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Objective Bayesian Meta-Analysis Based on
Generalized Marginal Multivariate Random

Effects Model∗

Olha Bodnar† and Taras Bodnar‡

Abstract. Objective Bayesian inference procedures are derived for the parame-
ters of the multivariate random effects model generalized to elliptically contoured
distributions. The posterior for the overall mean vector and the between-study
covariance matrix is deduced by assigning two noninformative priors to the model
parameter, namely the Berger and Bernardo reference prior and the Jeffreys prior,
whose analytical expressions are obtained under weak distributional assumptions.
It is shown that the only condition needed for the posterior to be proper is that
the sample size is larger than the dimension of the data-generating model, inde-
pendently of the class of elliptically contoured distributions used in the definition
of the generalized multivariate random effects model. The theoretical findings of
the paper are applied to real data consisting of ten studies about the effectiveness
of hypertension treatment for reducing blood pressure where the treatment effects
on both the systolic blood pressure and diastolic blood pressure are investigated.
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1 Introduction
Random effects model is a well-established quantitative tool when the results of sev-
eral studies are combined in a single value as it is usually done in meta-analysis and
interlaboratory comparison studies which are widely spread in medicine, physics, chem-
istry, and in many other fields of science (see, e.g., Brockwell and Gordon (2001); Ades
et al. (2005); Viechtbauer (2005, 2007); Sutton and Higgins (2008); Riley et al. (2010);
Strawderman and Rukhin (2010); Cornell et al. (2014); Novianti et al. (2014); Roever
(2016); Bodnar et al. (2017); Rukhin (2017a,b); Wynants et al. (2018); Michael et al.
(2019); Veroniki et al. (2019); Bodnar and Eriksson (2023)). In most of the applications
considered in the literature, the aim is to infer the common mean of the measurement
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results on a single variable, while the inference procedures for the heterogeneity parame-
ter have recently been derived by Rukhin (2013); Langan et al. (2017); Ma et al. (2018);
Bodnar (2019) among others. Both methods of the frequentist and Bayesian statistics
have been established to deal with the problem and applied in practice (see, Paule and
Mandel (1982); DerSimonian and Laird (1986); Lambert et al. (2005); Guolo (2012);
Turner et al. (2015); Bodnar et al. (2017)).

Although statistical theory to analyze the univariate random effects model has been
developed and successfully implemented in many applications, new challenges arise when
several features are measured simultaneously and have to be combined into a single (mul-
tivariate) result. One possibility is based on the application of the univariate random
effects to each feature separately. However, important information about the depen-
dence structure present in the joint distribution of the features might be lost in this
case. Another approach is to generalize the existent univariate methods to the multi-
variate case by deriving new statistical procedures which can capture the dependencies
present between several features and efficiently combine the (multivariate) results of
several studies. Moreover, the assumption of normality, which is commonly imposed
in meta-analysis or interlaboratory comparison studies, is not obviously fulfilled (see,
Baker and Jackson (2008); Lee and Thompson (2008); Bodnar et al. (2016); Jackson and
White (2018); Wang and Lee (2020)) and more sophisticated statistical models which
take the heavy-tailed behavior into account should be considered in many applications.
This makes an additional difficulty in the practical implementation of the random ef-
fects model since only a few observations are present in most cases and the advanced
asymptotic methods cannot be longer used. For instance, Davey et al. (2011) pointed out
that 75 % of meta-analyses reported in the Cochrane Database of Systematic Reviews
(CDSR) contained five or fewer studies.

Multivariate random effects model has increased its popularity in the literature re-
cently (see, Gasparrini et al. (2012), Wei and Higgins (2013), Jackson and Riley (2014),
Liu et al. (2015), Noma et al. (2019), Negeri and Beyene (2020), Jackson et al. (2020)).
Statistical inferences for the model parameters, which are the common mean vector
and the heterogeneity matrix, were initially derived from the viewpoint of frequentist
statistics. Jackson et al. (2010) extended the DerSimonian and Laird approach to the
multivariate data, while Chen et al. (2012) presented the method based on the restricted
maximum likelihood approach. These two procedures from frequentist statistics consti-
tute the commonly used methods in the multivariate meta-analysis (see, e.g., Jackson
et al. (2013), Schwarzer et al. (2015), Jackson et al. (2020)). Paul et al. (2010) derived
Bayesian inference procedures for the parameters of the two-dimensional random effects
model based on the Laplace approximation, while Nam et al. (2003) provided results in a
multivariate case. Both papers discussed Bayesian inference obtained when informative
priors are employed.

Following Bernstein-von Mises theorem (see, Bernardo and Smith (2000)), a prior
has a minor impact on the posterior when the sample size is large. When a sample
of a small size is available, which is a common situation in practice (cf., Davey et al.
(2011)), the application of an incorrectly chosen informative prior can be very influential
on the resulting Bayesian inference procedures for the model parameters. This challenge
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becomes even more pronounced in the case of Bayesian inference for parameters of a
multivariate model.

The contribution of this paper to the existent literature on multivariate random
effects model and multivariate meta-analysis is present in several directions. First, we
develop objective Bayesian inference procedures for the parameters of the multivariate
random effects model. In particular, we derive the analytical expression of the Fisher
information matrix and the two noninformative priors: Berger and Bernardo reference
prior and Jeffreys prior. Employing these two priors, the expressions of the correspond-
ing posterior distributions are obtained and the conditions for their propriety are es-
tablished. Second, we weaken the assumption of multivariate normal distribution and
replace it with a general class of multivariate distributions, the so-called elliptically
contoured distributions (see, Gupta et al. (2013)).

