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Abstract

The adapted weak topology is an extension of the weak topology for stochastic
processes designed to adequately capture properties of underlying filtrations. With
the recent work of Bart–Beiglböck–P. [7] as starting point, the purpose of this note is to
recover with topological arguments the intriguing result by Backhoff–Bartl–Beiglböck–
Eder [3] that all adapted topologies in discrete time coincide. We also derive new
characterizations of this topology, including descriptions of its trace on the sets of
Markov processes and processes equipped with their natural filtration. To emphasize
the generality of the argument, we also describe the classical weak topology for
measures on Rd by a weak Wasserstein metric based on the theory of weak optimal
transport that was initiated by Gozlan–Roberto–Samson–Tetali [11].
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1 Introduction

An essential difference in the study of random variables and stochastic processes
is that the latter comes in conjuction with filtrations that are designed to model the
flow of available information: Let us consider a path space X :=

∏N
t=1 Xt equipped with

the product topology where (Xt, dXt
) are Polish metric spaces and N ∈ N denotes the

number of time steps. We write P(X ) for the set of laws of stochastic processes, i.e.,
Borel probability measures on X . Canonically, we identify P ∈ P(X ) with the process(

X , (σ(X1:t))
N
t=1, σ(X),P, X

)
, (1.1)

where X = X1:N is the coordinate process on X , X1:t denotes the projection from
X →

∏t
s=1 Xs =: X1:t, and σ(X1:t) the σ-algebra generated by X1:t. For P,Q ∈ Pp(X ),

that are probabilities in P(X ) with finite p-th moment, p ∈ [1,∞), the p-Wasserstein
distanceWp is given by

Wp
p (P,Q) := inf

π∈Cpl(P,Q)
Eπ
[
dpX (X,Y )

]
, (1.2)

where Cpl(P,Q) denotes the probabilities on X × X with marginals P and Q, and
dpX (x, y) :=

∑N
t=1 d

p
Xt

(xt, yt). We endow Pp(X ) with the topology induced byWp and P(X )

with the usual weak topology of measures, which is metrized byWp when dX is bounded.
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On the adapted weak topology

The starting point for the study of adapted topologies is the fact that probabilistic
operations and optimization problems, which crucially depend on filtrations, such as
the Doob decomposition, the Snell envelope, optimal stopping, utility maximization, and
stochastic programming, are typically not continuous w.r.t. the usual weak topology.
These shortcomings are acknowledged by several authors from different communities,
see, e.g., [1, 13, 18, 2, 7] for more details. The purpose of this note is to recover
and strengthen the main result of Backhoff et al. [3], which states that all adapted
topologies on P(X ) coincide. In comparison to the original proof, our argument is more
conceptional. At its core lies the elementary fact that comparable compact Hausdorff
topologies agree, as shown in Lemma 1.9 below, which is a minor generalization of this
observation.

1.1 Stochastic processes and the adapted weak topology

Subsequently, we want to consider topologies that incorporate the flow of information
encoded in filtrations, for processes on general filtered probability spaces. Therefore,
we follow the approach of [7] by introducing the notion of a filtered process.

Definition 1.1 (Filtered Process). A filtered process X with paths in X is a 5-tuplet(
ΩX,FX, (FX

t )Nt=1,P
X, X

)
, (1.3)

consisting of a complete filtered probability space (ΩX,FX, (FX
t )Nt=1,P

X) and an (FX
t )Nt=1-

adapted stochastic process X with paths in X . We write FP for the class of all filtered
processes with paths in X , and FPp for the subclass of filtered processes that finitely
integrate dpX (x̂, X) for some x̂ ∈ X .

While a-priori FP is a proper class that contains a lot of redundancy, we will focus on
equivalence classes [X] of filtered processes in the sense of Hoover–Keisler [13]. The
corresponding factor space FP is a set, see, e.g., [6]. This factorization is analogous
to classical Lp-theory, where equivalence classes modulo almost-sure equivalence are
considered to obtain a Banach space. The equivalence relation between filtered processes
can be characterized by an adapted version of the Wasserstein distance, known as the
adapted Wasserstein distance AWp, as demonstrated in [7, Theorem 1.5]. We will
provide a detailed introduction of this distance in Section 1.2. For X,Y ∈ FPp, we have

Y ∈ [X] ⇐⇒ AWp(X,Y) = 0,

and write X ≡ Y. Throughout this paper, we will use the same notation for elements in
FP and their equivalence classes in FP, denoting both by bold letters.

Henceforth, we consider the factor space FP and remark that equivalent processes
share the same probabilistic properties, e.g. being predictable, being a martingale,
having the same Doob decomposition, having the same Snell-envelope, . . . . Moreover,
we write FPp for those elements X ∈ FP with EPX [dpX (x̂, X)] <∞ for some x̂ ∈ X .

The topology induced by the adapted Wasserstein distance is denoted by τAW and
is called the adapted weak topology. Equipping FP with this topology results in a
space with rich topological and geometric properties (see [7]). Importantly, we note
that the value of AWp(X,Y) (as well as CWp(X,Y), which will be introduced below)
is independent of the particular choice of representatives, thanks to the adapted block
approximation introduced in [7]. Similarly, we can equip FPp with p-th Wasserstein
topology by defining

Wp(X,Y) :=Wp(L (X),L (Y )).

