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1 Introduction

We start with an informal outline of the main idea of this note. A more detailed review,
including history and citations, will be presented later in the introduction.

A Fleming-Viot process is a process with a branching structure (but not a branching
process according to terminology adopted in the literature on branching processes).
Under very mild assumptions, it has a unique spine. When the number of individuals in
the population is very large, the distribution of the spine is expected to be very close
to the distribution of the driving process conditioned on survival forever. There is an
example showing that the distribution of the spine may be different from the distribution
of the driving process conditioned on survival forever. The published example is rather
artificial so we present in this note a different example illustrating the same claim. Our
new example is more natural in the sense that it is based on a model examined in a
number of papers on Fleming-Viot processes.

1.1 Literature review

Fleming-Viot-type processes were originally defined in [6]. In this model, there is a
population of fixed size. Every individual moves independently from all other individuals
according to the same Markovian transition mechanism, in a domain with a boundary.
When an individual hits the boundary, the indvidual is killed and an individual chosen
randomly (uniformly) from the survivors splits into two individuals and the process
continues in this manner. The question of whether the process can be continued for all
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Spine of Fleming-Viot process

times was addressed in [6, 5, 4, 13]. All of these papers studied, among other processes,
Fleming-Viot processes driven by Brownian motion.

A very special case of a Fleming-Viot process is when there are only two individuals
driven by Brownian motion on [0,∞) and 0 plays that role of the boundary; this model
was studied in [5, 13]. In particular, it was shown in both papers that this process has
infinite lifetime.

Every Fleming-Viot process has a unique spine, i.e. a trajectory inside the branching
tree that never hits the boundary of the domain where the process is confined; this was
proved under strong assumptions in [13, Thm. 4] and later in full generality in [3].

It was proved in [3] that if the state space is finite and the number of individuals in
the population goes to infinity then the distributions of spine processes converge to the
distribution of the driving Markov process conditioned on survival forever.

Weak convergence of the spine to the driving process conditioned never to be killed
was proven when the driving process is a normally reflected diffusion in a compact
domain with soft killing in Corollary 5.3 of a preprint [17], with the extra results on
convergence of the branching rate to twice the rate of a generic particle and of the side
branches to the critical branching process proven in Corollary 6.5.

The connection between the Fleming-Viot particle system and the Fleming-Viot
process from population genetics was recently published in [18], an article based on a
part of [17]. Moreover in Section 5 of [18], the same connection for the Fleming-Viot
particle system driven by Brownian motion with hard killing is established when the
domain is bounded and C∞. In a forthcoming article by O. Tough, this connection will be
used to prove convergence of the spine.

The rate of convergence of the distribution of the Fleming-Viot process driven by a
general Markov process to the quasi-stationary distribution was investigated in [19].

In [3], an example was given of a Fleming-Viot process driven by a Markov process on
a three-element state space such that one of the elements plays the role of the boundary,
the population consists of two individuals and the distribution of the spine is not equal to
the distribution of the driving Markov process conditioned on survival forever. A Markov
process with a three-element state space seems to be a rather artificial example in the
context of Fleming-Viot models. We will show that the spine of the Fleming-Viot process
with two individuals driven by Brownian motions on [0,∞) has a spine with a distribution
different from the distribution of Brownian motion conditioned to stay positive, i.e. the
distribution of the 3-dimensional Bessel process. The point of this note is to show that
proving that the spine does not have the distribution of the 3-dimensional Bessel process
is somewhat tricky. In hindsight, this does not seems to be difficult because our proof
is quite elementary. Nevertheless, our previous attempts in [7, 8] generated some new
results but failed to show the difference. In a sense that will be made more precise
later on in the paper, the spine is quite “close” to a 3-dimensional Bessel process and
therefore it is quite hard to distinguish the two. The problem has been open for some
time and while the solution is not really difficult we now have a better understanding
as to why the spine is nevertheless similar to a 3-dimensional Bessel process in certain
respects.

2 Model and main result

We will now define a Fleming-Viot process and other elements of the model. Informally,
the process consists of two independent Brownian particles starting at the same point in
(0,∞). At the time when one of them hits 0, it is killed and the other one branches into
two particles. The new particles start moving as independent Brownian motions and the
scheme is repeated.
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2.1 Notation and definitions

On the formal side, let (W1(t) : t ≥ 0) and (W2(t) : t ≥ 0) be two independent
Brownian motions starting from W1(0) =W2(0) = 1. Let

T0 = 0,

Y0 = 1,

τj = inf{t ≥ 0 :Wj(t) = 0}, j = 1, 2,

T1 = min(τ1, τ2),

Y1 = max(W1(T1),W2(T1)),

and for k ≥ 2,

Tk = inf{t > Tk−1 : min(W1(t)−W1(Tk−1) + Yk−1,W2(t)−W2(Tk−1) + Yk−1) = 0},
Yk = max(W1(Tk)−W1(Tk−1) + Yk−1,W2(Tk)−W2(Tk−1) + Yk−1).