The rest of the paper is structured as follows. In Section 2, the generalized multi-
variate random effects model is introduced and two noninformative priors, Berger and
Bernardo reference prior and Jeffreys prior, are derived. The posterior distribution for
model parameters is deduced in Section 3. Here, the conditions for posterior propriety
are also provided. In Section 4, numerical procedures are developed to draw samples
from the derived posterior distributions. Results for two special families of elliptically
contoured distributions are provided in Section 5, while an empirical illustration is pre-
sented in Section 6. Final remarks are given in Section 7. The proofs of technical results
are present in the supplement material (see, Bodnar and Bodnar (2023)).

2 Model and noninformative priors
We consider an extension of the (normal) multivariate random effects model with density
function given by

p(X|μ,Ψ) = 1√
det(Ψ ⊗ I + U)

f
(
vec(X − μ1�)�(Ψ ⊗ I + U)−1vec(X − μ1)

)
, (1)

where X is a (p× n) matrix, μ is a p-dimensional vector, Ψ is a (p× p) matrix, 1 is a
vector of ones, I is the identity matrix of an appropriate order, and U is a (pn × pn)
deterministic matrix. The symbol ⊗ denotes the Kronecker product, while vec stands for
the vec operator. The model (1) extends the univariate approach suggested in Bodnar
et al. (2016) to the multivariate case and can also be used when several correlated
features obtained from different studies should be combined together.

In a special case of f(z) = exp (−z/2) /(2π)pn/2 and U = diag(U1, . . . ,Un) with
Ui: p× p for i = 1, . . . , n, the model (1) can be written as

xi = μ + λi + εi with λi ∼ Np(0,Ψ) and εi ∼ Np(0,Ui), (2)

where {λi}i=1,...,n and {εi}i=1,...,n are mutually independent. The symbol xi denotes the
i-th column of X, while λi and εi are normally distributed random vectors used in the
stochastic representation (2) of xi. The presentation (2) defines the normal multivariate



534 Bayesian Multivariate Random Effects Model

random effects model. Motivated by the normal multivariate random effects model, it
is assumed that U = diag(U1, . . . ,Un) holds in (1).

In many applications in medicine, physics, and chemistry the aim is to infer μ given
observation matrix X = (x1, . . . ,xn). In the applications of these fields the information
about the scale matrix U is usually provided by the participating organizations (see,
Lambert et al. (2005), Turner et al. (2015), Bodnar and Elster (2014b), Jackson et al.
(2020)). As a result, it is assumed to be a known symmetric positive definite matrix.
On the other side, the matrix Ψ is treated as an unknown quantity with the aim to
capture the additional variability in data when several observations taken at different
places and times are pooled together. The matrix Ψ is usually treated as an additional
nuisance parameter of the model.

By (1), the conditional distribution of X given μ and Ψ belongs to the class of the
matrix-variate elliptical contoured distributions (see, e.g., Gupta et al. (2013) for the
definition and properties of this matrix-variate family of distributions). This assertion
will be denoted by X|μ,Ψ ∼ Ep,n(μ1�,Ψ ⊗ I + U, f) (p × n-dimensional matrix-
variate elliptically contoured distribution with location matrix μ1�, dispersion matrix
(Ψ ⊗ I + U), and density generator f(.). Following the definition of matrix-variate
elliptically contoured distributions (see, Gupta et al. (2013, Theorem 2.7)), the function
f(.) should be a non-negative Lebesgue measurable function on [0,∞) such that∫ ∞

0
tpn−1f(t2)dt < ∞.

2.1 Noninformative priors: Berger and Bernardo reference prior and
Jeffreys prior

In many practical applications, no information or only vague information is available
about the model parameters. In such cases, especially when the sample size is small or
the model dimension is large in comparison to the sample size, the usage of an informa-
tive prior can be questionable. As a possible solution to this problem, noninformative
priors were developed and employed in the derivation of Bayesian inference. Historically,
the first noninformative prior was suggested by Laplace (1812) who proposed to assign
a constant prior to the parameters of the model. This prior is also known in the litera-
ture as the constant prior or the uniform prior. Although the uniform prior works well
when Bayesian inference is determined for location parameters of a statistical model, its
application does not obviously lead to good results for other types of model parameters.
One of the most crucial critiques of the uniform prior is that it is not invariant under
transformations of parameters.

As a solution, Jeffreys (1946) proposed to compute a noninformative prior as the
square root of the determinant of the Fisher information matrix. Although this ap-
proach leads to a prior which is invariant under transformations of model parameters,
some difficulties arise in the case of multi-parameter statistical models (see, Held and
Bové (2014)). The approach of Jeffreys was further extended in Berger and Bernardo
(1992) who suggested the so-called reference prior (see, also Berger et al. (2009) for the
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properties of the reference prior). The idea used in the derivation of the reference prior is
based on the sequential maximization of the Shannon mutual information (see, Bodnar
and Elster (2014a)) which determines the distance between the prior and posterior.