However, it is important to remark thatWp is not point seperating on FPp, meaning that
processes can have the same law but different information structure (as illustrated in [2,
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Figure 1]). An essential feature of AWp is the following Prokhorov-type result which will
be applied at several occasions in the proofs:

Theorem 1.2 (Theorem 1.7 of [7]). A set M ⊂ FPp is (FPp,AWp)-precompact if and
only if M is (FPp,Wp)-precompact, that is {L (X) : X ∈M} ⊂ Pp(X ) is precompact.

To emphasize the significance of Theorem 1.2 and to give the idea behind the main
results, we formulate the following immediate corollary:

Corollary 1.3. Let d : FPp × FPp → R+ be a metric on FPp such that

Wp(X,Y) ≤ d(X,Y) ≤ AWp(X,Y). (1.4)

Then d metrizes the adapted weak topology τAW .

Proof. Using (1.4) we need to show that any subsequence (Xk′)k′∈N of a d-convergent
sequence (Xk)k∈N with limit X admits an AWp-convergent subsequence with the same
limit. To verify this, note that as (Xk′)k′∈N is d-convergent, it is Wp-precompact and
thus, AWp-precompact by Theorem 1.2. Therefore, there exist Y ∈ FPp and a further
AWp-convergent subsequence (Xk′′)k′′∈N with limit Y. Again by (1.4), this sequence
also converges w.r.t. d and the triangle inequality yields d(X,Y) = 0. Finally, as d is a
metric, we get that X = Y, which concludes the proof.

Remark 1.4. The conclusion fails for d =Wp sinceWp does not separate points in FPp.

1.2 Adapted topologies

In order to capture the properties of filtrations, numerous authors have introduced
extensions of the weak topology of measures on P(X ), which we frame in our setting
and briefly introduce below. For a thorough overview of the topic and introduction to
those topologies we refer to [3] and the references therein.

(A) Aldous [1] introduces the extended weak topology τA by associating a process
X ∈ FP with a measure-valued martingale pp1(X), the so-called prediction
process, that is here

pp1(X) :=
(
L (X|FX

t )
)N
t=1
∈ P(X )N , (1.5)

where L (X|FX
t ) is the conditional law of X given FX

t . Then τA is defined as the
initial topology induced by X 7→ L (pp1(X)) when P(P(X )N ) is equipped with the
weak topology.

(HK) Hoover–Keisler [13] introduce an increasing sequence of topologies τ rHK on FP

where r ∈ N ∪ {0,∞} is called the rank. This is achieved by iterating Aldous’
construction of the prediction process. Set pp0(X) := X and, recursively define,
for r ∈ N ∪ {∞},

ppr(X) :=
(
L (ppr−1(X)|Ft)

)N
t=1

, (1.6)

and pp(X) := pp∞(X). Analogously to (A), for r ∈ N ∪ {0,∞}, τ rHK is given by the
initial topology w.r.t. X 7→ L ((ppk(X))rk=0). We remark that τ0

HK is equivalent to
weak convergence of the law, τ1

HK = τA, and τN−1
HK = τ rHK for r ≥ N (see [7]) and

simply write then τHK := τN−1
HK .

(OS) The optimal stopping topology τOS is defined in [3] as the initial topology w.r.t.
the family of maps

X 7→ inf
{
EPX [c(ρ,X)] : ρ is (FX

t )Nt=1-stopping time
}
, (1.7)

where c : {1, . . . , N} × X → R is continuous, bounded, and non-anticipative, that
is, if (t, x), (t, y) ∈ {1, . . . , N} × X with x1:t = y1:t then c(t, x) = c(t, y).
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(H) The information topology τH of Hellwig [12] is based on a similar point of view
as (A) and (HK). Properties of the filtration are encoded in the laws

L
(
X1:t,L

(
Xt+1:N |FX

t

))
, 1 ≤ t ≤ N, (1.8)

that are measures on P(X1:t × P(Xt+1:N )) and τH is given as the initial topology
induced by the map that assigns X ∈ FP the family of distributions in (1.8).

(BLO) Let the path space X be the N -fold product of a separable Banach space V , i.e.,
X = V N . In this setting, Bonnier–Liu–Oberhauser [9] embed FP into graded
linear spaces Vr via higher rank expected signatures, where r ∈ N ∪ {0,∞} is
again the rank, and define τ rBLO as the initial topology w.r.t. the corresponding
embedding Φr : FP→ Vr.

Remark 1.5. In case that dX is an unbounded metric on X , we will fix for the rest of the
paper p ∈ [1,∞) and consider the subset FPp with the following topological adaptation.
The topologies (A), (HK), (OS), (H) and (BLO) are then refined by additionally requiring
continuity of

FPp 3 X 7→ EPX

[
dpX (x̂, X)

]
. (1.9)

To avoid notational excess, we state all results on FPp for some p ∈ [1,∞). All results are
also true when replacing FPp with FP (and if necessary dX with, for example, dX ∧ 1).

