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Abstract

We aim to set forth an extension of the result found in paper [6], which finds an explicit
realisation of a reflecting Brownian motion with drift −µ, started at x, reflecting above
zero, and its local time at zero. In this paper we find a corresponding realisation for a
reflecting Brownian motion with drift −µ, started at x, reflected both above zero and
below one, along with a corresponding expression in terms of associated local times,
namely as the difference between the local time at zero and the local time at one.
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1 Introduction

Lévy’s classic theorem gives an explicit realisation for a standard Brownian motion
reflected above zero and its local time at zero, for the full result see (1) in paper [3]. This
was subsequently extended to a reflecting Brownian motion with drift in [3] and then
to a reflecting Brownian motion with a non-zero initial point in [6]. We wish to extend
this further to a two-sided reflecting Brownian motion and therefore we search for the
explicit realisation of a process with this double reflection required. The first such result
appears as the two-sided reflection of the sum of an Itô integral and an integral with
respect to time, see Lemma 2 in [2]. Subsequently similar more general results begin
to appear, and the result which we utilise in this paper arises in (1.8) of paper [4]. For
a comprehensive history of the progression of these results for a two-sided reflection
see [4, p. 171]. Result (1.8) in paper [4] (see also [5]) tells us that for the space of
right-continuous functions with left limits taking values in R, the double Skorokhod map
Γ0,a on [0, a] has the explicit realisation

Γ0,a(ψ)(t) = ψ(t)−
[
(ψ(0)− a)+ ∧ inf

u∈[0,t]
ψ(u)

]
∨ sup
s∈[0,t]

[
(ψ(s)− a) ∧ inf

u∈[s,t]
ψ(u)

]
(1.1)

for t ≥ 0 and a > 0. From (1.1), one finds an explicit realisation for a reflecting Brownian
motion R−µ,x0,1 with drift −µ, started at x, reflected both above zero and below one. We
shall denote this realisation as Zx = (Zxt )t≥0.

When finding an explicit realisation Zx = (Zxt )t≥0 for the reflecting Brownian motion
R−µ,x0,1 , for continuity and to allow us to draw similarities between the behaviour of the
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two processes, we wish for our Zx to be of a similar form to the Zx in Theorem 3.1 of
[6]. From (1.1), let ψ(t) = x − Bµt where Bµt = Bt + µt and B = (Bt)t≥0 is a standard
Brownian motion started at zero, µ ∈ R is a given and fixed constant, and take a = 1.
Explicitly

Zxt = x−Bµt −
[
(x− 1)+ ∧ inf

u∈[0,t]
(x−Bµu)

]
∨ sup
s∈[0,t]

[
(x−Bµs − 1) ∧ inf

u∈[s,t]
(x−Bµu)

]
(1.2)

= −Bµt −
([

0 ∧ inf
u∈[0,t]

(x−Bµu)
]
∨ sup
s∈[0,t]

[
(x−Bµs − 1) ∧ inf

u∈[s,t]
(x−Bµu)

]
− x
)

= −Bµt −
[
− x ∧ − sup

u∈[0,t]
Bµu
]
∨ sup
s∈[0,t]

[
− (Bµs + 1) ∧ − sup

u∈[s,t]
Bµu
]

= −Bµt −
[
− (x ∨ sup

u∈[0,t]
Bµu)

]
∨ − inf

s∈[0,t]

[
(Bµs + 1) ∨ sup

u∈[s,t]
Bµu
]

= −Bµt +
(
x ∨ Sµ0,t

)
∧ inf
s∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
where Sµs,t := sups≤u≤tB

µ
u for 0 ≤ s ≤ t.