In Theorem 1 the analytical expression of the Fisher information matrix is provided,
which is then used in the derivation of both the Berger and Bernardo reference prior
and the Jeffreys prior for the parameters of the generalized multivariate random effects
model (1). The proof of Theorem 1 is given in the supplement material (see, Bodnar
and Bodnar (2023)).

Theorem 1. The Fisher information matrix for model (1) with U = diag(U1, . . . ,Un)
is given by

F =
(

F11 O
O F22

)
(3)

where

F11 = 4J1

pn

n∑
i=1

(Ψ + Ui)−1, (4)

F22 = G�
p

[(
J2

2pn + p2n2 − 1
4

)
vec

(
n∑

i=1
(Ψ + Ui)−1

)
vec

⎛
⎝ n∑

j=1
(Ψ + Uj)−1

⎞
⎠

�

+ 2J2

2pn + p2n2

n∑
i=1

(
(Ψ + Ui)−1 ⊗ (Ψ + Ui)−1) ]Gp (5)

with

Ji = E

⎛
⎝(R2)i

(
f ′ (R2)
f (R2)

)2
⎞
⎠ , (6)

where R2 = vec(Z)�vec(Z) with Z ∼ Ep,n(Op,n, Ip×n, f) standard matrix-variate ellipti-
cally contoured distribution with density generator f(.) and Gp stands for the duplication
matrix.

The results of Theorem 1 show that the Fisher information matrix depends on
the type of elliptical distribution only over the two univariate constants J1 and J2
which are fully determined by density generator f(.). Moreover, the Fisher information
matrix F is finite if J1 < ∞ and J2 < ∞. Thus, it is assumed throughout the paper
that the density generator f(.) is chosen such that these two conditions are fulfilled.
Although the expectations in the definition of J1 and J2 cannot always be analytically
computed, they can easily be approximated via simulations by drawing samples from
the corresponding standard elliptically contoured distribution. Finally, J1 is present in
F11 as a multiplicative constant. Thus, both the Berger and Bernardo reference prior
and the Jeffreys prior depend on J2 only as shown below.
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Since F is block-diagonal and it does not depend on μ, the Jeffreys prior for μ and
Ψ depends on Ψ only and it is given by

πJ(μ,Ψ) = πJ (Ψ) ∝
√

det(F) =
√

det(F11)
√

det(F22), (7)

where F11 and F22 are given in (4) and (5), respectively.

Moreover, using the block-diagonal structure of F and the fact that F does not de-
pend on μ, we immediately obtain the Berger and Bernardo reference prior πR(μ,Ψ) for
the generalized multivariate random effects model (1) from the corollary to Proposition
5.29 in Bernardo and Smith (2000). This result is summarized in Theorem 2.

Theorem 2. For model (1) with U = diag(U1, . . . ,Un) and grouping {μ,Ψ} (i.e., with
Ψ as the nuisance parameter), the Berger and Bernardo reference prior is given by

πR(μ,Ψ) = πR(Ψ) ∝
√

det(F22), (8)

where F22 is given in (5).

The following remark links the results obtained in Theorem 2 and in (7) to those
derived for p = 1 by Bodnar et al. (2016) and Bodnar (2019):

Remark 1. From Theorem 1, denoting Ψ by τ2 and Ui by u2
i and using that Gp = 1

for p = 1, we get the Fisher information matrix in the (μ, τ2)-parametrization expressed
as

F11 = 4J1

n

n∑
i=1

(τ2 + u2
i )−1 = 4J1

n
tr
((

V + τ2I
)−1

)
, (9)

F22 =
(

J2

2n + n2 − 1
4

)(
n∑

i=1
(τ2 + u2

i )−1

)2

+ 2J2

2n + n2

n∑
i=1

(τ2 + u2
i )−2

=
(

J2

2n + n2 − 1
4

)(
tr
((

V + τ2I
)−1

))2
+ 2J2

2n + n2 tr
((

V + τ2I
)−2

)
, (10)

where V = diag(u2
1, . . . , u

2
n) and

Ji = E

⎛
⎝(R2)i

(
f ′ (R2)
f (R2)

)2
⎞
⎠ , R2 = vec(z)�vec(z) with z ∼ En(0n, In, f). (11)

The application of the reparametrization lemma (see, Proposition 3.14 in Sundberg
(2019)) leads the Fisher information matrix in the (μ, τ)-parametrization given by

F̃ =
(

F̃11 O
O F̃22

)
(12)

where

F̃11 = 4J1

n
tr
((

V + τ2I
)−1

)
, (13)
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F̃22 = τ2
(

4J2

2n + n2 − 1
)(

tr
((

V + τ2I
)−1

))2
+ 8τ2J2

2n + n2 tr
((

V + τ2I
)−2

)
,(14)

which are the same expressions as those provided in Theorem 1 of Bodnar (2019). As a
result, we get the Berger and Bernardo reference prior and the Jeffreys prior as given
in Section 2.2 of Bodnar (2019).

