no further assumption on the regularity/integrability of f or
its Hermite rank, the latter convergence is an immediate consequence of the standard
two-dimensional Breuer–Major Theorem, see Section 2.3.

The end of the proof then consists in showing that the convergence in probability of
Γ[Sn(f),−L−1Sn(f)] towards ν can be reinforced to a convergence in L1, which can be
done by elementary uniform integrability estimates, via hypercontractivity arguments,
see Section 2.4.

In comparison with the recent references [NZ21, NNP21], our approach only provides
a qualitative CLT in total variation. Indeed, under the sole D1,2 assumption, one cannot
use Malliavin derivatives of order two or higher, nor use any Hölder type inequality. These
last tools are precisely the ones used in the above references to provide quantitative
bounds on remainders, but at the cost of requiring more regularity and integrability.
Otherwise, our direct approach and choice of gradient show that the Hermite rank of
the base function plays no significant role in the CLT.

2 Proof of the main result

As mentioned just above, the setting of the proof of Theorem 3 is the one of Malliavin–
Stein calculus. Note that for each fixed n ≥ 1, the quantity of interest Sn(f) involves only
a finite number of Gaussian coefficients. So let us sketch the framework of Malliavin–
Stein method in the finite dimensional setting, and we refer to [Nua09] or [NP12] for a
more general introduction.

2.1 A glimpse of Malliavin calculus

Let us fix an integer n ≥ 1 and let us place ourselves in the product probability space
(Rn,B(Rn), γn) with γn := ⊗nk=1γ, the n-dimensional standard Gaussian distribution on
Rn. Consider the classical Ornstein–Ulhenbeck operator Ln := ∆ − ~x · ∇ which is
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symmetric with respect to γn. We have then the standard decomposition of the L2−
space in Wiener chaoses, namely

L2(γn) =

∞⊕
k=0

Ker (Ln + kI) , with

Ker (Ln + kI) = Vect

(
n∏
i=0

Hki(xi)
∣∣∣ n∑
i=0

ki = k

)
:= Wk.︸︷︷︸
k-th Wiener chaos

The square field or “carré du champ” operator Γn is then defined as the bilinear operator
Γn := [·, ·] = ∇ · ∇. As a glimpse of the power of Malliavin–Stein approach in view
of establishing total variation estimates, recall that if F ∈ Ker (Ln + kI) is such that
E[F 2] = 1, then for some constant Ck only depending on k, the total variation distance
between the variable F and a standard Gaussian can be upper bounded by

dTV (F,N (0, 1)) ≤ Ck
√

var (Γ [F, F ]).

Via the notion of isonormal Gaussian process, the finite dimensional framework for
Malliavin–Stein method sketched above can in fact be extended to the infinite dimensional
setting giving rise to an Ornstein–Uhlenbeck operator L and an associated “carré du
champ” Γ, see e.g. Chapter 2 in [NP12].

2.2 The sharp gradient

A detailed introduction to the sharp gradient can be found in Section 4.1 of the
reference [AP20]. We only recall here the basics which will be useful to our purpose. Let
us assume that (Nk)k≥1 is an i.i.d. sequence of standard Gaussian variables on (Ω,F ,P)

which generate the first Wiener chaos. Without loss of generality, we shall assume that
F = σ(Nk, k ≥ 1). We will also need a copy (Ω̂, F̂ , P̂) of this probability space as well
as (N̂i)i≥1 a corresponding i.i.d. sequence of standard Gaussian variables such that
F̂ = σ(N̂k, k ≥ 1). We will denote by Ê the expectation with respect to the measure
P̂. For any integer m ≥ 1 and any function Φ in the space C1

b (Rm,R) of continuously
differentiable functions with a bounded gradient, we then set

]Φ(N1, · · · , Nm) :=

m∑
i=1

∂iΦ(N1, · · · , Nm)N̂i. (2.1)

In Sections 4.1.1 and 4.1.2 of [AP20], it is shown that this gradient is closable and
extends to the Malliavin space D1,2, where

D1,2 :=
{
F ∈ L2(Ω,F ,P), E[F 2] + E

[
(]F )2

]
< +∞

}
.

The last space D1,2 is naturally the infinite dimensional version of the Malliavin–Sobolev
space D1,2(R, γ) introduced in Section 1 in the one-dimensional setting. In particular,
Proposition 8 in the latter reference shows that

∀F ∈ D1,2, ∀φ ∈ C1
b (R,R) : ]φ(F ) = φ′(F )]F.

