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Abstract

We consider a discrete-time model for random interface growth which converges to
the Polynuclear growth model in a particular limit. The height of the interface is
initially flat and the evolution involves the addition of islands of height one according
to a Poisson point process of nucleation events. The boundaries of these islands then
spread in a stochastic manner, rather than at deterministic speed as in the Polynuclear
growth model. The one-point distribution and multi-time distributions agree with
point-to-line last passage percolation times in a geometric environment. An alternative
interpretation for the growth model can be given through interacting particle systems
experiencing pushing and blocking interactions.
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1 Introduction

The Polynuclear growth model (PNG) is an extensively studied model for random
interface growth in (1 + 1)-dimensions. The height of the interface at time t is denoted
by x→ hPNG

t (x). The interface grows according to nucleation events at which an island
of height one is added to the interface. The left and right boundaries of these islands
then spread at deterministic unit speed to the left and right respectively, and the islands
merge on contact. All the randomness in the process is contained within the nucleation
events which occur according to a Poisson point process.

The choice of initial condition plays an important role in the analysis of PNG. The
simplest case to study is the narrow-wedge or droplet initial condition. This can be
defined by setting hPNG

0 (x) ≡ 0 and specifying that the nucleation events occur according
to a Poisson point process in the following subset of the space-time plane {(t, x) : |x| ≤
t, t ≥ 0} ⊂ R≥0 × R. An interpretation is that there is an island spreading at unit
speed from the origin at time 0 and nucleations are only permitted on top of this island.
PNG started from the droplet initial condition is connected to a Poissonised version of
the longest increasing subsequence in a random permutation. This discovery led to
exact-formulas and an understanding of the one-point [2] and multi-point distributions
[13].

The initial condition that is most relevant to our case is flat initial data. We set
hPNG

0 ≡ 0 and specify instead that nucleation events occur according to a Poisson point
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Pushing, blocking and polynuclear growth

process of rate 2 in the whole space-time plane R≥0 ×R. We refer to this as flat PNG.
The height function in flat PNG is given by a point-to-line last passage percolation time
in a Poissonian environment. Point-to-line last passage percolation can be related to
point-to-point last passage percolation in a symmetric environment. As a result, flat
PNG retains a connection to a Poissonised version of a longest increasing subsequence
in a random permutation but with an additional symmetry imposed and this led to an
understanding of the one-point distribution in [3, 4]. This was extended to multi-point
distributions in [6] by identifying flat PNG as a particular limit related to discrete-time
TASEP started from a periodic initial condition. More recently exact formulas have been
found for PNG with general initial data that have uncovered more general connections
to Toda lattice equations [12].

One aspect that is less well developed for PNG is how it can be viewed as one
representative of a larger class of exactly solvable growth models. The other prototypical
exactly solvable growth model, the height function of TASEP, is one example of a much
larger class given by the height functions of ASEP, q-TASEP, PushASEP and many other
interacting particle systems. The interpretation of PNG through last passage percolation
in a Poisson environment can be viewed as an example within a larger class of exactly
solvable models for directed polymers in random environment. A zero temperature
example, last passage percolation with geometric data, can be viewed as a growth model
called discrete PNG. However, the positive temperature models such as the log gamma
polymer no longer retain a direct interpretation as growth models. A different type
of solvable deformation of PNG was recently introduced in [1] where two islands that
merge generate an island of height one at the merging location with probability t.

The main result of this article is to construct a new type of random interface growth
model that converges to flat PNG in a particular limit and before taking the limit
preserves some of the exact solvability of flat PNG. In particular, reformulating the
results of [9] give that the one-point and multi-time distributions of this growth model
agree with point-to-line last passage percolation in a geometric environment.

We give three different descriptions of this growth process. The height of the interface
at time t is denoted by x→ ht(x) and starts from h0 ≡ 0. The description that is closest
to PNG is that the height of the interface grows by the addition of islands of height 1

according to a Poisson point process of nucleation events (on a discretised space-time
plane) but with the difference that the boundaries of these islands now spread in a
stochastic manner. The idea can be seen in Figure 1 and the definition is given in
Section 3.