Under additional restrictions imposed on matrix U and density generator f(.), sev-
eral simplifications of the expressions of both the Berger and Bernardo reference prior
and the Jeffreys prior are obtained. The results are presented in Corollary 1 and Corol-
lary 2. For example, when the normal multivariate random effects model (2) is assumed,
then we get

Corollary 1. For model (2) and grouping {μ,Ψ} (i.e., with Ψ as the nuisance param-
eter), the following results hold:

(i) the Berger and Bernardo reference prior is given by

πR(μ,Ψ) = πR(Ψ) ∝

√√√√det
(

G�
p

[
n∑

i=1
((Ψ + Ui)−1 ⊗ (Ψ + Ui)−1)

]
Gp

)
, (15)

(ii) the Jeffreys prior is given by

πJ (μ,Ψ) = πJ (Ψ) ∝ πR(Ψ)

√√√√det
(

n∑
i=1

(Ψ + Ui)−1

)
. (16)

If the generalized multivariate random effects model is assumed to be homoscedastic,
that is the equality U1 = . . . = Un = V holds, then the Berger and Bernardo reference
prior and the Jeffreys prior are given by

Corollary 2. Under the assumption of Theorem 2, assume that U1 = . . . = Un = V.
Then

(i) the Berger & Bernardo reference prior is given by

πR(μ,Ψ) = πR(Ψ) ∝ det (Ψ + V)−(p+1)/2
, (17)

(ii) the Jeffreys prior is given by

πJ (μ,Ψ) = πJ(Ψ) ∝ det (Ψ + V)−(p+2)/2
. (18)

The proofs of both corollaries are provided in the supplement material. It is remark-
able that both the Berger and Bernardo reference prior and the Jeffreys prior under
the assumption of homoscedasticity do not depend on the type of elliptically contoured
distribution. In particular, the formulas from Corollary 2 can be used for the normal
multivariate random effects model (2) as well as for the t multivariate random effect
model introduced in Section 5.2.
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3 Posterior
In the derivation of the posterior we consider a prior for μ and Ψ which is a function
of Ψ only, that is π(Ψ). Such a prior is an extension of both the Berger and Bernardo
reference prior and the Jeffreys prior and, consequently, the derived posterior can be
used to deduce the posteriors obtained when the Berger and Bernardo reference prior
and the Jeffreys prior are employed as important special cases.

Under such a general prior the joint posterior for μ and Ψ is obtained from (1) and
it is given by

π(μ,Ψ|X) ∝ π(Ψ)p(X|μ,Ψ)

= π(Ψ)√
det(Ψ ⊗ I + U)

f
(
vec(X − μ1�)�(Ψ ⊗ I + U)−1vec(X − μ1)

)
,(19)

with U = diag(U1, . . . ,Un). In Theorem 3, whose proof is given in the supplement
material (see, Bodnar and Bodnar (2023)), it is shown that the conditional reference
posterior for μ belongs to the family of elliptically contoured distributions.

Theorem 3. Under the generalized multivariate random effects model (1) with U =
diag(U1, . . . ,Un), the conditional posterior π(μ|Ψ,X) is given by

π(μ|Ψ,X) ∝ fΨ,X

(
(μ− x̃(Ψ))�

(
n∑

i=1
(Ψ + Ui)−1

)
(μ− x̃(Ψ))

)
, (20)

where

fΨ,X (u) = f

(
n∑

i=1
(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ)) + u

)
u ≥ 0 , (21)

with

x̃(Ψ) =
(

n∑
i=1

(Ψ + Ui)−1

)−1 n∑
i=1

(Ψ + Ui)−1xi. (22)

From the results of Theorem 3 we get that the conditional posterior of μ given Ψ
belongs again to the family of elliptically contoured distribution. Moreover, using (20)
the location parameter of the conditional posterior x̃(Ψ) is given by (22), while its
dispersion matrix is

(∑n
i=1(Ψ + Ui)−1)−1. These two results appear to be very useful.

If the first moment of the conditional posterior exists, then it is equal to x̃(Ψ). The
existence of the second moment ensures that the covariance matrix of the conditional
posterior is proportional to the dispersion parameter. The coefficient of proportionality
is expressed as

C(Ψ) = E
(
R2

Ψ,X
)

with R2
Ψ,X = z�Ψ,XzΨ,X, (23)

where zΨ,X ∼ Ep(0p, Ip, fΨ,X). The density generator fΨ,X is connected to the density
generator f , as described in (21).
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As a direct consequence of the result in Theorem 3 by substituting π(Ψ) with πR(Ψ)
and πJ(Ψ) from (8) and (7) respectively, we get the conditional reference posterior
π(μ|Ψ,x) for the generalized multivariate random effects model (1) and the conditional
posterior when the Jeffreys prior is used. Moreover, from the proof of Theorem 3 we
also get the marginal posterior for Ψ as presented in Corollary 3 with the proof given
in the supplement material (see, Bodnar and Bodnar (2023)).
Corollary 3. Under the generalized multivariate random effects model (1) with U =
diag(U1, . . . ,Un), the marginal posterior π(Ψ|X) is given by

π(Ψ|X) ∝ π(Ψ)√
det(

∑n
i=1(Ψ + Ui)−1)

∏n
i=1

√
det(Ψ + Ui)

×
∫ ∞

0
up−1f

(
u2 +

n∑
i=1

(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
)

du.(24)

The posterior mean vector and the posterior covariance matrix of μ are derived from
Theorem 3 by using the rule of iterated expectations. They are given by

E (μ|X) = E(E(μ|Ψ,X)|X) = E(x̃(Ψ)|X)

= E

⎛
⎝(

n∑
i=1

(Ψ + Ui)−1

)−1 n∑
i=1

(Ψ + Ui)−1xi

∣∣∣∣∣X
⎞
⎠ (25)

and

Var (μ|X) = E(Var(μ|Ψ,X)|X) + Var(E(μ|Ψ,X)|X)

= E

⎛
⎝C(Ψ)

(
n∑

i=1
(Ψ + Ui)−1

)−1 ∣∣∣∣∣X
⎞
⎠

+ Var

⎛
⎝(

n∑
i=1

(Ψ + Ui)−1

)−1 n∑
i=1

(Ψ + Ui)−1xi

∣∣∣∣∣X
⎞
⎠ , (26)

where C(Ψ) is given in (23).