Besides using the powerful concept of initial topologies, various authors have con-
structed adapted topologies based on ideas from optimal transportation. The essence of
this approach is to encode filtrations into constraints for the set of couplings and thereby
construct modifications of the Wasserstein distance suitable for processes. To illustrate
the idea, recall that optimal transport has so-called transport maps T : X → X at its
core, satisfying the push-forward condition T#P = Q for P,Q ∈ P(X ). We refer to [20]
for a comprehensive overview on optimal transport. In our context, where P and Q are
laws of processes, causal optimal transport suggests to use adapted maps in order to
transport P to Q, i.e., T#P = Q and T is non-anticipative, which means

T (X) =
(
T1(X1), T2(X1:2), . . . , TN (X)

)
.

When X resp. Y denote the first resp. second coordinate projection from X × X → X ,
then this additional adaptedness constraint on couplings can be formulated as

Cplc(P,Q) :=
{
π ∈ Cpl(P,Q) : X ⊥X1:t

Y1:t under π for t = 1, . . . , N − 1
}
, (1.10)

where, for σ-algebras A,B, C on some probability space, A ⊥B C denotes conditional
independence of A and C given B. Elements of Cplc(P,Q) are called causal couplings.
When one symmetrizes (1.10) one obtains the set of bicausal couplings Cplbc(P,Q), that
are π ∈ Cplc(P,Q) such that (Y,X)#π ∈ Cplc(Q,P). These definitions can be easily
extended to FP, which consists of filtered processes.

Definition 1.6 (Causal and Bicausal Couplings). Let X,Y ∈ FP. For s, t ∈ {0, . . . , N} we
denote by FX,Y

s,t the σ-algebra on ΩX ×ΩY given by FX
s ⊗FY

t under the convention that
FX

0 and FY
0 are the corresponding trivial σ-algebras. A probability π on the measurable

space (ΩX × ΩY,FX ⊗FY) is called causal if, under π,

FX,Y
N,0 ⊥FX,Y

t,0
FX,Y

0,t . (1.11)

We call π bicausal if it additionally satisfies

FX,Y
0,N ⊥FX,Y

0,t
FX,Y
t,0 . (1.12)

Finally, we write Cplc(X,Y) resp. Cplbc(X,Y) for the set of causal resp. bicausal proba-
bilities with first marginal PX and second marginal PY.
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Remark 1.7. Even though the sets defined in Definition 1.6 depend on the specific
filtered processes X,Y, we can show the following: If X,Y ∈ FPp, X′ ∈ [X], Y′ ∈ [Y],
and π ∈ Cplc(X,Y) resp. π ∈ Cplbc(X,Y), then there is, for every ε > 0, a coupling
π′ ∈ Cplc(X′,Y′) resp. π′ ∈ Cplbc(X′,Y′) such thatWp((X,Y )#π, (X

′, Y ′)#π
′) < ε. This

follows from the adapted block approximation (c.f. [7, Theorem A.4]) and the fact that
gluing preserves causality (see Corollary 2.12).

(SCW) Lassalle [17] and Backhoff et al. [4] coin the notion of causality, see Definition 1.6,
and introduce the causal Wasserstein “distance” CWp on Pp(X ). For X,Y ∈ FPp
we define

CWp
p(X,Y) := inf

π∈Cplc(X,Y)
Eπ
[
dpX (X,Y )

]
, (1.13)

and note that by Remark 1.7, (1.13) is independent of the choice of representative.
By abuse of notation, we view CWp from now on as a function on FPp × FPp.
Clearly, CWp is not a metric as it lacks symmetry, which motivates to consider
the so-called symmetrized causal Wasserstein distance, see [3],

SCWp(X,Y) := max
{
CWp(X,Y), CWp(Y,X)

}
, (1.14)

which constitutes a metric on FPp. We write τSCW for the induced topology.

(AW) Instead of symmetrizing as in (1.14), one can directly symmetrize the definition
on the level of couplings via the notion of bicausal couplings. Approaches in this
spirit but to different extents go back to Rüschendorf [19], Pflug–Pichler [18],
Bion-Nadal–Talay [8], and Bartl et al. [7]. We define the adapted Wasserstein
distance of X,Y ∈ FPp

AWp
p(X,Y) := inf

π∈Cplbc(X,Y)
Eπ
[
dpX (X,Y )

]
, (1.15)

and, as above, view AWp as a function on FPp × FPp. The adapted Wasserstein
distance is a metric on FPp, and we denote its induced topology by τAW .

(CW) Finally, we introduce here a new mode of convergence, called the topology of
causal convergence, denoted by τCW . A neighbourhood basis for τCW at a fixed
X ∈ FPp is given by sets of the form

{
Y ∈ FPp : CWp(X,Y) < ε

}
, where ε > 0.

In other words, τCW can be equivalently described by

Xk → X in τCW ⇐⇒ CWp(X,X
k)→ 0. (1.16)

Remark 1.8. It is apparent from the definitions in (1.2), (1.13), (1.14) and (1.15) that

Wp(X,Y) ≤ CWp(X,Y) ≤ SCWp(X,Y) ≤ AWp(X,Y), (1.17)

for X,Y ∈ FPp. Hence, we have τW ⊆ τCW ⊆ τSCW ⊆ τAW .