Given F ∈ D1,2, taking first the expectation Ê with respect P̂ and using Fubini inversion
of sums yields the following key relation, for all ξ ∈ R

E

(
exp

(
−ξ

2

2
Γ[F, F ]

))
= ÊE

(
exp

(
iξ]F

))
. (2.2)

By essence, via their Laplace/Fourier transforms, this key equation allows to relate the
asymptotic behavior in distribution (or in probability if the limit is constant) of the carré
du champ Γ[F, F ] with the one of the sharp gradient ]F .
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Finally, let us remark that by definition, the image (]Xk)k≥1 of our initial stationary
sequence (Xk)k≥1 by the sharp gradient is an independent copy of (Xk)k≥1. We will
write (]Xk)k≥1 = (X̂k)k≥1 in the sequel.

2.3 Convergence in probability via a two dimensional CLT

Let us suppose that f satisfies the assumptions of Theorem 3, namely f ∈ D1,2(R, γ)

with Hermite rank d ≥ 1, so that it can be decomposed as f =
∑∞
m=d cmHm in L2(R, γ).

Let L−1 denote the pseudo-inverse of the Ornstein–Uhlenbeck operator and consider the
pre-image

g(x) := −L−1[f ](x) =

∞∑
m=d

cm
m
Hm(x).

To simplify the expressions in the sequel, we set

Fn := Sn(f) =
1√
n

n∑
k=1

f(Xk), and Gn := Sn(g) = −L−1Fn =
1√
n

n∑
k=1

g(Xk).

Now, take (s, t, ξ) ∈ R3 and let us apply the above key relation (2.2) with the random
variable tFn + sGn, we get

E

[
exp

(
−ξ

2

2
Γ[tFn + sGn, tFn + sGn]

)]
= ÊE

[
exp

(
iξ
(
t ]Fn + s ]Gn

))]
. (2.3)

On the one hand, by bilinearity of the carré du champ operator, we have

Γ[tFn + sGn, tFn + sGn] = t2Γ[Fn, Fn] + s2Γ[Gn, Gn] + 2tsΓ[Fn,−L−1Fn]. (2.4)

On the other hand, the right hand side of Equation (2.3) is simply the characteristic
function under P⊗ P̂ of the variable t]Fn + s]Gn and one remarks that

t]Fn + s]Gn =
1√
n

n∑
k=1

(tf ′(Xk) + sg′(Xk)) X̂k =
1√
n

n∑
k=1

Ψs,t(Xk, X̂k)

is another “Breuer–Major type” sequence with respect to the R2− valued centered
stationary Gaussian process (X̂k, Xk)k≥1 and function Ψs,t : R2 → R

(x, y) 7→ Ψs,t(x, y) := (tf ′(x) + sg′(x)) y.

Since f is in D1,2(R, γ), its derivative f ′ is in L2(R, γ) and so is g′, so that Ψs,t is in
L2(R2, γ2) with rank k ≥ 1 for non vanishing (s, t). Moreover (X̂k)k≥1 is an independent
copy of (Xk)k≥1 so that their cross correlations vanish, therefore the multivariate coun-
terpart of the classical Breuer–Major Theorem applies, see Theorem 4 of [Arc94]. As
a consequence, for any (t, s) ∈ R2, t]Fn + s]Gn converge in distribution as n goes to
infinity to an explicit centered Gaussian variable.

As a result, the bidimensional sequence (]Fn,
]Gn) converges in distribution, under

P⊗ P̂, towards a bidimensional centered Gaussian vector with a symmetric semi-positive
covariance matrix Σ. Therefore, from Equations (2.3) and (2.4) and via the charac-
terization of convergence in distribution in terms of Fourier transform, there exist
real numbers λ, µ, ν (depending on the limit covariance matrix Σ) such that for any
(s, t, ξ) ∈ R3, as n goes to infinity, we have

E

[
e−

ξ2t2

2 Γ[Fn,Fn]− ξ
2s2

2 Γ[Gn,Gn]−ξ2tsΓ[Fn,−L−1Fn]

]
−−−−→
n→∞

e−
ξ2

2 (λt2+µs2+2νts).
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Since the above convergence is valid for any ξ ∈ R, this shows in particular that for any
fixed (s, t) ∈ R2, the sequence Γ[tFn+sGn, tFn+sGn] converges in distribution (and thus
in probability) towards the constant variable

(
λt2 + µs2 + 2νts

)
. Choosing s = t = 1, we

thus get that Γ[Fn+Gn, Fn+Gn] converges in probability towards (λ+µ+2ν). Choosing
s = 0 and t = 1, then t = 0 and s = 1, one deduce in the same manner that Γ[Fn, Fn]

and Γ[Gn, Gn] both converge in probability towards λ and µ respectively. Finally, by
Equation (2.4), one can conclude that the cross term

Γ[Fn, Gn] = Γ(Fn,−L−1Fn) = Ê
[
]Fn

]Gn
]

also converges in probability towards the constant limit variable ν.