Remark 1.1. Notice the correspondence between the realisation of the Brownian motion
reflecting above zero, given by

Y xt = −Bµt + (x ∨ Sµ0,t) (1.3)

and the realisation of the Brownian motion reflecting between zero and one, given by

Zxt = −Bµt +
(
x ∨ Sµ0,t

)
∧ inf
s∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
. (1.4)

It is also interesting to note that we can find a different expression for a reflecting
Brownian motion with drift −µ, started at x, reflecting both above zero and below one.
This expression can be found either directly from (1.1) or via (1.2). We choose the latter
method as it is easier to immediately see that the new expression does indeed satisfy
our requirements. In order to find this new expression, take (1.2), multiply by −1, add 1,
substitute the underlying Brownian motion process Bµ with −Bµ in order to account for
the change in drift caused by multiplying by −1, and then denote the initial point of this
new expression as x. This gives the following

Z̃xt = −Bµt + (x ∧ (Iµ0,t + 1)) ∨ sup
s∈[0,t]

[
Bµs ∧ (Iµs,t + 1)

]
(1.5)

where Iµs,t := infs≤u≤tB
µ
u . Here we notice the correspondence with the realisation of the

Brownian motion reflecting below one, given by

Ỹ xt = −Bµt + (x ∧ (Iµ0,t + 1)). (1.6)

Remark 1.2. In the case when our two-sided reflecting Brownian motion starts at the
point x = 0, we have from (1.2) that

Z0
t = −Bµt + Sµ0,t ∧ inf

s∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
(1.7)

We thus know, as can also be seen in Remark 2.2 in [4], that

Z0
t = −Bµt + inf

s∈[0,t]

[
((1 +Bµs ) ∧ Sµ0,t) ∨ S

µ
s,t

]
(1.8)

due to the fact that Sµs,t ≤ Sµ0,t for all 0 ≤ s ≤ t. Furthermore we may also note by
Theorem 6.2 in [1] that

Z0
t = sup

s∈[0,t]

[
(−Bµt +Bµs ) ∧ inf

u∈[s,t]
(1−Bµt +Bµu)

]
. (1.9)

This final realisation may be particularly useful in the case of the two-sided reflecting
Brownian motion starting at x = 0 as it is the simplest form of realisation we have seen
thus far.
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Figure 1: The blue line shows Bµ, whilst the orange line depicts (x ∨ Sµ) for x = 0.5.

2 Extended Lévy’s theorem for a two-sided reflection

Theorem 3.1 from [6] states that we have the following explicit realisation for a
reflecting Brownian motion R−µ,x0+ with drift −µ, started at x ≥ 0, and reflected above
zero

Y x = (x ∨ Sµ)−Bµ = ((x ∨ Sµt )−Bµt )t≥0. (2.1)

Furthermore, we have the following identity in law

((x ∨ Sµ)−Bµ, (x ∨ Sµ)− x)
law
= (R−µ,x0+ , `0(R−µ,x0+ )) (2.2)

where `0(R−µ,x0+ ) is the local time of R−µ,x0+ at 0. We now take a closer look at what is
going on here in order to allow us to carry out the same insight in the case of the double
reflection.

Obviously, Y x = (x ∨ Sµ) − Bµ ≥ 0 and (x ∨ Sµ) ≥ Bµ with equality when Y x = 0,
thus we have that the process (x ∨ Sµ) increases only when Y x, the reflecting Brownian
motion,“spends time at zero”, as can be seen in Figure 1. Thus it is intuitive that there
may be a correspondence between (x ∨ Sµ) and the local time of Y x at zero, as was
indeed shown in the aforementioned paper [6].

Now we consider similarly the case of what we will shortly show is a two-sided
reflecting Brownian motion Zx. Obviously,

0 ≤ Zxt =
(
x ∨ Sµ0,t

)
∧ inf
s∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
−Bµt ≤ 1 (2.3)

and
Bµt ≤ Qxt :=

(
x ∨ Sµ0,t

)
∧ inf
s∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
≤ 1 +Bµt (2.4)

with equality at the lower bound when Zxt = 0 and at the upper bound when Zxt = 1. This
can be visualised well with Figure 2.