1.3 Characterizations of the adapted weak topology

In this subsection we formulate the main results of this paper. We recall that a
topological space is said to be sequential if every sequentially closed subset is closed,
where a subset A is said to be sequentially closed if every sequence (xn)n∈N in A that
converges, has its limit in A. The core ingredient in order to prove the main results,
Theorems 1.10 and 1.12, and also Proposition 1.13, is the following simple observation:

Lemma 1.9. Let (A, τ ′), (A, τ) be topological spaces that satisfy the following:

(1) (A, τ ′) and (A, τ) are sequential topological spaces.
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(2) The topology τ is a least as fine as τ ′, that is τ ⊇ τ ′.

(3) If M ⊂ A is (A, τ ′)-precompact then M is (A, τ)-precompact.

(4) (A, τ ′) is Hausdorff.

Then we have (A, τ) = (A, τ ′).
Note that Lemma 1.9 in combination with Theorem 1.2 have Corollary 1.3 as a

consequence. Next, we provide characterizations of the adapted weak topology on FPp.
The equivalence of τHK and the adapted Wasserstein-topology, τAW , is due to [7]

whereas the characterization in terms of the symmetric causal Wasserstein-topology,
τSCW , is novel. Moreover, we remark that the equivalence of the higher rank expected
signature-topology, τBLO and τHK was already known when, for t ∈ {1, . . . , N}, Xt = V

and V is a compact subset of a separable Banach space, see [9, Theorem 2].

Theorem 1.10. On FPp, we have

τHK = τSCW = τAW . (1.18)

If Xt = Rd, 1 ≤ t ≤ N , then these topologies also coincide with τN−1
BLO , and τ rBLO = τ rHK.

When restricting to sets of processes that have simpler information structure, such as
Markov processes or processes equipped with their natural filtration, there are simpler
ways to characterize the adapted weak topology. This motivates the definition of higher-
order Markov processes where the transition probabilities are allowed to depend the
current state as well as on past states.

Definition 1.11. Let n ∈ N ∪ {∞}. We call a process X ∈ FPp n-th order Markovian (or
n-th order Markov process) if, for all 1 ≤ t ≤ N ,

L (Xt+1|FX
t ) = L (Xt+1|X1∨(t−n):t) almost surely. (1.19)

The set of all n-th order Markov processes is denoted by FPMarkov
p,n . Moreover, we may

call∞-th order Markov processes plain and write FPplain
p := FPMarkov

p,∞ .

We equip FPMarkov
p,n with the initial topology τnMarkov induced by the family of maps

X 7→ L (Tnt (X)) ∈ Pp(X1∨(t−n+1):t × Pp(Xt+1)) for 1 ≤ t ≤ N − 1, where

Tnt (X) :=
(
X1∨(t−n+1):t,L (Xt+1|FX

t )
)
. (1.20)

The next result recovers and generalizes the main result of [3]. The novelty of the
next result is two-fold: On the one hand, the case n =∞ recovers the results of [3] and
additionally gives a new description in terms of τ∞Markov. On the other hand, the case
n ∈ N extends this result to the subset of n-th order Markov processes.

Theorem 1.12 (All Adapted Topologies are Equal). Let n, r ∈ N ∪ {∞}. Then the trace
on FPMarkov

p,n of the topologies τA, τ rHK, τOS, τH, τCW , τSCW and τAW are the same. In
particular, they all coincide with τnMarkov.

1.4 Characterizations of weak topologies

Proposition 1.13 shows that Lemma 1.9 applies beyond the framework of the adapted
weak topology. Specifically, the p-Wasserstein topology on Pp(Rd) can be metrized by

Vpp (P,Q) := max
{
Vp(P,Q), Vp(Q,P)

}
, (1.21)

where Rd is equipped with the Euclidean norm | · |, and

V pp (P,Q) := inf
π∈Cpl(P,Q)

Eπ

[∣∣Eπ[X − Y ∣∣X]∣∣p]. (1.22)
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Proposition 1.13. The p-Wasserstein topology on Pp(Rd) is metrized by Vp.
The minimization problem in (1.22) falls within the framework of weak optimal

transport, which is a generalization of optimal transport. In particular, (1.22) vanishes if
and only if there exists a martingale coupling between P and Q. For more information
on this topic, we refer to [11, 5] and the references therein.

Likewise, this point of view can be applied in order to recover [14, Theorem 2.8]: Let
X and Y be Polish spaces. We denote by τW and τS , the weak resp. strong topology on
P(X ), that is the topology induced by the mappings µ 7→

∫
f dµ where f : X → [0, 1] is

continuous resp. measurable. Similarly, we write τSW for the initial topology on P(X ×Y)

induced by the family of mappings µ 7→
∫
f dµ, where f : X × Y → [0, 1] is measurable

and y 7→ f(x, y) is continuous for every x ∈ X .

Lemma 1.14. Let Π ⊆ P(X × Y) and {pjXπ : π ∈ Π} be τS-sequentially precompact,
then τSW and τW coincide on Π, that is (Π, τSW ) = (Π, τW ).