In Theorem 4 we formulate the conditions required for the propriety of the posterior.
Theorem 4. Consider the generalized multivariate random effects model (1) with U =
diag(U1, . . . ,Un). Let f(u) be a non-increasing function in u ≥ 0 and J2

2pn+p2n2 − 1
4 ≤ 0

where J2 is defined in (6).

1. If n ≥ p, then the posterior π(μ,Ψ|X) derived under the Jeffreys prior πJ (Ψ) is
proper.

2. If n ≥ p+1, then the posterior π(μ,Ψ|X) derived under the Berger and Bernardo
reference prior πR(Ψ) is proper.

The proof of Theorem 4 is provided in the supplement material (see, Bodnar and
Bodnar (2023)).
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4 Drawing samples from the posterior distribution:
Metropolis-Hastings algorithm

In this section we develop algorithms to draw samples (μ(b),Ψ(b)) from the posterior
derived under the Berger and Bernardo reference prior and the Jeffreys prior. The idea
is based on the application of the Markov chain Monte Carlo based on the Metropolis-
Hastings algorithm, a popular approach is Bayesian statistics (see, e.g., Givens and
Hoeting (2012)). Recently, Hill and Spall (2019) provided a comprehensive discussion of
the stationarity and convergence of the algorithm, that depends on the chosen proposal
from which the samples are generated. A good proposal distribution should have the
support which covers the support of the target distribution, i.e., of the posterior for
μ and Ψ. Also, it should ensure that the constructed Markov chain has good mixing
properties and it will not stack in a single point.

As a proposal, we suggest to use the special case of the posterior distribution derived
under each of the considered priors in the case U1 = . . . = Un = O. The two proposals
are then defined for all positive semi-definite matrices, thus having the same supports
as the two posteriors derived under the Berger and Bernardo reference prior and the
Jeffreys prior. More precisely, ignoring the normalizing constants the proposal under
the Berger and Bernardo reference prior is given by

qR(μ,Ψ|X) = det(Ψ)−(n+p+1)/2f

(
tr
(

Ψ−1
n∑

i=1
(xi − μ)(xi − μ)�

))
,

and it is expressed as

qJ (μ,Ψ|X) = det(Ψ)−(n+p+2)/2f

(
tr
(

Ψ−1
n∑

i=1
(xi − μ)(xi − μ)�

))

under the Jeffreys prior.

Let

x̄ = 1
n

n∑
i=1

xi and S = 1
n− 1

n∑
i=1

(xi − x̄)(xi − x̄)�, (27)

In using that
n∑

i=1
(xi − μ)(xi − μ)� = (n− 1)S + n(μ− x̄)(μ− x̄)�, (28)

which implies

det
(

n∑
i=1

(xi − μ)(xi − μ)�
)

= det((n− 1)S)
(

1 + n

n− 1(μ− x̄)�S−1(μ− x̄)
)

we get

qR(μ,Ψ|X) ∝
(

1 + 1
n− p

n(n− p)
n− 1 (μ− x̄)�S−1(μ− x̄)

)−n/2
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× det(Ψ)−(n+p+1)/2det
(

n∑
i=1

(xi − μ)(xi − μ)�
)n/2

× f

(
tr
(

Ψ−1
n∑

i=1
(xi − μ)(xi − μ)�

))
(29)

and

qJ (μ,Ψ|X) ∝
(

1 + 1
n− p + 1

n(n− p + 1)
n− 1 (μ− x̄)�S−1(μ− x̄)

)−(n+1)/2

× det(Ψ)−(n+p+2)/2det
(

n∑
i=1

(xi − μ)(xi − μ)�
)(n+1)/2

× f

(
tr
(

Ψ−1
n∑

i=1
(xi − μ)(xi − μ)�

))
. (30)

The expression of the proposal qR(μ,Ψ|X) derived under the Berger and Bernardo
reference prior is proportional to the joint density function of μ and Ψ with Ψ|μ,X ∼
GIWp(n+ p+1,

∑n
i=1(xi −μ)(xi −μ)�, f) (generalized p-dimensional inverse Wishart

distribution with n+p+1 degrees of freedom, scale matrix
∑n

i=1(xi−μ)(xi−μ)� and

density generator f , see, Sutradhar and Ali (1989)) and μ|X ∼ tp

(
n− p, x̄, (n− 1)S

n(n− p)

)
(p-dimensional multivariate t-distribution with n−p degrees of freedom, location vector

x̄, and scale matrix (n− 1)S
n(n− p) ). Similarly, we get that the proposal under the Jeffreys

prior is proportional to the joint density function of μ and Ψ with Ψ|μ,X ∼ GIWp(n+

p + 2,
∑n

i=1(xi − μ)(xi − μ)�, f) and μ|X ∼ tp

(
n− p + 1, x̄, (n− 1)S

n(n− p + 1)

)
.