Thus, Figure 2 suggests that the process (
(
x ∨ Sµ0,t

)
∧ infs∈[0,t]

[
(1 + Bµs ) ∨ Sµs,t

]
)t≥0

increases only when Zx “spends time at zero”, and decreases only when Zx “spends time
at one”. Thus it is intuitive that there may be a correspondence between (

(
x ∨ Sµ0,t

)
∧
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Figure 2: The blue line show the Brownian motion Bµ, the orange line shows 1 + Bµ,
whilst the green line depicts Qxt =

(
x ∨ Sµ0,t

)
∧ infs∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
for x = 0.5.

infs∈[0,t]
[
(1 +Bµs ) ∨ Sµs,t

]
)t≥0 and the local time of Zx at zero minus the local time of Zx

at one. This is indeed the case and is the first result that we shall prove.
We continue to use the notation as in the introduction.

Theorem 2.1 (Extended Lévy’s theorem for a two-sided reflection). The following identity
in law holds

(
(
x ∨ Sµ0,t

)
∧ inf
s∈[0,t]

[
(1+Bµs ) ∨ Sµs,t

]
−Bµt ,

(
x ∨ Sµ0,t

)
∧ inf
s∈[0,t]

[
(1 +Bµs ) ∨ Sµs,t

]
− x) (2.5)

law
= (R−µ,x0,1 , `0t (R

−µ,x
0,1 )− `1t (R

−µ,x
0,1 ))

where `a(R−µ,x0,1 ) is the local time of R−µ,x0,1 at a as defined in (2.18) below.

Proof of Theorem 2.1. First we show that R−µ,x0,1
law
= Zx. That is, we show that Zx =

(Zxt )t≥0 is a realisation for a Brownian motion with drift −µ reflecting between 0 and 1.
First recall that a Brownian motion starting at x with drift ν reflecting between 0 and 1

is a continuous strong Markov process with infinitesimal generator Lν defined by

Lνf = νf ′ +
1

2
f ′′ (2.6)

which acts on the domain D(Lν) given by

D(Lν) = {f ∈ C2
b ((0, 1)) | f ′(0+) = 0, f ′(1−) = 0} (2.7)

where C2
b ((0, 1)) denotes the space of functions f such that f, f ′, f ′′ ∈ Cb((0, 1)) for

Cb((0, 1)) the space of continuous, bounded functions on (0, 1), and g(a+) and g(a−)

denote the limits of g(y) as y tends to a from above and below, respectively. We know
that (Lν ,D(Lν)) uniquely generates a family of measures {Px |x ∈ (0, 1)} which define
the law of our reflecting Brownian motion process.

Note that as in [6, p. 3-4], in order to show that Zxt is a reflecting Brownian motion of
the type we want it is sufficient to show that for all f ∈ D(L−µ)

f(Zxt )− f(Zx0 )−
∫ t

0

(L−µf)(Zxs )ds (2.8)
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is a martingale under Px, all x ∈ (0, 1).
Take f ∈ D(L−µ) and apply Itô’s lemma to Zxt

f(Zxt ) = x+

∫ t

0

f ′(Zxr ) dZxr +
1

2

∫ t

0

f ′′(Zxr ) d〈Zx, Zx〉r (2.9)

= x+

∫ t

0

f ′(Zxr ) d((x ∨ Sµ0,r) ∧ inf
s∈[0,r]

[(1 +Bµs ) ∨ Sµs,r])

−
∫ t

0

f ′(Zxr ) dBµr +
1

2

∫ t

0

f ′′(Zxr ) dr

= x−
∫ t

0

f ′(Zxr ) dBr −
∫ t

0

µf ′(Zxr ) dr +
1

2

∫ t

0

f ′′(Zxr ) dr

= x+

∫ t

0

(−µf ′ + 1

2
f ′′)(Zxr ) dr −

∫ t

0

f ′(Zxr )dBr

where in the third equality we use, as was suggested earlier on, that

Qxr =
(
x ∨ Sµ0,r

)
∧ inf
s∈[0,r]