2 Proofs

To prove the main results, we first verify the assumptions of Lemma 1.9. In the
process, we utilize a variant of a well-known fact on martingales: if X = (X1, X2, X3) is
a martingale, then

X1 ∼ X3 =⇒ X1 = X2 = X3 almost surely. (2.1)

Here, X1 ∼ X3 means that X1 and X3 are identically distributed. We recall that a
process X = (Xt)

N
t=1 taking values in P(X ) is called a measure-valued martingale with

values in P(X ) if, for f ∈ Cb(X ), the real-valued, bounded process (Xt(f))Nt=1 is an
(σ(X1:t))

N
t=1-martingale. For ρ ∈ P(X ), we write ρ(f) to denote the integral

∫
fdρ.

Lemma 2.1. Let X = (X1, X2, X3) be a measure-valued martingale taking values in
P(X ), where X is a Polish space. If X1 ∼ X3, then X1 = X2 = X3 almost surely.

Proof. Since there exists a countable family in Cb(X ) that separates points in P(X ), it
suffices to show, for f ∈ Cb(X ), X1(f) = X2(f) = X3(f) a.s., which follows from (2.1).

2.1 Properties of FPMarkov
p,n

First, we justify that the n-Markov property is preserved under equivalence.

Lemma 2.2. Let n ∈ N ∪ {∞}, and X,Y ∈ FP with X ≡ Y. Then X is n-Markovian if
and only if Y is n-Markovian.

Proof. By Definition 1.11 the property of being n-Markovian can be deduced from
observing the law of the corresponding first-order prediction process. Hence, we
conclude by the fact that X ≡ Y readily implies L (pp1(X)) = L (pp1(Y)).

Lemma 2.3. If X ∈ FPplain
p , Y ∈ FPp and L (X) = L (Y ), then CWp(Y,X) = 0. In

particular, if additionally Y ∈ FPplain
p , then X = Y.

Proof. We work with a representative of Y. As Yt is FY
t -measurable, the coupling

π := (idΩY , Y )#P
Y is causal from Y to X := (X , σ(X1:t)t, σ(X),L (Y ), X), where X

denotes the canonical process on X . If Y is plain, we have by Definition 1.11 that
L (Y |FY

t ) = L (Y |Y1:t) P
Y-a.s., which translate to X ⊥X1:t

FY,X
t,0 under π as X = Y π-a.s.

Thus, π is bicausal and AWp(X,Y) = 0.
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Corollary 2.4. Given n,m ∈ N ∪ {∞} with n ≤ m, we have FPMarkov
p,n ⊆ FPMarkov

p,m .

Moreover, processes in FPMarkov
p,n are uniquely defined by their law, that is, for X,Y ∈

FPMarkov
p,n

L (X) = L (Y ) =⇒ X = Y.

Proof. The first claim is a direct consequence of the definition of n-th resp. m-th order
Markov processes. The second claim then readily follows from Lemma 2.3.

Lemma 2.5. (FPMarkov
p,n , τnMarkov) is a sequential Hausdorff space.

Proof. First, we remark that, for 1 ≤ t ≤ N − 1, the map X 7→ L (Tnt (X)) takes values in
the Polish (and therefore first countable) space Pp(X1∨(t−n+1):t×Pp(Xt+1)), thus τn,Markov

is sequential.
Next, let X,Y ∈ FPMarkov

p,n with L (Tnt (X)) = L (Tnt (Y )) for 1 ≤ t ≤ N − 1. Conse-
quently, we find L (X1∨(t−n+1):t+1) = L (Y1∨(t−n+1):t+1) and the existence of a measur-
able map ft : X1∨(t−n+1):t → P(Xt+1) such that almost surely

ft(X1∨(t−n+1):t) = L (Xt+1|X1∨(t−n+1):t), ft(Y1∨(t−n+1):t) = L (Yt+1|Y1∨(t−n+1):t).

In particular, we have for t = n that L (X1:n+1) = L (Y1:n+1).
We proceed to show L (X) = L (Y ). Assume that we have already shown L (X1:t) =

L (Y1:t) for some n+ 1 ≤ t ≤ N − 1. By the disintegration theorem and the definition of
n-th order Markovian, we may write

L (X1:t+1) = L (X1:t)⊗ ft(Xt−n+1:t) = L (Y1:t)⊗ ft(Yt−n+1:t) = L (Y1:t+1),

where we use the notation µ ⊗ k for µ ∈ P(X1:t) and a measurable kernel k : X1:t →
P(Xt+1) to denote the gluing of µ with k, that is the probability defined by

µ⊗ k(A×B) =
∫
A
k(x,B)µ(dx) A ∈ B(X1:t), B ∈ B(Xt+1).

This concludes the inductive step.
Finally, we can apply Lemma 2.3 and conclude X = Y.

Lemma 2.6. Let X,Y ∈ FPp with CWp(X,Y) = CWp(Y,X) = 0, then X = Y. In
particular, SCWp(X,Y) = 0 if and only if AWp(X,Y) = 0.