We finally note that both proposals (29) and (30) are proper under the conditions
n ≥ p + 1 and n ≥ p, respectively, which coincides with the conditions needed for the
propriety of the posteriors derived under the Berger and Bernardo reference prior and
the Jeffreys prior in Theorem 4. As a result, the suggested proposals possess the similar
tail behaviour as the corresponding posteriors and, thus, they are good candidates for
the construction of the Markov chains.

The Metropolis-Hastings algorithm for generating a draw from π(μ,Ψ|X) derived
under the Berger and Bernardo reference prior is given in Algorithm 1. A similar algo-
rithm with minor changes is constructed to draw a sample from the posterior π(μ,Ψ|X)
derived under the Jeffreys prior. It is summarized in Algorithm 2.

5 Two families of elliptical distributions
In this section we apply the obtained theoretical results in case of two special families
of elliptically contoured distribution: normal distribution and t-distribution.



542 Bayesian Multivariate Random Effects Model

Algorithm 1 Metropolis-Hastings algorithm for drawing realizations from π(μ,Ψ|X)
as in (19) under the Berger and Bernardo reference prior (8).
(1) Initialization: Choose the initial values μ(0) and Ψ(0) for μ and Ψ and set b = 0.
(2) Generating new values of μ(w) and Ψ(w) from the proposal:

(i) For given data X = (x1, . . . ,xn), generate μ(w) from tp

(
n− p, x̄, (n− 1)S

n(n− p)

)
with x̄ and S as in (27);

(ii) Using data X and the drawn in step (i) μ(w), generate Ψ(w) from Ψ|μ =
μ(w),X ∼ GIWp(n + p + 1,

∑n
i=1(xi − μ(w))(xi − μ(w))�, f).

(3) Computation of the Metropolis-Hastings ratio:

MH(b) = π(μ(w),Ψ(w)|X)qR(μ(b−1),Ψ(b−1)|X)
π(μ(b−1),Ψ(b−1)|X)qR(μ(w),Ψ(w)|X)

.

(4) Moving to the next state of the Markov chain:
(i) Generate U (b) from the uniform distribution on [0, 1];
(ii) If U b < min

{
1,MH(b)}, then set μ(b) = μ(w) and Ψ(b) = Ψ(w) (Markov chain

moves to the new state). Otherwise, set μ(b) = μ(b−1) and Ψ(b) = Ψ(b−1)

(Markov chain stays in the previous state).
(5) Return to step (2), increase b by 1, and repeat until the sample of size B is accu-

mulated.

5.1 Normal multivariate random effects model
In the case of the normal multivariate random effects model (2), we have

f(u) = Kp,n exp(−u/2) with Kp,n = (2π)−pn/2, (31)

which directly yields

fΨ,X (u) = 1
(2π)pn/2

exp
(
−u

2

)
exp

(
−1

2

n∑
i=1

(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
)
.

The last equality leads to the conclusion that the conditional posterior for μ given
Ψ is a multivariate normal distribution expressed as

μ|Ψ,X ∼ N

⎛
⎝(

n∑
i=1

(Ψ + Ui)−1

)−1 n∑
i=1

(Ψ + Ui)−1xi,

(
n∑

i=1
(Ψ + Ui)−1

)−1
⎞
⎠ , (32)

while the marginal posterior for Ψ is given by

π(Ψ|X) ∝ π(Ψ)√
det(

∑n
i=1(Ψ + Ui)−1)

∏n
i=1

√
det(Ψ + Ui)
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Algorithm 2 Metropolis-Hastings algorithm for drawing realizations from π(μ,Ψ|X)
as in (19) under the Jeffreys prior (7).
(1) Initialization: Choose the initial values μ(0) and Ψ(0) for μ and Ψ and set b = 0.
(2) Generating new values of μ(w) and Ψ(w) from the proposal:

(i) For given data X = (x1, . . . ,xn), generate μ(w) from

tp

(
n− p + 1, x̄, (n− 1)S

n(n− p + 1)

)
with x̄ and S as in (27);

(ii) Using data X and the drawn in step (i) μ(w), generate Ψ(w) from Ψ|μ =
μ(w),X ∼ GIWp(n + p + 2,

∑n
i=1(xi − μ(w))(xi − μ(w))�, f).

(3) Computation of the Metropolis-Hastings ratio:

MH(b) = π(μ(w),Ψ(w)|X)qJ (μ(b−1),Ψ(b−1)|X)
π(μ(b−1),Ψ(b−1)|X)qJ (μ(w),Ψ(w)|X)

.

(4) Moving to the next state of the Markov chain:
(i) Generate U (b) from the uniform distribution on [0, 1];
(ii) If U b < min

{
1,MH(b)}, then set μ(b) = μ(w) and Ψ(b) = Ψ(w) (Markov chain

moves to the new state). Otherwise, set μ(b) = μ(b−1) and Ψ(b) = Ψ(b−1)

(Markov chain stays in the previous state).
(5) Return to step (2), increase b by 1, and repeat until the sample of size B is accu-

mulated.

× exp
(
−1

2

n∑
i=1

(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
)

. (33)

The posterior mean vector and the posterior covariance matrix of μ are obtained as
in (25) and (26) with C(Ψ) = 1. Finally, we note that the posterior π(μ,Ψ|X) is
proper for n ≥ p + 1 for the Berger and Bernardo reference prior and for n ≥ p for the
Jeffreys prior following Theorem 4, since exp(−u/2) is a decreasing function in u and

J2
2pn+p2n2 − 1

4 = 0.