2.4 Gaining some uniform integrability

Since our goal is to derive convergence in total variation of Fn = Sn(f), the conver-
gence in probability of the term Γ[Fn,−L−1Fn] is not sufficient. Indeed, with Stein’s
Equation in mind, the lack of uniform integrability is a problem to deduce the following
required asymptotic behavior for any φ ∈ C1

b (R), as n goes to infinity

E
[
φ′(Fn)Γ[Fn,−L−1Fn]

]
≈ ν E [φ′(Fn)] .

In order to bypass this problem, let us go back to the two-dimensional version of the
classical Breuer–Major theorem used in the last section. With the above notations, we
have

]Fn =
1√
n

n∑
k=1

Ψ1,0(Xk, X̂k), ]Gn =
1√
n

n∑
k=1

Ψ0,1(Xk, X̂k).

For any integer p ≥ 1 and (s, t) ∈ R2, let us denote by Ψp
s,t the projection of Ψs,t on the

first p− th chaoses.
Applying Theorem 4 and Equation (2.43) of [Arc94], we get that there exists a

constant C > 0 (which depends only on the covariance structure of the underlying
Gaussian process) such that

sup
n≥1

EÊ

∣∣∣∣∣ 1√
n

n∑
k=1

(Ψs,t −Ψp
s,t)(Xk, X̂k)

∣∣∣∣∣
2
 ≤ C × ∫

R2

|(Ψs,t −Ψp
s,t)(x)|2γ2(dx).

Since Ψs,t belongs to L2(R2, γ2) for all (s, t), the last term on the right hand side goes to
zero as p goes to infinity. As a result, uniformly in n ≥ 1, the two-dimensional process

(
]Fn,

]Gn
)

=
1√
n

n∑
k=1

(
Ψ1,0(Xk, X̂k),Ψ0,1(Xk, X̂k)

)
can be approximated arbitrarily closely in L2(P⊗ P̂) by the following process which is
finitely expanded on the Wiener chaoses

Zpn := (Zp,1n , Zp,2n ) :=
1√
n

n∑
k=1

(
Ψp

1,0(Xk, X̂k),Ψp
0,1(Xk, X̂k)

)
.

Therefore, choosing p ≥ 1 large enough, uniformly in n ≥ 1, the product ]Fn × ]Gn can
be approximated arbitrarily closely in L1(P⊗ P̂) by ∆p

n := Zp,1n × Zp,2n . In other words,
for any ε > 0 and p ≥ 1 large enough, we have

sup
n
E
[∣∣∣Ê (]Fn × ]Gn

)
− Ê (∆p

n)
∣∣∣] ≤ sup

n
EÊ

[∣∣]Fn × ]Gn −∆p
n

∣∣] < ε.

ECP 29 (2024), paper 13.
Page 6/8

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP583
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A total variation version of Breuer–Major CLT under D1,2 assumption

But mimicking the proof detailed in the previous Section 2.3 for the convergence in
probability of Γ[Fn, Gn] towards the constant variable ν, one would then similarly get
here that Ê[∆p

n] converges in probability under P towards a constant random variable
νp ∈ R, and by construction limp→+∞ νp = ν. The crucial point here is that both random
variables ∆p

n and Ê[∆p
n] are now finitely expanded on the Wiener chaoses under P⊗ P̂

and P respectively. Therefore, by hypercontractivity, the convergence in probability can
be freely upgraded to the convergence in Lq for every q ≥ 1. In particular, as n goes to
infinity, the sequence Ê[∆p

n] converges in L1 to the constant variable νp.

2.5 Conclusion

We go back to Stein’s Equation. Let φ ∈ C1
b (R) and ε > 0. Integrating by parts, for

p ≥ 1 large enough and by the results of the last section, we have

|E [Fnφ(Fn)]− ν E [φ′(Fn)]| =
∣∣E [φ′(Fn)Γ[Fn,−L−1Fn]

]
− ν E [φ′(Fn)]

∣∣
= |E [φ′(Fn)Γ[Fn, Gn]]− ν E [φ′(Fn)]|

=
∣∣∣E [φ′(Fn)

(
Γ[Fn, Gn]− Ê[∆p

n]
)]

+ E
[
φ′(Fn)

(
Ê[∆p

n]− νp
)]

+ (νp − ν)E [φ′(Fn)]
∣∣∣

≤ ||φ′||∞ε+ ||φ′||∞E
[∣∣∣Ê[∆p

n]− νp
∣∣∣]+ ||φ′||∞|νp − ν|.

As a result, letting first n and then p go to infinity, we get that uniformly in φ such that
||φ′||∞ ≤ C

lim sup
n→+∞

|E [Fnφ(Fn)]− ν E [φ′(Fn)]| = 0.

One can then classically conclude using Stein’s approach for the convergence in total
variation.
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