It follows from [4, Thm. 5.4] or [13, Thm. 1] that, a.s.,

Tk →∞. (2.1)

Hence, for any t ≥ 0 we can find j such that t ∈ [Tj−1, Tj). Then we set

V(t) = (V1(t), V2(t)) = (W1(t)−W1(Tj−1) + Yj−1,W2(t)−W2(Tj−1) + Yj−1). (2.2)

This completes the definition of {V(t), t ≥ 0}, an example of a Fleming-Viot process.
Let Jt = J(t) denote the spine, i.e. Jt = V1(t) for t ∈ [Tk−1, Tk) if V1(Tk−) > V2(Tk−) =

0. If the last condition fails, we let Jt = V2(t) for t ∈ [Tk−1, Tk).
Note that J(Tk) = Yk for all k ≥ 1.
Recall that a d-dimensional Bessel process Xt is defined by

dXt = dBt +
d− 1

2Xt
dt, (2.3)

where B is Brownian motion; see [14, Sect. 3.3 C]. It is well known that Brownian motion
on [0,∞) conditioned to never hit 0 has the transition probabilities of the 3-dimensional
Bessel process; this theorem was first proved in [10].

2.2 Main result

Theorem 2.1. The distributions of {Jt, 0 ≤ t <∞} and the 3-dimensional Bessel process
{Xt, 0 ≤ t <∞} starting from 1 are singular with respect to each other.

We will explicitly define an event that has a strictly positive probability according to
the first distribution but not according to the second one, and vice versa.

We will now review two attempts to prove Theorem 2.1 that failed.
The following version of the Law of the Iterated Logarithm was proved in [8].

Theorem 2.2. Almost surely,

lim sup
n→∞

Yn√
2Tn log log Tn

= 1. (2.4)

The Law of the Iterated Logarithm stated in (2.4) is the same as that for the 3-
dimensional Bessel process (see [16]), which has the same distribution as the one-
dimensional Brownian motion conditioned not to hit 0. Hence, Theorem 2.2 does not
eliminate the possibility that the spine Jt has the distribution of Brownian motion
conditioned not to hit 0.

In this note, we will prove the following result.
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Theorem 2.3. For every u > 0,

1

u
logP

(
inf
s≥0

logX(s) < −u
)

= −1 = lim
t→∞

1

t
logP

(
inf
n≥0

log J(Tn) < −t
)
.

The proof of Theorem 2.3 is based on explicit computations. We know from the
Wiener-Hopf theory (see, for example, [2]), that, asymptotically, the minimum of a
random walk with a positive drift is less than −t with probability ce−γt. A continuous
version of this result applies to {logX(s), s ≥ 0} with c = γ = 1 as shown in Lemma 3.2.

The general message from Theorems 2.2 and 2.3 is that it is hard to distinguish
between the spine and the 3-dimensional Bessel process by studying “extreme” behavior
of the two processes. The proof of Theorem 2.1 will be based on the analysis of the
processes on the “logarithmic scale.”

3 Bessel processes

Let

ρ(t) =

∫ t

0

1

X2
s

ds.

Lemma 3.1. If X is three-dimensional Bessel process with X0 = 1 and B is Brownian
motion with B0 = 0 then {logXρ−1(t), t ≥ 0} has the same distribution as the process{
Bt +

1
2 t, t ≥ 0

}
.

Proof. Recall the stochastic differential equation (2.3) defining Bessel processes. Let
f(x) = log x. Then f ′(x) = 1/x and f ′′(x) = −1/x2. Let At = f(Xt). Then by the Ito
formula

dAt = df(Xt) =
1

X t
dBt +

(
d− 1

2Xt
· 1

Xt
− 1

2
· 1

X2
t

)
dt =

1

Xt
dBt +

d− 2

2X2
t

dt

= e−AtdBt +
d− 2

2
e−2Atdt.

For the 3-dimensional Bessel process, i.e. when d = 3, the formula is

dAt = e−AtdBt +
1

2
e−2Atdt.