[
(1 +Bµs ) ∨ Sµs,r

]
(2.10)

can only change in value when Qxr = Bxr or Qxr = 1 +Bxr , something which can be seen
by inspecting the function Qx. Note also that infs∈[0,r] S

µ
s,r = Bµr . Thus d((x ∨ Sµ0,r) ∧

infs∈[0,r][(1+Bµs )∨Sµs,r]) = 0 when Zr 6= 0 or 1, while f ′(Zxr ) = 0 when Zr = 0 or 1. Finally

since f ′ is bounded this means
∫ t
0
f ′(Zxr )dBr is a martingale and we have our result.

In order to proceed with the second identity in law and find a realisation for local
time we recall Tanaka’s formula (cf. [7, p. 222]). Given a continuous semimartigale X,
for any real number a, there exists an increasing continuous process `a+ called the right
hand local time of X at a such that

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1Xs>a dXs +
1

2
`a+t (X) (2.11)

(Xt − a)− = (X0 − a)− +

∫ t

0

−1Xs≤a dXs +
1

2
`a+t (X). (2.12)

Using (2.11) and (2.12) respectively with our reflecting Brownian motion process Zx

in order to return expressions containing the local time of Zx at both zero and one, we
find

Zxt = x+

∫ t

0

1Zx
s>0 dZ

x
s +

1

2
`0+t (Zx) (2.13)

1− Zxt = 1− x−
∫ t

0

1Zx
s≤1 dZ

x
s +

1

2
`1+t (Zx). (2.14)

It is important to note that the convention used in [7] is that the integrand on the
right-hand side of the above formulation of Tanaka’s formula is the left-hand derivative
of the left-hand side of the formula. This convention results in the local time in Tanaka’s
formula being the right-hand local time, defined as

`a+t (Zx) = lim
ε↓0

1

ε

∫ t

0

1{a≤Zx
s≤a+ε} d〈Z

x, Zx〉s. (2.15)

Notice that due to our process Zx being a reflected Brownian motion between zero
and one, using the above definition of the right-hand local time would result in `1+t (Zx)

being identically zero, a fact which can be immediately verified from (2.14). We must
therefore find an expression for 1− Zxt in terms of the left-hand local time. This can be
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done easily by taking the integrand on the right-hand side of Tanaka’s formula to be the
right-hand derivative of the left-hand side of the formula. Thus we get

1− Zxt = 1− x−
∫ t

0

1Zx
s<1 dZ

x
s +

1

2
`1−t (Zx) (2.16)

where

`a−t (Zx) = lim
ε↓0

1

ε

∫ t

0

1{a−ε≤Zx
s≤a} d〈Z

x, Zx〉s. (2.17)

Recall, again from [7], the symmetric local time `at of our process Zx at fixed, real a,
defined as

`at (Zx) = lim
ε↓0

1

2ε

∫ t

0

1{a−ε≤Zx
s≤a+ε} d〈Z

x, Zx〉s. (2.18)

Notice that due to the fact that 0 ≤ Zx ≤ 1, we have

1

2
`0+t (Zx) = `0t (Z

x) and
1

2
`1−t (Zx) = `1t (Z

x). (2.19)

Thus we may now rewrite (2.13) and (2.16) as

Zxt − x =

∫ t

0

1Zx
s>0 dZ

x
s + `0t (Z

x) (2.20)

and

0 = Zxt − x−
∫ t

0

1Zx
s<1 dZ

x
s + `1t (Z

x) (2.21)

=

∫ t

0

1dZxs −
∫ t

0

1Zx
s<1 dZ

x
s + `1t (Z

x)

respectively, where in the last equality we have used that∫ t

0

1 dZxs = Zxt − x. (2.22)

Subtracting (2.21) from (2.20), we find

Zxt − x =

∫ t

0

1Zx
s>0 dZ

x
s +

∫ t

0

1Zx
s<1 dZ

x
s −

∫ t

0

1 dZxs + `0t (Z
x)− `1t (Zx) (2.23)

=

∫ t

0

(1Zx
s>0 + 1Zx

s<1 − 1) dZxs + `0t (Z
x)− `1t (Zx)

=

∫ t

0

10<Zx
s<1 dZ

x
s + `0t (Z

x)− `1t (Zx).