Proof. As the values of CWp, SCWp and AWp are independent of the representatives
of X and Y, we choose representatives such that FX

N = FX, FY
N = FY, and (ΩX,FX)

and (ΩY,FY) are standard Borel spaces. This is possible by [7, Subsection 1.3] and, in
this case, one has by standard arguments that the values of CWp, SCWp and AWp are
attained. Let π ∈ Cplc(X,Y) and π′ ∈ Cplc(Y,X) with X = Y π- and π′-almost surely.
This allows us to consider the conditionally independent product of π and π′ denoted
by π̂ := π⊗̇π′ ∈ Cpl(X,Y,X), see Definition 2.9. Here, Cpl(X,Y,X) denotes the set of
couplings with marginals PX, PY and PX. In order to distinguish the coordinates, we
will write X̃ resp. X̃ for the second X-coordinate. By induction we show that

ppk(X) = ppk(Y) = ppk(X̃) π̂-a.s., (2.2)

for all k ∈ N∪{0}. Since we know that X = Y = X̃ π̂-almost surely, we have verified (2.2)
when k = 0. Assume that (2.2) holds for some k. By causality of π′ and Lemma 2.11 we
find, for 1 ≤ t ≤ N ,

FX,Y,X̃
0,N,0 ⊥FX,Y,X̃

0,t,0

FX,Y,X̃
0,0,t , FX,Y,X̃

N,0,0 ⊥FX,Y,X̃
t,0,0

FX,Y,X̃
0,t,t , (2.3)
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where we naturally extend the notation introduced in Definition 1.6 in order to write
products of multiple σ-algebras. Since ppk(X) and ppk(Y) are measurable w.r.t. FX

N and
FY
N resp., we obtain by combining (2.2), (2.3), and the tower property

ppk+1
t (X̃) = E

[
L
(
ppk(Y)|FX,Y,X̃

0,t,t

)
|FX,Y,X̃

0,0,t

]
= E

[
ppk+1

t (Y)|FX,Y,X̃
0,0,t

]
,

and similarly, ppk+1
t (Y) = E[ppk+1

t (X)|FX,Y,X̃
0,t,t ]. Hence, we conclude the inductive step

by observing that the triplet (ppk+1
t (X̃),ppk+1

t (Y),ppk+1
t (X)) satisfies the assumptions

of Lemma 2.1. In particular, we have shown that L (pp(X)) = L (pp(Y)), whence X = Y

by [7, Theorem 4.11].

Proposition 2.7. Let n ∈ N∪ {∞} and M ⊆ FPMarkov
p,n be τnMarkov-precompact. Then M is

precompact in (M, τAW).

Proof. Let (Xk)k∈N be a τnMarkov-converging sequence in FPMarkov
p,n with limit X ∈

FPMarkov
p,n . First, we convince ourselves that (L (Xk))k∈N converges to L (X). Assume

that we have already shown that L (Xk
1:t) → L (X1:t) for some 1 ≤ t ≤ N − 1. The

conditionally independent product ⊗̇, see [10, Definition 2.8], allows us to rewrite

L (X1:t,L (Xt+1|X1:t)) = L (X1:t)⊗̇L (Tnt (X)).

By [10, Theorem 4.1], that reads in our context as continuity of ⊗̇ at (L (X1:t),L (Tnt (X))),
we obtain that L (Xk

1:t+1)→ L (X1:t+1).
Hence, (L (Xk))k∈N is convergent and therefore tight. Thus, there exists by Theorem

1.2 a subsequence of (Xk)k∈N converging in τAW to some Y ∈ FPp. Due to τAW -
continuity, we get L (Tnt (X)) = limj→∞L (Tnt (Xkj )) = L (Tnt (Y )). Hence, there exist
measurable maps ft : X1∨(t−n+1):t → P(Xt+1) with the property

ft(Y1∨(t−n+1):t) = L (Yt+1|FY
t ) almost surely.

In other words, Y ∈ FPMarkov
p,n . Therefore the sequence (Xk)k∈N is also precompact in

(FPMarkov
p,n , τAW), which concludes the proof.

Proposition 2.8. Let M ⊆ FPplain
p be precompact in (FPplain

p , τCW). Then M is precom-

pact in (FPplain
p , τAW).

Proof. Let M be precompact in (FPplain
p , τCW). Since τW ⊆ τCW , there exists by The-

orem 1.2 a τAW -convergent subsequence with limit Y for some Y ∈ FPp. Since
CWp is by Lemma 2.13 (1-Lipschitz) continuous w.r.t. AWp, we find CWp(X,Y) =

limj CWp(X,X
kj ) = 0, and conclude by Lemma 2.3 that Y(= X) ∈ FPplain

p .

2.2 Causal gluing

This section is devoted to develop auxiliary results concerning the composition of
causal couplings with matching intermediary marginal. We recall that due to [7] we
can always assume w.l.o.g. that all spaces under consideration are standard Borel.
Therefore, we assume for the rest of the section that we have chosen representatives
of X,Y,Z ∈ FP such that (ΩX,FX

N ), (ΩY,FY
N ), and (ΩZ,FZ

N ) are standard Borel and
FX = FX

N ,FY = FY
N , and FZ = FZ

N .