We see that the process At is a time change of the process Bt +
1
2 t, if we use the clock

ρ(t) =

∫ t

0

e−2Asds =

∫ t

0

1

X2
s

ds.

In other words, {Aρ−1(t), t ≥ 0} = {logXρ−1(t), t ≥ 0} has the same distribution as the
process

{
Bt +

1
2 t, t ≥ 0

}
.

Lemma 3.2. Suppose that X = {X(t) : t ≥ 0} is the 3-dimensional Bessel process with
X(0) = 1. Let M = inft≥0 logX(t). Then −M has the exponential distribution with mean
1.

Proof. Time change does not affect the distribution of the infimum of a process, hence,
by Lemma 3.1, M has the same distribution as mint≥0

(
Bt +

1
2 t
)
. According to [14, Sect.

3.3, Exercise 5.9], −M is exponential with mean 1.
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4 Logarithmic transformation of Fleming-Viot process

We will use the complex representation V1(t)+iV2(t) of the process V(t) = (V1(t), V2(t))

defined in (2.2). We apply the complex mapping z 7→ log z to this process so that it is
transformed into a process in the strip D := {(x, y) : 0 < y < π/2} (see Fig. 1). Consider
the following “clocks,”

φ(t) =

∫ t

0

1

|V(s)|2
ds,

σ(t) =

∫ t

0

1

J(s)2
ds.

It follows from conformal invariance of two-dimensional Brownian motion (see [15,
Thm. V (2.5)]) that the process Z(t) = (Z1(t), Z2(t)) := logV(φ−1(t)) is two-dimensional
Brownian motion jumping from the boundary of D to an appropriate point in D every
time it exits D. Let R1, R2, . . . be the times of jumps of Z, and let R0 = 0.

1 + 𝑖

𝑖𝑉(𝑇1)
𝑉 𝑇1 + 𝑖𝑉(𝑇1)

log 𝑧

Im 𝑧

Re 𝑧 0

𝑖𝜋

2

𝑖𝜋

4

log𝑉(𝑇1)log 2 log𝑉(𝑇1)+ log 2

Figure 1: The logarithmic transformation of the Fleming-Viot process.

Lemma 4.1. The process {log J(Tn), n ≥ 0} is a random walk, such that log J(T0) =

log J0 = 0, and satisfying

log J(Tn) = log J(Tn−1) + log
√
2 +Kn, n ≥ 1, (4.1)

where {Kn, n ≥ 1} is an i.i.d. sequence. The distribution of Kn is that of Z1(R1−). We
also have

lim
n→∞

log J(Tn)

n
= log

√
2. (4.2)

Proof. A jump takes Z from (Z1(Rk−), Z2(Rk−)) ∈ ∂D, i.e. the point at which Z exits D,
to
(
log
√
2 + Z1(Rk−), π/4

)
.
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Brownian motions driving Z1 and Z2 between jumps are independent of each other.
The times Rk are the times when Z2 exits [0, π/2]. Hence, random variables {Rk, k ≥ 0}
are independent of the Brownian motion Bt driving Z1(t). The time R1 is the exit time
from the interval [0, π/2] for a Brownian motion starting at π/4 and independent of B.
Note that

log J(Tn)− log J(Tn−1) = log
√
2 + Z1(Rn−)− Z1(Rn−1).

The first two claims of the lemma follow from independence of {Rn, n ≥ 1} and B, and

the fact that Rn −Rn−1
d
= R1.

It is easy to see that E |Z1(Rn−)−Z1(Rn−1)| <∞. Hence, by symmetry, E(Z1(Rn−)−
Z1(Rn−1)) = 0. Thus we can use the law of large numbers and (4.1) to obtain (4.2).

Theorem 4.2. There exists a c ∈ (0,∞) such that

lim
t→∞

etP

(
inf
n≥0

log J(Tn) < −t
)

= c.

Proof. Since {log J(Tn), n ≥ 0} is a random walk, the function

t→ P

(
inf
n≥0

log J(Tn) < −t
)

= P

(
sup
n≥0

(− log J(Tn)) > t

)
satisfies the Wiener-Hopf equation; see [2, point 2, bottom of page 191] for general
overview, and [12, Theorem 3.1]. It follows from these references that there exists a
c ∈ (0,∞) such that

lim
t→∞

eγtP

(
inf
n≥0

log J(Tn) < −t
)

= lim
t→∞

eγtP

(
sup
n≥0

(− log J(Tn)) > t

)
= c, (4.3)

where γ is the positive solution to the equation

E
[
eγ(− log J(T1))

]
= E[J(T1)

−γ ] = 1.