A second description of the growth processes involves pushing and blocking interac-
tions. A brief informal description is given here and a detailed description in Section 2.1.
Given a height function x → ht(x) we define the interface x → ht+1(x) by viewing the
space variable x in the growth process as a time variable for a Markov process. Then
ht+1 is given by the path of a continuous-time random walk jumping up with rate v and
down with rate v−1 while being pushed and blocked by the path ht in order to maintain
ht+1(x) ≥ ht(x) for all x ∈ R. At this point we could simply repeat this procedure to
define ht+2 and so on. However, the resulting interface growth process would then lack
spatial symmetry. We instead define ht+2 by repeating the same process started from
ht+1 but now viewing (−x) as the time variable for a Markov process. It is a non-trivial
fact that this does recover spatial symmetry.

The third and final description of the growth process considered in this paper is
as a particular marginal of a multi-dimensional interacting process involving pushing
and blocking that was constructed in [9]. This type of process was first considered in a
Brownian setting [10] where the motivation was that marginals of a multi-dimensional
process could be used to prove several distributional identities, e.g. relating the point-
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to-line partitions function of the O’Connell Yor polymer and the log gamma polymer
introduced by Seppäläinen. This provides a different context in which to consider
the multi-dimensional interacting processes in [9, 10]. The (tautological) identity that
the height function in flat PNG is given by point-to-line last passage percolation in a
Poissonian environment can be generalised in a number of ways. On the one hand, the
Poissonian environment can be replaced by geometric/exponential environment or, in
a positive temperature setting, by partition functions of the log gamma polymer. On
the other hand, flat PNG can be replaced by other types of growth process involving
push-block dynamics or reflecting Brownian motions. The multi-dimensional interacting
processes in [9, 10] then encode distributional identities between these different models.
This is explained for one representative example in Section 5.

In Section 2 we define the growth model considered in this paper and state our main
results. In Section 3 we interpret the points of increase and decrease of the height
function as an interacting particle system. In Section 4 we use this viewpoint to prove
convergence to PNG. In Section 5 we explain identities between the growth model
considered in this paper and point-to-line last passage percolation times.

2 Statement of results

2.1 Definition of the growth model

Define a discrete-time Markov process (ht)t∈Z≥0
taking values in the state space of

upper semi-continuous functions from R into Z≥0 denoted by U C . The hypograph of a
function f is given by hypo(f) = {(x, y) : y ≤ f(x)}. We equip U C with the topology of
local Hausdorff convergence of hypographs. This is the topology considered in [12] with
the mild simplification that our height functions take values in Z≥0. The process starts
from h0 ≡ 0. The model could be defined for a more general class of initial conditions. We
restrict to h0 ≡ 0 since it is not clear how the process in Section 5, and the corresponding
identities with point-to-line last passage percolation, can be extended beyond this case.

Let L > 0 and define first an approximation (h
(L)
t )t∈Z≥0

of (ht)t∈Z≥0
started from

h
(L)
0 = 0. For t ≥ 1 given h(L)

t−1 we construct h(L)
t in the following way which depends on

whether t is even or odd. If t is odd, then consider the càdlàg modification of h(L)
t−1. Define

ξ(u) = h
(L)
t−1(u) for all u ≤ −L and a continuous-time Markov process (ξ(u))u≥−L started

from ξ(−L) = h
(L)
t−1(−L) taking values in Z≥0. The dynamics are not homogeneous in

time and are given as follows.

• ξ(u) increases by 1 at rate v whenever u ∈ [−L,L],

• ξ(u) decreases by 1 at rate v−1 whenever ξ(u) > h
(L)
t−1(u),

• If h(L)
t−1(u) = h

(L)
t−1(u−) + 1 and h(L)

t−1(u−) = ξ(u−) then ξ(u) = ξ(u−) + 1.

We then define ht to be the upper semi-continuous modification of ξ.
If t is even, we repeat the same process but with time reversed. We consider the

càdlàg modification of (ht−1(−u))u∈R. Then define ξ(u) = ht−1(−u) for all u ≤ −L and a

continuous-time Markov process (ξ(u))u≥−L started from ξ(−L) = h
(L)
t−1(L) taking values

in Z≥0. The dynamics are that:

• ξ(u) increases by 1 at rate v whenever u ∈ [−L,L],

• ξ(u) decreases by 1 at rate v−1 whenever ξ(u) > h
(L)
t−1(−u),

• If h(L)
t−1(−u) = h

(L)
t−1((−u)−) + 1 and h(L)

t−1((−u)−) = ξ(u−) then ξ(u) = ξ(u−) + 1.