We now take a closer inspection of the expression∫ t

0

10<Zx
s<1 dZ

x
s (2.24)

from the last line above. Recalling our definition of Zx, we have∫ t

0

10<Zx
r<1 dZ

x
r =

∫ t

0

10<Zx
r<1 d

[(
x ∨ Sµ0,r

)
∧ inf
s∈[0,r]

[
(1 +Bµs ) ∨ Sµs,r

]
−Bµr

]
(2.25)

=

∫ t

0

10<Zx
r<1 d

[(
x ∨ Sµ0,r

)
∧ inf
s∈[0,r]

[
(1 +Bµs ) ∨ Sµs,r

]]
−
∫ t

0

10<Zx
r<1 dB

µ
r

=

∫ t

0

10<Zx
r<1 dQ

x
r −

∫ t

0

10<Zx
r<1 dB

µ
r
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where we have recalled the definition of Qx from (2.4). We now focus on the rather
messy expression appearing above, that is∫ t

0

10<Zx
r<1 dQ

x
r =

∫ t

0

10<Zx
r<1 d

[(
x ∨ Sµ0,r

)
∧ inf
s∈[0,r]

[
(1 +Bµs ) ∨ Sµs,r

]]
. (2.26)

We consider three distinct cases for values that Zx can take. Firstly, the case when
Zxr = 0, secondly, the case when Zxr = 1, and thirdly, the case when 0 < Zxr < 1. In the
first two cases, we have that

10<Zx
r<1 = 0 (2.27)

and therefore the integral in (2.26) is equal to zero in these cases. For the third case,
we again recall, as was suggested in the introduction, and as can be seen by inspecting
the function Qx, that

Qxr =
(
x ∨ Sµ0,r

)
∧ inf
s∈[0,r]

[
(1 +Bµs ) ∨ Sµs,r

]
(2.28)

can only change in value when Qxr = Bxr or Qxr = 1 +Bxr . Thus, since 0 < Zxr < 1 implies
that

Bxr < Qxr =
(
x ∨ Sµ0,r

)
∧ inf
s∈[0,r]

[
(1 +Bµs ) ∨ Sµs,r

]
< 1 +Bxr (2.29)

we have that Qxr is constant in this case, yielding dQxr = 0, and we have shown that the
integral in (2.26) is identically equal to zero in the third case as well.

Using this information, we see that equation (2.25) simplifies to∫ t

0

10<Zx
s<1 dZ

x
s = −

∫ t

0

10<Zx
s<1 dB

µ
s (2.30)

and further, equation (2.23) becomes

Zxt − x = −
∫ t

0

10<Zx
s<1 dB

µ
s + `0t (Z

x)− `1t (Zx). (2.31)

Now, if we can show that ∫ t

0

10<Zx
s<1 dB

µ
s = Bµt (2.32)

then we have our result. In order to do this we first note that∫ t

0

10<Zx
s<1 dB

µ
s +

∫ t

0

1Zx
s =0 dB

µ
s +

∫ t

0

1Zx
s =1 dB

µ
s =

∫ t

0

10≤Zx
s≤1 dB

µ
s (2.33)

=

∫ t

0

1 dBµs = Bµt .