It follows from [13, (6.21)] that

P(J(T1) ∈ dy) =
2

π

[
1

(1− y)2 + 1
− 1

(1 + y)2 + 1

]
dy.

It is not difficult to check that E[J(T1)−1] = 1. Hence γ = 1 and, therefore, the theorem
follows from (4.3).

Proof of Theorem 2.3. The theorem follows from Lemma 3.2 and Theorem 4.2.

5 Comparing the spine and 3-dimensional Bessel process

Lemma 5.1. (i) We have

α := E

∫ T1

0

1

J2
t

dt =
8C

π
− log(2) ≈ 1.63934, (5.1)

where C ≈ 0.915966 is the Catalan’s constant.
(ii) The random variables ∫ Tn+1

Tn

1

J2
t

dt, n ≥ 0, (5.2)

are i.i.d.
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Proof. (i) We will switch between complex and real notation and write z = x + iy,
|z| =

√
x2 + y2. Let A ⊂ C denote the first quadrant.

Given a connected open set in the complex plain whose complement has non-zero
capacity, and a base point inside the domain, the Green function is the unique function,
up to a multiplicative constant, that has a pole at the base point, is positive and harmonic
outside the base point, and vanishes on the boundary of the domain (see [1, Chap. 6,
Sec. 5.2]). We will use this characterization to find the Green function for A. The
characterization also shows that the Green function is conformally invariant.

We will argue that

G(z) =
1

π
log

∣∣∣∣z2 + 2i

z2 − 2i

∣∣∣∣ (5.3)

is the Green function in A with a pole at 1 + i. It is elementary to check that G(z) has a
pole at 1 + i and vanishes on the real and imaginary axes. It is harmonic outside 1 + i

because it is the real part of an analytic function. The function G(z) is positive in A by
the maximum principle.

The normalization 1/π in (5.3) is probabilistic, i.e. the integral of thus normalized
Green function is equal to the expected lifetime of Brownian motion starting from 1 + i

and killed upon exiting A. This normalization can be checked directly for a disc. It
applies to other domains by conformal invariance.

The process {Jt, 0 ≤ t < T1} has the same distribution as {W2(t), 0 ≤ t ≤ T1}
conditioned on {τ1 < τ2}. Hence we will estimate the expectation in (5.1) assuming
that (W1,W2) is conditioned to exit A through the vertical axis. This process is a Doob’s
transform, or an h-process, where h is harmonic in A with boundary values 1 on the
vertical axis and 0 on the horizontal axis (see [11, Part 2, Chap. X] or [9, Ch. 11] for
the theory of h-processes). The only harmonic function with these boundary values is
h(z) = (2/π) arg(z) = (2/π) arctan(y/x).

If pt(u, v) denotes the transition density for (W1,W2) then the transition density for
the h-process is pt(u, v)h(v)/h(u). Hence, the Green function for (W1,W2) conditioned
by h is ∫ ∞

0

pt(1 + i, z)h(z)/h(1 + i)dt = 2h(z)

∫ ∞
0

pt(1 + i, z)dt = 2h(z)G(z).

Therefore,

E

∫ T1

0

1

J2
t

dt =

∫
A

2G(z)h(z)
1

y2
dz =

∫
A

2G(x+ iy)h(x+ iy)
1

y2
dxdy

=

∫
A

2G(x+ iy)(2/π) arctan(y/x)
1

y2
dxdy

=

∫
A

4

π
G(x+ iy) arctan(y/x)

x2 + y2

y2
1

x2 + y2
dxdy

=

∫
A

4

π
G(x+ iy) arctan(y/x)

1 + (y/x)2

(y/x)2
1

x2 + y2
dxdy.

Next we will change variables. Informally speaking, we will apply the complex function
z → log z. In terms of real coordinates, we take

(x, y) = (er cos θ, er sin θ) ,

drdθ =
1

x2 + y2
dxdy.
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Note that y/x = tan θ and arctan(y/x) = θ. Let G∗(r, θ) = G(x+ iy). The function G∗ is
the Green function in the strip A∗ := {(r, θ) : 0 < r < π/2} with a pole at (

√
2, π/4) by

conformal invariance of the Green function. We obtain∫
A

4

π
G(x+ iy) arctan(y/x)

1 + (y/x)2

(y/x)2
1

x2 + y2
dxdy

=

∫
A∗

4

π
G∗(r, θ)θ

1 + tan2 θ

tan2 θ
drdθ =

∫ π/2

0

4

π
θ
1 + tan2 θ

tan2 θ

∫ ∞
−∞

G∗(r, θ)drdθ.