Informally, (ξ(u))u≥−L is a continuous-time random walk that experiences pushing and

blocking interactions to maintain that ξ(u) ≥ h(L)
t−1(−u) for all u ∈ R. We then set h(L)

t to
be the upper semi-continuous modification of (ξ(−u))u∈R.
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For any n ≥ 1, the above construction gives a coupling of h(L)
t for all L > 0 such that

h
(L)
t (x) is increasing in L for all x ∈ R, t ∈ Z≥0. The limit in L exists and is finite almost

surely by the construction of the dynamics directly in a stationary regime (corresponding
to L→∞) in Section 5.

We will use hvt to specify the dependency on v.

2.2 Last passage percolation

We consider point-to-line last passage percolation in a geometric environment. Let
(gij : i, j ∈ Z≥1, i + j ≤ 2n + 1) be an independent collection of geometric random
variables with parameter 1− v2. (We use the convention that P(gij = k)) = (1− v2)v2k

for all k ≥ 0.) Let Πflat
n (k, l) denote the set of all directed up-right nearest neighbour

paths from the point (k, l) to the line {(i, j) : i + j = 2n + 1}. For all k, l ∈ Z≥1 with
k + l ≤ 2n+ 1 let

G(k, l) = max
π∈Πflat

n (k,l)

∑
(i,j)∈π

gij .

The family (G(k, l) : k, l ∈ Z≥1, k + l ≤ 2n + 1) gives a collection of point-to-line last
passage percolation times where the line is fixed and the point (k, l) from which the
paths originate varies.

2.3 Main result

The processes (hvb2ntc)t∈[0,1] and (hPNG
t )t∈[0,1] are càdlàg processes with the Skorokhod

topology and the underlying state space given by U C . We denote the state space of the
processes by D.

Theorem 2.1. (i) Let vn = 1/n, then as n→∞

(hvnb2ntc)t∈[0,1] → (hPNG
t )t∈[0,1]

in the sense of weak convergence on D.

(ii) For any v > 0 and any integer n ≥ 1,

(hv1(0), hv2(0), . . . , hv2n(0))

d
= (G(n+ 1, n), G(n, n), G(n, n− 1), . . . , G(1, 1)).

One consequence of this identity is that known formulas for point-to-line last passage
percolation can be translated into the height function hv. A number of formulas are
known for G(1, 1) which are well suited to asymptotic analysis including [3, 4, 7]. The
two-time distribution for point-to-point geometric last passage percolation has been
analysed in [11]. As far as I am aware the analogous formulas have not yet been worked
out in the point-to-line setting.

3 Alternative representation of the growth process

A useful method for studying PNG, eg. [8], is to encode the height interface in terms of
two types of particles which may be referred to as points of increase/decrease, up/down-
steps or antikinks/kinks. The first step in proving Theorem 2.1 is a similar reformulation
of the growth process described in Section 2.1. The evolution of the height interface
then corresponds to an evolution of an associated particle system. The advantage is that
it will be possible to deduce the convergence in Theorem 2.1 from convergence of the
particle system.

We define a discrete-time particle system ((Yt,Zt) : t ∈ Z≥0) formed of two types
of particles. We list the positions of surviving particles at time t as Yt = (Y1

t ,Y2
t , . . .)
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ordered as Y1
t < Y2

t < . . . (resp. Zt = (Z1
t ,Z2

t , . . .) ordered as Z1
t < Z2

t < . . .). At a fixed
time, the state space for each particle system is the set of locally finite point measures
with the topology of vague convergence. The particles in Yt will correspond to points
of increase in a height interface and the particles in Zt will correspond to points of
decrease.

Let (Nt : t = 1, 2, . . . , 2n) be an independent collection of Poisson point processes of
rate v on {t} × [−L,L]. Let (ζjt : j ∈ Z≥1, t = 1, 2, . . . , 2n) be an independent collection
of exponential random variables with rate v−1. We will take L → ∞ at the end of the
construction.