Definition 2.9. Let γ ∈ Cpl(X,Y) and η ∈ Cpl(Y,Z). We define the conditionally
independent product of γ and η as the probability on

(
ΩX ×ΩY ×ΩZ,FX,Y,Z

N,N,N

)
satisfying

for any U , bounded and FX,Y,Z
N,N,N -measurable, that∫

U dγ⊗̇η =
∫ ∫

U(ωX, ωY, ω) ηωY (dωZ) γ(dωX, dωY), (2.4)
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where ηωY is a FY
N -measurable kernel satisfying η-almost surely ηωY = Lη(ωZ|FY,Z

N,0 ).
Due to symmetry reasons, we have∫

U dγ⊗̇η =
∫∫

U(ωX, ωY, ωZ) (ηωY ⊗ γωY )(dωX, dωZ)PY(dωY). (2.5)

The term (2.5) clarifies the naming of γ⊗̇η as the conditional independent product:
conditionally on ωY the knowledge of ωX does not affect ωZ and vice versa. This suggests
the following probabilistic formulation.

Lemma 2.10. Let γ ∈ Cpl(X,Y) and η ∈ Cpl(Y,Z), and let G be a σ-algebra with
FX,Y,Z

0,N,0 ⊆ G ⊆ F
X,Y,Z
N,N,0 . Then, we have FX,Y,Z

N,N,0 ⊥G F
X,Y,Z
0,N,N under γ⊗̇η.

Proof. The assertion follows from (2.5) coupled with [15, Proposition 5.8].

Lemma 2.11. Let γ ∈ Cpl(X,Y) and η ∈ Cplc(Y,Z). We have, for 1 ≤ t ≤ N ,

(1) under γ⊗̇η : FX,Y,Z
N,N,0 ⊥FX,Y,Z

t,t,0
FX,Y,Z

0,t,t ;

if furthermore γ ∈ Cplc(X,Y), then we have

(2) under γ⊗̇η : FX,Y,Z
N,0,0 ⊥FX,Y,Z

t,0,0
FX,Y,Z

0,t,t .

Proof. To show item (1), let W be bounded and FX,Y,Z
0,t,t measurable. From Lemma 2.10,

we derive the first equality in

Eγ⊗̇η

[
W |FX,Y,Z

N,N,0

]
= Eγ⊗̇η

[
W |FX,Y,Z

0,N,0

]
= Eγ⊗̇η

[
W |FX,Y,Z

0,t,0

]
, (2.6)

whereas the second stems from causality of η. Here, this causality yields that under γ⊗̇η,
conditionally on FX,Y,Z

0,t,0 , FX,Y,Z
0,N,0 is independent of FX,Y,Z

0,t,t . Since the last term in (2.6) is

FX,Y,Z
t,t,0 -measurable, the tower property yields item (1).

To establish item (2), let W be as above. Note that causality of γ provides that,
conditionally on FX,Y,Z

t,0,0 , FX,Y,Z
N,0,0 is independent of FX,Y,Z

t,t,0 under γ⊗̇η. Using that in
addition to item (1) and the tower property, we conclude

Eγ⊗̇η

[
W |FX,Y,Z

N,0,0

]
= Eγ⊗̇η

[
Eγ⊗̇η

[
W |FX,Y,Z

t,t,0

]
|FX,Y,Z
N,0,0

]
= Eγ⊗̇η

[
Eγ⊗̇η

[
W |FX,Y,Z

t,t,0

]
|FX,Y,Z
t,0,0

]
= Eγ⊗̇η

[
W |FX,Y,Z

t,0,0

]
.

Corollary 2.12. Let γ ∈ Cplc(X,Y) and η ∈ Cplc(Y,Z). Writing pjΩX×ΩZ for the projec-
tion onto ΩX × ΩZ, we have (pjΩX×ΩZ)#γ⊗̇η ∈ Cplc(X,Z).

Proof. This result is a direct consequence of item (2) of Lemma 2.11.

Lemma 2.13. Let X ∈ FPp. The map FPp 3 Y 7→ CWp(X,Y) is 1-Lipschitz w.r.t. SCWp.

Proof. Let π ∈ Cplc(X,Y) and π′ ∈ Cplc(Y,Z), then (pjΩX×ΩZ)#π⊗̇π′ ∈ Cplc(X,Z) by
Corollary 2.12. Hence, we compute by Minkowski’s inequality

CWp(X,Z) ≤
(
Eπ⊗̇π′

[
dpX (X,Z)

]) 1
p ≤

(
Eπ
[
dpX (X,Y )

]) 1
p

+
(
Eπ′
[
dpX (Y,Z)

]) 1
p

,

and conclude
∣∣CWp(X,Z)− CWp(X,Y)

∣∣ ≤ SCWp(Y,Z).
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2.3 Postponed proofs of Section 1

Proof of Lemma 1.9. Due to (2) it remains to show that convergence in (A, τ ′) implies
convergence in (A, τ). To this end, let (yk)k∈N be a sequence in (A, τ ′) converging to y.
By (3) we find a subsequence (ykj )j∈N that converges in (A, τ) to some element z. Again
by (2), we have that (ykj )j∈N also converges in (A, τ ′) to z, which yields by (4) that y = z.
Therefore, y is the only (A, τ)-accumulation point of (yk)k∈N, from where we conclude
that (yk)k∈N has to converge to y in (A, τ).

Proof of Theorem 1.10. It is evident from [7, Theorem 3.10], [7, Lemma 4.7] and [7,
Lemma 4.10] that τAW and τHK coincide.