We therefore require that∫ t

0

1Zx
s =0 dB

µ
s =

∫ t

0

1Zx
s =1 dB

µ
s = 0. (2.34)

Now considering
∫ t
0
1Zx

s =0 dB
µ
s we see that∫ t

0

1Zx
s =0 dB

µ
s =

∫ t

0

1Zx
s =0 d(Bs + µs) =

∫ t

0

1Zx
s =0 dBs + µ

∫ t

0

1Zx
s =0 ds︸ ︷︷ ︸

=0

(2.35)
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where B = (Bt)t≥0 is a standard Brownian motion. Squaring the right-hand side of (2.35)
and taking expectation, we find that

E

(∫ t

0

1Zx
s =0 dBs

)2

= E

∫ t

0

(1Zx
s =0)2 ds =

∫ t

0

E[1Zx
s =0] ds = 0 (2.36)

where in the first equality we have used the Itô isometry and in the second equality
we have used Fubini’s theorem and the fact that the square of the indicator function
is itself. Recall, since (

∫ t
0
1Zx

s =0dBs)
2 ≥ 0 then E[(

∫ t
0
1Zx

s =0dBs)
2] = 0 if and only if∫ t

0
1Zx

s =0 dBs = 0. We therefore have that
∫ t
0
1Zx

s =0 dBs = 0, and the same argument can

be used to show
∫ t
0
1Zx

s =1 dBs = 0, thus we have our result.

Remark 2.2. Consider the following two versions of Tanaka’s formula

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1Xs≥a dXs +
1

2
`a−t (X) (2.37)

(Xt − a)− = (X0 − a)− +

∫ t

0

−1Xs≤a dXs +
1

2
`a+t (X). (2.38)

Take Xt = Zxt and a = 0 in (2.38)

(Zxt − 0)− = (x− 0)− −
∫ t

0

1Zx
s≤0 dZ

x
s +

1

2
`0+t (Zx). (2.39)

Using (2.19) and the fact that 0 ≤ Zxt ≤ 1, we see that

`0t (Z
x) =

∫ t

0

1Zx
s =0 dZ

x
s (2.40)

=

∫ t

0

1Zx
s =0 dQ

x
s −

∫ t

0

1Zx
s =0 dB

µ
s

=

∫ t

0

1Zx
s =0 dQ

x
s

where in the final equality we have used (2.35) and (2.36). Similar arguments applied
to (2.37) yield

`1t (Z
x) = −

∫ t

0

1Zx
s =1 dQ

x
s . (2.41)

Note that by taking the difference between (2.40) and (2.41) one can again prove
Theorem 3 by applying arguments similar to those of the original proof.

3 A coupled pair of local time realisations

We have an explicit realisation for the difference between the local times at 0 and
1, and also a realisation for each local time in integral form. However we wish to go
further. We present a result for which gives a realisation of each local time in terms of
the other. Recall that R−µ,x0,1 is a Brownian motion with drift −µ ∈ R reflected between 0

and 1 started at x ∈ (0, 1).

Theorem 3.1 (A coupled pair of local time realisations). The following identities in law
hold

`0t (R
−µ,x
0,1 )

law
= x ∨ sup

s∈[0,t]
(Bµs + `1s(Z

x))− x (3.1)

−`1t (R
−µ,x
0,1 )

law
= x ∧ inf

s∈[0,t]
(Bµs + 1− `0s(Zx))− x. (3.2)

where `a(R−µ,x0,1 ) is the local time of R−µ,x0,1 at a.
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Note that this result is similar to one found in [7, p. 245], however a couple of key
differences can be seen, namely that here our reflecting Brownian motion is able to have
non-zero drift, and also that the Brownian motion Bµ seen here is exactly the Brownian
motion used to generate our Zx process.