The evolution of particle positions from time t− 1 to t depends on whether t is even
or odd. If t is odd we apply the following steps:

• Nucleation points occur according to Nt. A nucleation point at (t, x) involves the
addition of a point of increase at position x− at time t+ and an addition of a point
of decrease at position x+ at time t−. In words the point of decrease is immediately
added while the point of increase is only added once the following process has
completed.

• The particles in Y are fixed while the particles in Z make jumps to the right. The
evolution of particles proceeds sequentially from the left. Let k1 = inf{l ≥ 1 : Y lt >
Z1
t−1} with the convention that the infimum is infinity if taken over the empty set

and Y∞ :=∞. If

Z1
t−1 + ζ1

t ≥ Y
k1
t

then there is an instantaneous pairwise annihilation and the particles Z1 and Yk1
are removed. Otherwise we set

Z1
t = Z1

t−1 + ζ1
t .

For j ≥ 2 let kj = inf{l ≥ 1 : Y lt > Z
j
t−1}. Before taking a jump Zj is pushed to

max(Zjt−1,Z
j−1
t ). If

max(Zjt−1,Z
j−1
t ) + ζjt ≥ Y

kj
t

then there is an instantaneous pairwise annihilation of the particles Zj and Ykj .
Otherwise we set

Zjt = max(Zjt−1,Z
j−1
t ) + ζjt .

If t is even then the evolution is the analogue of the above with the particles in Z fixed
and the particle in Y making jumps to the left. Suppose that there are m particles of
type 1 and m particle of type 2.

• Nucleation points occur according to Nt. A nucleation point at (t, x) involves the
addition of a point of increase at position x− at time t− and an addition of a point
of decrease in position x+ in time t+.

• The evolution of particles occurs sequentially in decreasing order Ymt , . . . ,Y1
t . Let

km = sup{l ≥ 1 : Z lt−1 < Ymt } with the convention that the supremum is negative
infinity if taken over the empty set and Z−∞ := −∞. If

Ymt−1 − ζmt ≤ Z
km
t

then there is an instantaneous pairwise annihilation of the particles Ym and Zkm .
Otherwise we set

Ymt = Ymt−1 − ζmt .
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Figure 1: Defining the height function from the paths of (Yt,Zt)t∈[0,2n].

For 1 ≤ j ≤ m − 1 let kj = sup{l ≥ 1 : Z lt−1 < Y
j
t }. Before taking a jump Yjt is

pushed to min(Yjt−1,Y
j+1
t ). If

min(Yjt−1,Y
j+1
t )− ζjt ≤ Z

kj
t

then there is an instantaneous pairwise annihilation of the particles Yj and Zkj .
Otherwise we set

Yjt = min(Yjt−1,Y
j+1
t )− ζjt .

This particle system can now be used to define a height function. We draw the paths
of the process (Yt,Zt)t∈[0,2n] in the space-time plane, see Figure 1. Define a height

function (h
(L)
t (x))t∈[0,2n],x∈R to be the number of paths of the process (Yt,Zt)t∈[0,2n] that

are crossed by the straight line from (t, x) to (0, x) as shown in Figure 1. As L→∞,

(h
(L)
t (x))t∈[0,2n],x∈R → (ht(x))t∈[0,2n],x∈R

weakly as processes on U C .

Proposition 3.1. (ht(x))t∈[0,2n],x∈R
d
= (ht(x))t∈[0,2n],x∈R.

Proof. Given a càdlàg modification of h(L)
t we define

Y 1
t = inf{x ∈ R : h

(L)
t (x) = h

(L)
t (x−) + 1}

Y jt = inf{x > Y j−1
t : h

(L)
t (x) = h

(L)
t (x−) + 1}, j ≥ 2.

We continue defining particle positions (Y 1
t , . . . , Y

m
t ) until the infimum is taken over the

empty set. We define

Z1
t = inf{x ∈ R : h

(L)
t (x) = h

(L)
t (x−)− 1}

Zjt = inf{x > Zj−1
t : h

(L)
t (x) = h

(L)
t (x−)− 1}, j ≥ 2.