Using the notation of Lemma 1.9, we let (B, τ) := (FPp, τAW) and A = B. By
Remark 1.8, resp. [9, Proposition 6] we have for τ ′ ∈ {τSCW , τN−1

BLO } that τ ′ ⊆ τ . By
Lemma 2.6, resp. [9, Theorem 4] we find that τ ′ is Hausdorff. Moreover, we obtain
τW ⊆ τ ′ from Remark 1.8 resp. [9, Proposition 8], where τW is the topology of p-
Wasserstein convergence of the laws. Since τW and τ have the same precompact sets by
Theorem 1.2, we conclude the same for τ ′. Hence, all assumptions of Lemma 1.9 are
met, which yields the first two assertions of the theorem.

The last assertion of the theorem follows mutatis mutandis.

Proof of Theorem 1.12. Let A := FPMarkov
p,n , B := FPp, and τ = τAW .

It is evident (either by construction, from Theorem 1.10, or from [3, Lemma 7.5])
that τnMarkov is coarser than τH, τA, τ rHK, τOS, τAW and τSCW. Similarly, we have that all of
these topologies are coarser than τAW . We remark that τAW ⊇ τOS can be seen due to
the fact that the map which maps X ∈ FPp to its Snell envelope is τAW -continuous.

Thus, it suffices to show that (A, τ ′) = (A, τ) for τ ′ ∈ {τnMarkov, τCW}. We proceed by
verifying the assumptions in Lemma 1.9: Item (1) follows from Lemma 2.5 resp. is evident
by construction. Item (2) is satisfied, since it is easy to see that τH ⊆ τ1

HK ⊆ τHK = τAW

(where the last equality is due to Theorem 1.10) resp. by Remark 1.8. Item (3) is proven
in Proposition 2.7 resp. Proposition 2.8. Finally, item (4) is due to Corollary 2.4 resp.
Lemma 2.3.

Proof of Proposition 1.13. Let A = B = Pp(Rd) and τ = τW . It is straightforward to
check that Vp is a pseudometric and Vp ≤ Wp. Moreover, as a simple consequence of (2.1)
we find that Vp separates points: If Vp(P,Q) = 0, then there exist couplings π ∈ Cpl(P,Q)

and π̃ ∈ Cpl(Q,P) with x =
∫
y πx(dy) π-a.s. and x =

∫
y π̃x(dy) π̃-a.s. Let X = (Xt)

3
t=1

be a Markov process with (X1, X2) ∼ π and (X2, X3) ∼ π′. Thus, X is a martingale in its
generated filtration where initial and terminal distribution coincide. By (2.1), we find
X1 = X2 = X3, hence, P = Q and Vp is a metric on Pp(Rd). We write τV for the topology
induced by Vp and get τV ⊆ τW . It remains to verify Item (3) of Lemma 1.9.

To this end, let (Pk)k∈N converge to P in τV and we want to showWp-relative com-
pactness of the sequence. By [5, Lemma 6.1], we have

Vp(P
k,P) = inf

Q≤cxP
Wp(P

k,Q), (2.7)

where ≤cx denotes the convex order on P1(Rd). Recall that, for µ, ν ∈ P1(Rd), µ ≤cx ν if
and only if

∫
f dµ ≤

∫
f dν for all convex f : Rd → R. Due to compactness of closed balls

of finite radius in Rd, it is easy to see, for example, by the De la Vallée-Poussin theorem
for uniform integrability and [20, Definition 6.8], that the set {Q ≤cx P} isWp-compact in
Pp(Rd). Hence, we find by standard arguments the existence of Qk ≤cx P attaining (2.7).
Consequently,

lim
k→∞

Vp(P,P
k) = lim

k→∞
Wp(P

k,Qk) = 0,

which in particular yieldsWp-relative compactness of {Pk : k ∈ N}.
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Proof of Lemma 1.14. We need to show (Π, τW ) = (Π, τf ), where τf is the initial topology
w.r.t. µ 7→

∫
g dµ for g ∈ Cb(X × Y) ∪ {f} and f : X × Y → [0, 1] is measurable with

f(x, ·) ∈ Cb(Y) for every x ∈ X .
Assume that Y is compact, then (Cb(Y), | · |∞) is Polish. As F : X → Cb(Y) : x 7→ f(x, ·)

is measurable, there is by [16, Theorem 13.11] a Polish topology τ̂X , leaving the Borel
sets unchanged, so that F is τ̂X -continuous. Therefore, f ∈ Cb(X̂ × Y), where X̂ denotes
X equipped with τ̂X . As {pjXπ : π ∈ Π} is τS-sequentially precompact, it is precompact in
P(X̂ ), and by Prokhorov’s theorem, if A ⊆ Π is τW -precompact then A is τf -precompact.

For general Y, there is for any τW -precompact set A ⊆ Π an increasing sequence of
compacts (Yn)n∈N with infµ∈A µ(Yn) → 1. We obtain that An is τf -precompact, where
An := {µ|X×Yn

/µ(X × Yn) : µ ∈ A}. Thus, a sequence (µk)k∈N in A admits (µkj )j∈N so
that, for every n ∈ N, (µkj |X×Yn

/µkj (X × Yn))j∈N is τf -convergent. Hence, (µkj )j∈N is
τf -convergent, A is τf -precompact, and we conclude by Lemma 1.9, (Π, τW ) = (Π, τf ).
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