Proof of Theorem 3.1. We know from Theorem 2.1 that there is no loss of generality to
identify R−µ,x0,1 with Zx. We take (2.20) as follows

Zxt = x+

∫ t

0

1Zx
s>0 dZ

x
s + `0t (Z

x) (3.3)

and we then apply Skorokhod’s lemma [7, p. 239]. That is we note that from (3.3) we get

V xt := x+

∫ t

0

1Zx
s>0 dZ

x
s (3.4)

with t ≥ 0 is a continuous process for which

V x0 = x ≥ 0 (3.5)

Zxt = V xt + `0t (Z
x). (3.6)

We then see that the processes Zxt and `0t (Z
x) satisfy

Zxt ≥ 0 (3.7)

`0t (Z
x) is increasing and `00(Zx) = 0 (3.8)∫ t

0

1Zx
s>0 d`

0
t (Z

x) =

∫ t

0

1Zx
s>01Zx

s =0 dZ
x
s = 0 (3.9)

for t ≥ 0, where for the first equality in (3.9) we have used the differential form of (2.40).
Thus Skorokhod’s Lemma tells us that we have an explicit expression for `0t (Z

x) given by

`0t (Z
x) = sup

s∈[0,t]
(−V xs ∨ 0) (3.10)

= sup
s∈[0,t]

((−x−
∫ s

0

1Zx
r>0 dZ

x
r ) ∨ 0)

= sup
s∈[0,t]

(−
∫ s

0

1Zx
r>0 dZ

x
r ∨ x)− x

= x ∨ sup
s∈[0,t]

(−
∫ s

0

1Zx
r>0 dZ

x
r )− x.

Now we take a closer look at
∫ s
0
1Zx

r>0 dZ
x
r and see that it can be written as∫ s

0

1Zx
r>0 dZ

x
r =

∫ s

0

10<Zx
r<1 + 1Zx

r =1 dZ
x
r (3.11)

=

∫ s

0

10<Zx
r<1 dZ

x
r +

∫ s

0

1Zx
r =1 dZ

x
r

due to the fact that Zx is between 0 and 1. Recall that in (2.25)–(2.36) we proved that∫ s

0

10<Zx
r<1 dZ

x
r = −Bµs (3.12)

and from (2.41) we have ∫ s

0

1Zx
r =1 dZ

x
r = −`1s(Zx) (3.13)
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thus ∫ s

0

1Zx
r>0 dZ

x
r = −Bµs − `1s(Zx) (3.14)

and we can now rewrite (3.10) as

`0t (Z
x) = x ∨ sup

s∈[0,t]
(Bµs + `1s(Z

x))− x (3.15)

giving us the first of our two coupled equations in which we have written the local time
at 0 of our two-sided reflecting Brownian motion process Zx in terms of the underlying
Brownian motion which can be used to generate Zx, and the local time at 1 of Zx. For the
second of the two coupled equations we want to be able to write the local time at 1 of our
two-sided reflecting Brownian motion process Zx in terms of the underlying Brownian
motion, and the local time at 0 of Zx. It is possible to do this directly from (3.15) by
exploiting the symmetries of Zx but for a more concrete proof we will look at a similar
method to the one above. We again begin with Tanaka’s formula from (2.16) and (2.19),
that is

1− Zxt = 1− x−
∫ t

0

1Zx
s<1 dZ

x
s + `1t (Z

x) (3.16)

and as before we see that the conditions to apply Skorokhod’s Lemma are met and thus
we can state that we have an explicit expression for `1t (Z

x) given by

`1t (Z
x) = sup

s∈[0,t]
((x− 1 +

∫ s

0

1Zx
r<1 dZ

x
r ) ∨ 0) (3.17)

= sup
s∈[0,t]

((−1 +

∫ s

0

1Zx
r<1 dZ

x
r ) ∨ −x) + x

= −x ∨ sup
s∈[0,t]

(−1 +

∫ s

0

1Zx
r<1 dZ

x
r ) + x

= −x ∨ − inf
s∈[0,t]

(1−
∫ s

0

1Zx
r<1 dZ

x
r ) + x

= −(x ∧ inf
s∈[0,t]

(1−
∫ s

0

1Zx
r<1 dZ

x
r )) + x.