The processes (Y 1
t , . . . , Y

m
t ) and (Z1

t , . . . , Z
m
t ) give the points of increase and decrease in

the height function h
(L)
t . We show that the evolution of (Y1

t , . . . ,Ymt ) and (Z1
t , . . . ,Zmt )

coincides with the evolution of (Y 1
t , . . . , Y

m
t ) and (Z1

t , . . . , Z
m
t ).

Suppose we have a height function h
(L)
t−1. Then h

(L)
t is constructed from h

(L)
t−1 by

reflecting a continuous-time random walk ξ from the lower barrier h(L)
t−1 as described in

Section 2.1. Suppose that t is odd. We consider the points of increase in the process ξ as
(U1

t , . . . , U
p
t ). This will necessitate p extra points of potential decrease in the process ξ

which we view as initially having positions (D1
t− = U1

t , . . . , D
p
t− = Upt ) but their locations

will be updated in the following. We now proceed to consider

(Y 1
t−1, . . . , Y

m
t−1, Z

1
t−1, . . . , Z

m
t−1, D

1
t−, . . . , D

p
t−)
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in increasing order. The points of increase (Y 1
t−1, . . . , Y

m
t−1) remain in the same position

except that there is a possibility that they could be annihilated by the motion of the
points of decrease. The process ξ does not immediately decreases when h(L)

t−1 decreases
or when ξ has increased. Instead exponential clocks for the process ξ to perform a
down jump begin at the positions (Z1

t−1, . . . , Z
m
t−1, D

1
t−, . . . , D

p
t−). If ξ has not decreased

before the next point of increase in h(L)
t−1 then the two associated positions are removed

from Y and (Z,D) respectively. This corresponds to the pairwise annihilation in (Y,Z).
If an exponential clock that begins at some position say Zjt−1 exceeds a later position

(Zj+1
t−1 , . . . , Z

m
t−1, D

1
t−, . . . , D

p
t−) then the next exponential clock can only begin once the

present one has finished. This follows from the dynamics of ξ and corresponds to the
pushing interaction in the process Y. As a result, the evolution of (Y 1

t , . . . , Y
m
t ) and

(Z1
t , . . . , Z

m
t ) coincides with the evolution of (Y1

t , . . . ,Ymt ) and (Z1
t , . . . ,Zmt ) whenever t

is odd. If t is even then the same argument holds with the role of Y and Z interchanged.

We have shown the points of increase and decrease in h(L) and h(L) coincide as
processes in time. Therefore h(L) and h(L) differ by a constant which must be zero since
h(L)(u)→ 0 and h(L)(u)→ 0. Hence h(L) = h(L). The proof is completed by taking a limit
as L→∞.

4 Proof of convergence to PNG

Proof. The polynuclear growth model is driven by a Poisson point processes of rate 2 on
[0, 1]×R. Denote this Poisson point process by M . For each point (s, x) ∈ M consider
(s[n], x) where s[n] = inf{j/2n : j/2n ≥ s, j ∈ Z≥1}. Then M [n] = {(s[n], x) : (s, x) ∈ M}
is a collection of 2n independent Poisson point processes of rate 1/n on { j2n} × R for
j = 1, 2, . . . , 2n. We use {(2ns[n], x) : (s[n], x) ∈ M [n]} as the nucleation points for the
growth process in Section 3 or equivalently the up-jumps of the auxiliary process ξ in
Section 2.1.

Set vn = 1/n. Consider the rescaled height function (hb2ntc)t∈[0,1] and the associated
processes (Yb2ntc, Zb2ntc)t∈[0,1]. For a fixed time the state space of the particle systems is
the set of locally finite point measures with the topology of vague convergence. Consider
the evolution of a point of decrease (Rnt )t≥s[n] emanating from a nucleation point (s[n], x).
Let Rt = x+ t− s for all t ≥ s. There is a locally finite point measure corresponding to
each of Rnt and Rt that is a dirac measure at the corresponding location for t ≥ s[n] and
t ≥ s respectively, and the zero measure otherwise. In the absence of interactions the
(locally finite) measure-valued process (on [0, 1]) corresponding to (Rnt )t≥s[n] converges
to the measure-valued process corresponding to (Rt)t≥s in the Skorokhod topology. This
holds since the evolution of (Rnt )t≥s[n] is governed by an independent collection (ζk)k≥1 of
exponential random variables with rate v−1

n = n. It is convenient to rescale to ζ∗k := nζk
which are exponential with rate 1. For all t ≥ s[n], by the strong law of large numbers,

Rnt = x+
1

n

b2ntc∑
j=2ns[n]:j∈2Z+1

ζ∗j

→ x+ t− s

as n→∞ almost surely.