All the derived expressions for the normal multivariate random effects model, like
conditional posterior for μ, posterior mean vector, etc., depend on the marginal posterior
for Ψ and thus cannot be computed analytically. In the univariate case, Bodnar et al.
(2016) suggested a numerical procedure for the computation of such quantities based on
the evaluation of one-dimensional integral. In the multivariate case Ψ is a matrix and
since it should be positive semidefinite it imposes further complications on the numerical
integration. For that reason we opt for the simulation-based approach as described in
Section 4.

For generating samples from the posterior π(μ,Ψ|X) we apply Algorithm 1 under
the Berger and Bernardo reference prior and Algorithm 2 under the Jeffreys prior where
the inverse generalized Wishart distribution becomes the inverse Wishart distribution
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with n+p+1 and n+p+2 degrees of freedom, respectively. Other parts of the algorithms
remain the same without changes.

To draw sample from the joint posterior distribution of μ and Ψ following Algo-
rithms 1 and 2, first the realization of μ is draw from the marginal posterior of μ
following the draw of Ψ from the conditional posterior of Ψ given μ. Alternatively, one
can modify these two algorithms using the properties of the normal distribution, which
allow to obtain the scheme where Ψ is generated from the marginal posterior and μ
from the corresponding conditional posterior. Under the Berger and Bernardo reference
prior, another proposal distribution can be constructed by using (29) with (31). Namely,
from (27) and (28) we get

exp
(
−1

2tr
(

Ψ−1
n∑

i=1
(xi − μ)(xi − μ)�

))

= exp
(
−n− 1

2 tr
(
Ψ−1S

))
exp

(
−n

2 (μ− x̄)�Ψ−1(μ− x̄)
)
.

This leads to the algorithm derived under the Berger and Bernardo reference prior,
which is summarized in Algorithm S.1 in the supplement material (see, Bodnar and
Bodnar (2023)). A similar approach can also be used when the Jeffreys prior is employed
with the only change in step (2) of Algorithm S.1, where Ψ(w)|X ∼ IWp(n+p, (n−1)S)
should be replaced by Ψ(w)|X ∼ IWp(n + p + 1, (n− 1)S).

The performance of two algorithms for drawing samples from the posterior distribu-
tion is studied in Figure 1 for the normal multivariate random effects model when the
Berger and Bernardo reference prior and the Jeffreys prior are employed. The notation
‘Algorithm A’ corresponds to the case where μ is drawn from the marginal distribution
and Ψ is generated from the conditional distribution as in Algorithms 1 and 2 with
density generator f(.) as in (31), while the notation ‘Algorithm B’ corresponds to the
case when Ψ is generated from the marginal distribution and μ is obtained from the
conditional distribution as in Algorithm S.1 in the supplement material (see, Bodnar
and Bodnar (2023)).

As a performance measure, we use the empirical coverage probability of the credible
interval constructed for μ1, which is computed based on 5000 independent repetitions.
In each simulation run, the data matrix X is drawn from the normal multivariate
random effects model (2) with the same μ, Ψ = τ2Ξ, and U = diag(U1, . . . ,Up). The
elements of μ are generated from the uniform distribution on [1, 5]. The eigenvalues of
Ξ, U1, . . . , Up−1, and Up are generated from the uniform distribution on [1, 4], while
the eigenvectors are simulated from the Haar distribution. The results in Figure 1 are
obtained for p ∈ {2, 5}, n ∈ {10, 20}, and τ2 ∈ {0.25, 0.5, 0.75, 1, 2}.

Figure 1 depicts the coverage probabilities of the constructed credible intervals at
95% significance level. For comparison purposes, the coverage probabilities of the 95%
confidence intervals obtained by the three approaches of conventional statistics, namely,
the maximum likelihood (ML) of Gasparrini et al. (2012), the restrictive maximum like-
lihood (REML) of Gasparrini et al. (2012), and the methods of moments (MM) of
Jackson et al. (2013) are presented in Figure 1 as well. The computation is performed
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Figure 1: Coverage probabilities of the 95% credible intervals for the first component of
μ as a function of τ2 under the assumption of the normal multivariate random effects
model when the Berger and Bernardo reference prior and the Jeffreys prior are employed
and when three methods of conventional statistics, namely, the maximum likelihood, the
restrictive maximum likelihood, and the method of moment, are used. We set p ∈ {2, 5}
and n ∈ {10, 20}.

by using the R-package mvmeta (Multivariate and Univariate Meta-Analysis and Meta-
Regression, Gasparrini (2019)) for the frequentist methods and the R-package Bayes-
MultMeta (Bayesian Multivariate Meta-Analysis, Bodnar et al. (2022)) for the Bayesian
approaches.

The computation of the empirical coverage probability is based on the sequence of
5000 independent Bernoulli random variable. As such, the upper bound of the Monte
Carlo standard error can be assessed by

1√
5000

max
π∈[0,1]

√
π(1 − π) = 1

2
√

5000
≈ 0.007.

and in the case of the pairwise comparison, we get the upper bound of 0.01. As such, the
values of the empirical coverage probability which lie outside the interval [0.9384, 0.9616]
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are deemed to be statistically significant at 5% level, while for the pairwise comparison
one gets that the differences in the absolute values larger than 0.02 can be considered
to be statistically significant at 5% level.