In an analogous manner to before we take a closer look at
∫ s
0
1Zx

r<1 dZ
x
r and we see∫ s

0

1Zx
r<1 dZ

x
r =

∫ s

0

1Zx
r =0 dZ

x
r +

∫ s

0

10<Zx
r<1 dZ

x
r (3.18)

= `0s(Z
x)−Bµs

where in the final equality we have used (2.40) and (3.12). This yields the expression for
`1t (Z

x) given by

`1t (Z
x) = −(x ∧ inf

s∈[0,t]
(1− `0s(Zx) +Bµs )) + x (3.19)

and so we have our coupled pair of equations for the local times written in terms of the
other local time and the underlying Brownian motion

`0t (Z
x) = x ∨ sup

s∈[0,t]
(Bµs + `1s(Z

x))− x (3.20)

−`1t (Zx) = x ∧ inf
s∈[0,t]

(Bµs + 1− `0s(Zx))− x. (3.21)
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Remark 3.2. Although we have only shown equality in law between our expressions
on the right-hand side of (3.20) and (3.21) and the local times of the general reflecting
Brownian motion R−µ,x0,1 , we have actually shown pathwise equality between these
expressions and the local times of the realisation Zx of the reflecting Brownian motion.

In Section 3, we saw that when starting with a realisation in law for a Brownian
motion reflecting between 0 and 1, one can construct an expression which is equivalent
in law to the difference between the local times at 0 and 1 of the reflecting Brownian
motion. In this section we have started by finding realisations for each of these two
local times, so now we ask, from this starting point is it possible to do the reverse and
construct a new expression which is equivalent in law to the reflecting Brownian motion.

Taking inspiration from Theorem 2.1 in Section 3 we will take the difference between
our two realisations of the local times of the reflecting Brownian motion process, add
x ∈ [0, 1], the starting point of our reflecting Brownian motion, and then subtract
Bµt = Bt + µt a Brownian motion process starting at 0 with drift µ ∈ R, with (Bt)t≥0 a
standard Brownian motion. We see in the above remark why we are able to do this.

This then yields the expression

Zxt = `0t (Z
x)− `1t (Zx) + x−Bµt (3.22)

= x ∨ sup
s∈[0,t]

(Bµs + `1s(Z
x)) + x ∧ inf

s∈[0,t]
(Bµs + 1− `0s(Zx))− x−Bµt .

which can be used as an alternative realisation of the two-sided Brownian motion with
drift −µ reflecting between 0 and 1 started at x.

Remark 3.3. Note that from (3.20) and (3.21) it is now obviously possible to find implicit
expressions for `0t (Z

x) and −`1t (Zx) by simply combining the two. Namely

`0t (Z
x) = x ∨ sup

s∈[0,t]
(Bµs − x ∧ inf

r∈[0,s]
(Bµr + 1− `0r(Zx)) + x)− x (3.23)

= 0 ∨ sup
s∈[0,t]

(Bµs − x ∧ inf
r∈[0,s]

(Bµr + 1− `0r(Zx)))

−`1t (Zx) = x ∧ inf
s∈[0,t]

(Bµs + 1− x ∨ sup
r∈[0,s]

(Bµr + `1r(Z
x)) + x)− x (3.24)

= 0 ∧ inf
s∈[0,t]

(Bµs + 1− x ∨ sup
r∈[0,s]

(Bµr + `1r(Z
x))).

However is also interesting to note that we can obtain a much simpler implicit expression
by applying Skorokhod’s Lemma either in the way we did in the proof of Theorem 5, or
by applying it to a case that trivially satisfies the conditions. In particular we see that
Zxt = Zxt − `0t (Zx) + `0t (Z

x), and Skorokhod’s Lemma then tells us

`0t (Z
x) = 0 ∨ sup

s∈[0,t]
(`0s(Z

x)− Zxs ). (3.25)
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