There are two types of interactions to consider: the pushing interactions between
particles of the same type and annihilating interactions between particles of different
types.

For all i ≥ 1 the event that Y it pushes Y i+1
t is a large deviation event for the pair of

random walks. The probability of this event decays exponentially in n and by the Borel
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Cantelli Lemma, for sufficiently large n there are almost surely no pushing interactions
in the paths (Yb2ntc)t∈[0,1] and (Zb2ntc)t∈[0,1] restricted to any compact set.

Consider two nucleation points in M given by (s, x) and (t, y) with x ≤ y where the
deterministic right and left path emanating from (s, x) and (t, y) respectively annihilate
each other in PNG. In PNG these paths meet at time t∗ = (y+x+ t−s)/2. Let τ = inf{u ≥
s[n] ∨ t[n] : Ru ≥ Lu}. Denote the processes (Rnu)s[n]≤u≤τ and (Lnu)t[n]≤u≤τ emanating
from the corresponding nucleation points in M [n]. By a similar large deviation analysis
to that used above we can observe that, restricting to compact set, no other particles
interact with these processes for sufficiently large n almost surely. Let Ru = x+ u− s
for s ≤ u < t∗ and Lu = y − u + t for t ≤ u < t∗. By the strong law of large numbers
we have that almost surely τ → (y + x+ t− s)/2 and that the measure-valued process
corresponding to (Rnu, L

n
u) converges to the measure-valued process corresponding to

(Ru, Lu) almost surely in the Skorokhod topology.
More generally (Yb2ntc)t∈[0,1] and (Zb2ntc)t∈[0,1] converge in the Skorokhod topology

to deterministic lines emanating from the limit of nucleation points and spreading at
rate 1 to the left and right respectively. Recall that for a fixed time the state space of
the particle systems is the set of locally finite point measures with the topology of vague
convergence. The height function (hvnb2ntc)t∈[0,1] is a function of the point process M [n]

and the paths of (Yb2ntc)t∈[0,1] and (Zb2ntc)t∈[0,1]. This function has discontinuities (in the
stated topologies) only when a point in M [n] coincides with a path in (Yb2ntc)t∈[0,1] and
(Zb2ntc)t∈[0,1]. This is given zero measure by PNG. The stated convergence follows from
the continuous mapping theorem.

5 Identities with point-to-line last passage percolation

The growth process defined in Section 2.1 appears at first sight to be difficult to study
due to the fact that time is being reversed at each level. However, it can be embedded
within a larger array of particles experiencing pushing and blocking interactions. The
interactions are more complicated but the larger array is given by a continuous-time
Markov process with no need to alternately reverse time. This process was constructed
in [9] and is closely related to a Brownian version in [10].

Let eij denote the vector with 1 in the (i, j)-th position that is 0 otherwise. Let
S = {(i, j) : i, j ∈ Z≥1, i+ j ≤ 2n+ 1} and let

X = {(xij)(i,j)∈S : xij ∈ Z≥0, xi+1,j ≤ xij and xi,j+1 ≤ xij}.

We define a continuous-time Markov process (Xij(u) : i+ j ≤ 2n+ 1, u ∈ R) taking values
in X with the following transition rates.

Let x = (xij)(i,j)∈S . Suppose that k ≤ j and (i, j), (i, j − 1), . . . , (i, k) ∈ S. For
x,x + eij + eij−1 + . . .+ eik ∈ X and xij = xij−1 = . . . = xik define

q(x,x + eij + eij−1 + . . .+ eik) = v1{xij<xi−1,j+1}−1{xij≥xi−1,j+1}

We use the notation that x0,j = ∞ for j = 2, . . . , 2n + 1. Suppose that l ≥ i and
(i, j), (i+1, j), . . . , (l, j) ∈ S. For x,x−eij−ei+1j−. . .−elj ∈ X and xij = xi+1j = . . . = xlj
define

q(x,x− eij − ei+1j − . . .− elj) = v1{xij>xi−1,j+1}−1{xij≤xi−1,j+1} .