The function G1(θ) :=
∫∞
−∞G∗(r, θ)dr is the Green function for the one-dimensional

Brownian motion starting from π/4 and killed upon exiting (0, π/2). The function G1(θ)

is a one-dimensional harmonic function so it has to be linear, except at the base point,
with zero boundary conditions. Hence,

G1(θ) =

{
θ for 0 < θ < π/4,

π/2− θ for π/4 < θ < π/2.

Note that G1(θ) is properly normalized, i.e.
∫ π/2
0

G1(θ)dθ = π2/16. In other words,
the integral of the thus normalized Green function is equal to the expected exit time,
known to be π2/16, from (0, π/2) for one-dimensional Brownian motion starting from π/4

(see [14, Problem 8.14, p. 100]).
We obtain∫ π/2

0

4

π
θ
1 + tan2 θ

tan2 θ

∫ ∞
−∞

G∗(r, θ)drdθ

=

∫ π/4

0

4

π
θ
1 + tan2 θ

tan2 θ
θdθ +

∫ π/2

π/4

4

π
θ
1 + tan2 θ

tan2 θ
(π/2− θ)dθ

=

[
4C

π
− π

4
+ log(2)

]
+

[
1

4

(
16C

π
+ π − log(256)

)]
=

8C

π
− log(2) ≈ 1.63934,

where C ≈ 0.915966 is the Catalan’s constant. The exact values of the integrals were com-
puted using Mathematica. The numerical value was confirmed by numerical calculations
(Riemann sum approximation).

(ii) By Brownian scaling and the strong Markov property applied at Tn,{
V(Tn + tV 2

1 (Tn))

V1(Tn)
, t ∈ [0, (Tn+1 − Tn)/V 2

1 (Tn))

}
, n ≥ 1,

are i.i.d. For more details see [8, Lemma 7.10]. This implies that{
J(Tn + tV 2

1 (Tn))

V1(Tn)
, t ∈ [0, (Tn+1 − Tn)/V 2

1 (Tn))

}
, n ≥ 1,

are i.i.d., and so are∫ Tn+1

Tn

1

J2
t

dt =

∫ Tn+1−Tn

0

1

J2(Tn + t)
dt =

∫ (Tn+1−Tn)/V
2
1 (Tn)

0

V 2
1 (Tn)

J2(Tn + sV 2
1 (Tn))

ds.

Remark 5.2. We have log
√
2 ≈ 0.346574 < 0.81967 ≈ α/2.

Proof of Theorem 2.1. For a continuous process {Ht, t ≥ 0} taking values in (0,∞), set

ψ(t) =

∫ t

0

1

H2
s

ds,
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and let ψ−1 denote the inverse function. Let

F (H) =

{
lim
t→∞

logHψ−1(t)

t
=

1

2

}
.

By Lemma 3.1, {logXρ−1(t), t ≥ 0} has the same distribution as the process{
Bt +

1
2 t, t ≥ 0

}
. Hence, a.s.,

lim
t→∞

logXρ−1(t)

t
= lim
t→∞

Bt +
1
2 t

t
= 1/2.

In other words, the event F (H) = F (X) has probability 1 if Ht = Xt is the three-
dimensional Bessel process with X0 = 1.

Suppose that {Mn, n ≥ 1} is a sequence of random variables defined on the same
probability space as Ht but not necessarily related to the process Ht in any way, for
example, Mn does not have to be adapted to the filtration generated by Ht. If F (H)

holds and the event {
lim
n→∞

Mn/n = α
}

also occurs then,

lim
n→∞

logHψ−1(Mn)

n
= lim
n→∞

logHψ−1(Mn)

Mn/α
=
α

2
. (5.4)

Let Un = σ(Tn), recall (5.1), and use Lemma 5.1 (ii) and the law of large numbers to
see that, a.s.,

lim
n→∞

Un/n = α.

By (4.2) and Remark 5.2, a.s.,

lim
n→∞

log J(σ−1(Un))

n
= lim
n→∞

log J(Tn)

n
= log

√
2 6= α

2
. (5.5)

In view of (5.4), this implies that the event F (H) = F (J) has probability 0 if Ht = Jt and
J0 = 1. This proves that the distributions of J and X are mutually singular.

Remark 5.3. Theorem 2.1 compares the distributions of the processes J and X starting
from 1 but it is clear that Theorem 2.1 holds for any initial distributions of J and X.
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