The transition rates describe each co-ordinate evolving as independent continuous-time
random walks with some one-sided interactions involving pushing and blocking that
constrain the Markov process to remain within X . Figure 2 displays the one-sided
interactions; the particle at the head of the arrow is affected by the particle at the base
of the arrow.
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X11X12X13X14

X21X22X23

X31X32

X41

Figure 2: The interactions in the system {Xij : i+ j ≤ n+ 1}.

• A → B corresponds to pushing, if A = B and A increases by one then B also
increases by one, and blocking, if A = B then B cannot decrease.

•
A

↓
B

corresponds to pushing, if A = B and A decreases by one then B also decreases

by one, and blocking, if A = B then B cannot increase.

• A ; B means that the transition rates experienced by B depend on its location
relative to A.

Note that the pushing interactions mean that a single jump may propagate to several
particles. The particles remain within Z≥0 which is depicted by the diagonal line on the
left side of Figure 2. Theorem 5.2 of [9] shows that the stationary distribution of (Xij(u) :

i+ j ≤ 2n+ 1, u ≥ 0) is given by the probability mass function of (G(i, j) : i+ j ≤ 2n+ 1),

π(x) = (1− v2)n(2n+1)v2
∑

i+j<2n+1(xij−max(xi+1,j ,xi,j+1))+2
∑2n

i=1 xi,2n−i+1 .

In general, the transition rates of time reversals of Markov processes are complicated.
However, in this particular case they are closely related to the transition rates in forwards
time; all of the interactions between pairs of particles in Figure 2 reverse their direction.
Suppose that k ≤ i and (i, j), (i, j − 1), (i, k) ∈ S. For x,x+ eij + eij−1 + . . .+ eik ∈ X and
xij = xij−1 = . . . = xik define

q̂(x + eij + eij−1 + . . .+ eik,x) = v
1{xik≥xi+1,k−1}−1{xik<xi+1,k−1} .

We use the notation that xj0 = ∞ for j = 2, . . . , 2n + 1. Suppose l ≥ i and (i, j), (i +

1, j), . . . , (l, j) ∈ S. For x,x− eij − ei+1,j − . . .− elj and xij = xi+1j = . . . = xlj define

q̂(x− eij − ei+1,j − . . .− elj ,x) = v
1{xlj≤xl+1,j−1}−1{xlj>xl+1,j−1} .

It was shown in Theorem 5.2 of [9] that

π(x)q(x,x′) = π(x′)q̂(x′,x), x,x′ ∈ X∑
x′ 6=x

q(x,x′) =
∑
x′ 6=x

q̂(x,x′) x ∈ X .

Therefore π is the stationary distribution and q̂ are the transition rates in reversed
time when the process is run in stationarity. For any n ≥ 1 the invariant measure
of (Xij(u) : i + j ≤ 2n + 1, u ≥ 0) is equal in distribution to (G(i, j) : i + j ≤ 2n + 1).
Furthermore, when run in stationarity,

(Xij(u))u∈R,i+j≤2n+1
d
= (Xji(−u))u∈R,i+j≤2n+1.
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In our context this property corresponds to spatial symmetry of the growth process
in Section 2.1. The final property that we require from [9] concerns the marginal
distributions of rows and columns. In particular, the marginal distribution of any
row (Xi,2n−i+1, . . . , Xi,1) run forwards in time is PushASEP with a wall at the origin.
PushASEP is an interacting particle system introduced in [5] where each co-ordinate
evolves independently according to a continuous-time random walk with rate v of jumping
to the right, rate v−1 of jumping to the left and one-sided interactions involving pushing
and blocking that preserve the ordering Xi,2n−i+1 ≤ . . . ≤ Xi,1. With the meaning of
arrows above, and an additional wall at the origin, the interactions can be depicted as

| → Xi,2n−i+1 → . . .→ Xi,1.

Moreover, the marginal distribution of a column (X2n−j+1,j , . . . , X1,j) run backwards in
time is PushASEP with a wall at the origin.

We now show that the growth process in Section 2.1 run up to time 2n, in a stationary
regime L→∞, can be found as a marginal of (Xij(u) : i+ j ≤ 2n+ 1, u ∈ R).

Proposition 5.1. When X is run in stationarity

(Xn+1,n(u), Xn,n(u), Xn,n−1(u), . . . , X11(u))u∈R
d
= (h1(u), h2(u), . . . , h2n(u))u∈R.

Proof. Consider (Xij : (i, j) ∈ S) run backwards in time. The directions of interactions
backwards in time show that for any 1 ≤ k ≤ n,

(Xn+1,n, Xn,n, Xn,n−1, . . . , Xkk)

is conditionally independent of Xk−1,k−1 given

(Xk,k−1, Xk+1,k−1, . . . , X2n−k+2,k−1).

It also follows from the direction of interactions backwards in time that Xk−1,k−1 is
conditionally independent of (Xk+1,k−1, . . . , X2n−k+2,k−1) given Xk,k−1. This can be
combined to show that for any 1 ≤ k ≤ n,

(Xn+1,n, Xn,n, Xn,n−1, . . . , Xkk)

is conditionally independent of Xk−1,k−1 given Xk,k−1.
A similar argument, using the directions of interactions forwards in time, shows that

Xk,k−1 is conditionally independent of

(Xn+1,n, Xn,n, Xn,n−1 . . . , Xk+1,k)

given Xk,k. Hence let H0 ≡ 0 and

H2j+1 = Xn+1−j,n−j , j = 0, . . . , n− 1

H2j = Xn+1−j,n+1−j , j = 1, . . . , n.

Then (Hj)
2n
j=0 is a Markov process and by taking modifications its state space can be

taken to be U C as in Section 2.1.
The distribution of Xk,k−1 given Xk,k follows from the fact that the marginal distribu-

tion of
(Xk,2n−k+1, . . . , Xk,k, Xk,k−1, . . . , Xk,1)

is PushASEP with a wall at the origin. This coincides with the dynamics of h(L) given
in Section 2.1 except that it is has been defined directly in a stationary regime. The
distribution of Xk−1,k−1 given Xk,k−1 follows in a similar manner and again coincides
with the definition of h(L) in a stationary regime. As L→∞, h(L) converges to h which
satisfies the stated identity.
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Proof of Theorem 2.1 part (ii). This is a consequence of Propostion 5.1 and that the
invariant measure of (Xij(u) : i + j ≤ 2n + 1, u ≥ 0) is equal in distribution to (G(i, j) :

i+ j ≤ 2n+ 1).

Theorem 2.1 part (i) can be extended to limits of different marginals of the process
(Xvn

ij (u))u∈R,i+j≤2n+1 as vn = 1/n, n→∞. A particularly interesting case is the top row
that has the marginal distribution of PushASEP with a wall. This can be interpreted as a
growth process as follows. Define Hvn0 ≡ 0 and for j = 1, . . . , 2n let

Hvnj (u) = Xvn
1,2n+1−j(u), u ∈ R.

After taking modifications (Hvnj )2n
j=0 is a Markov process with a state space given by U C .

This satisfies
(Hvnb2ntc)t∈[0,1] → (hPNG

t (· − t))t∈[0,1] (5.1)

in the sense of weak convergence on D as n → ∞. The proof of this follows the proof
of Theorem 2.1 part (i) very closely. The difference is that time is not being reversed
at alternative levels so the points of increase of the interface remain fixed while the
points of decrease move during every time step. In the limit, this corresponds to the left
boundaries of islands in flat PNG remaining fixed while the right boundaries move to
the right at speed 2. This can be viewed as flat PNG in a moving frame of reference.
Formulas for the transition density and invariant measure of PushASEP with a wall are
given in Proposition 3.1 and 3.3 of [9].

A final question is to consider the limit vn = 1/n, n → ∞ of the whole array
(Xij(u))u∈R,i+j≤2n+1. Comparing Theorem 2.1 part (i) and Equation (5.1) shows that
the height functions corresponding to two particular marginals converge to PNG in
different moving frames of reference. My belief is that the whole array converges to
PNG, simultaneously viewed in different frames of references. This is omitted since the
limit is degenerate.
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