In Figure 1 we observe that the credible intervals obtained by employing the Berger
and Bernardo reference prior possess larger coverage probabilities than those obtained
by using the Jeffreys prior in most of the considered cases when n = 10, although the
differences between the two non-informative priors are not large when n = 20. The
empirical coverage probabilities computed by using the two numerical procedures of
drawing samples from the posterior distribution are above the chosen significance level
of 95% in almost all of the considered cases when n = 10, while they are slowly below the
target value of 95% when n = 20. Moreover, only for n = 10, p = 5, and large values of τ2

the empirical coverage probabilities obtained under the Berger and Bernardo reference
prior and under the Jeffreys prior can be deemed to deviate significantly from the
target value of 95% at 5% level. The resulting empirical coverage probabilities obtained
by the three frequentist approach are below 95% almost in all cases. Moreover, they are
significantly smaller than 95% at significance level of 5% for τ2 ≥ 1 when n = 10 and
p = 2 and for τ2 ≥ 1.5 when n = 10 and p = 5. When n = 20 and p = 5 all considered
approaches perform similarly and no significant deviation from the target value of 95%
is observed in this case.

5.2 t multivariate random effects model

In the case of the t multivariate random effects model, it holds that

f(u) = Kp,n,d(1 + u/d)−(pn+d)/2 with Kp,n,d = (πd)−pn/2 Γ ((d + pn)/2)
Γ (d/2) . (34)

Hence,

π(μ,Ψ|X)

∝ π(Ψ)√∏n
i=1 det(Ψ + Ui)

(
1 + 1

d
(μ− x̃(Ψ))�

(
n∑

i=1
(Ψ + Ui)−1

)
(μ− x̃(Ψ))

+ 1
d

n∑
i=1

(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
)−(pn+d)/2

= π(Ψ)√∏n
i=1 det(Ψ + Ui)

(
1 + 1

d

n∑
i=1

(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
)−(pn+d)/2

×
(

1 + 1
pn + d− p

pn + d− p

d +
∑n

i=1(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))

× (μ− x̃(Ψ))�
(

n∑
i=1

(Ψ + Ui)−1

)
(μ− x̃(Ψ))

)−(pn+d)/2

,
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which shows that the conditional posterior of μ given Ψ is

π(μ|Ψ,X) ∝
(

1 + 1
pn + d− p

pn + d− p

d +
∑n

i=1(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))

× (μ− x̃(Ψ))�
(

n∑
i=1

(Ψ + Ui)−1

)
(μ− x̃(Ψ))

)−(pn+d)/2

, (35)

i.e., μ conditionally on Ψ and X has a p-dimensional t-distribution with pn + d − p
degrees of freedom, location parameter x̃(Ψ) and dispersion matrix

d +
∑n

i=1(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
pn + d− p

(
n∑

i=1
(Ψ + Ui)−1

)−1

.

Moreover, the marginal posterior for Ψ can also be deduced and it is expressed as

π(Ψ|X) ∝ π(Ψ)√
det(

∑n
i=1(Ψ + Ui)−1)

∏n
i=1

√
det(Ψ + Ui)

×
(

1 + 1
d

n∑
i=1

(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))
)−(pn+d)/2

. (36)

To this end, the posterior mean vector and the covariance matrix of μ are obtained as
in (25) and (26) with

C(Ψ) =
d +

∑n
i=1(xi − x̃(Ψ))�(Ψ + Ui)−1(xi − x̃(Ψ))

pn + d− p− 2 .

Finally, we note that the constant J2 can analytically be computed in the case of the
t multivariate random effects model and it is expressed as (see, Bodnar (2019, Section
3.2))

J2 = pn(pn + 2)(pn + d)
4(pn + 2 + d)

The application of the last expression leads to the following formulas of the Berger and
Bernardo reference prior

πR(Ψ) ∝
(

det
{

G�
p

[
pn + d

2(pn + 2 + d)

n∑
i=1

(
(Ψ + Ui)−1 ⊗ (Ψ + Ui)−1) (37)

− 1
2(pn + 2 + d)vec

(
n∑

i=1
(Ψ + Ui)−1

)
vec

⎛
⎝ n∑

j=1
(Ψ + Uj)−1

⎞
⎠

� ]
Gp

})1/2

,

while the Jeffreys prior is given by (7) with πR(Ψ) as in (37). Furthermore, since (1 +
u/d)−(pn+d)/2 is a decreasing function in u and

J2

2pn + p2n2 − 1
4 = 1

4

(
pn + d

pn + d + 2 − 1
)

< 0,
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the posterior π(μ,Ψ|X) is proper for n ≥ p + 1 for the Berger and Bernardo reference
prior and for n ≥ p for the Jeffreys prior due to Theorem 4.

Algorithms 1 and 2 are used to draw samples from the posterior π(μ,Ψ|X) derived
by employing the Berger and Bernardo reference prior and the Jeffreys prior, respec-
tively. Under the special case of the t multivariate random effects model, step (ii) of both
algorithms is performed by computing Ψ(b) = ξ(b)

d Ω(b) where ξ(b) and Ω(b) are simulated
independently from χ2

d-distribution and the inverse Wishart distribution with parame-
ter matrix (n−1)

∑n
i=1(xi−μ(b))(xi−μ(b))� and degrees of freedom equal to n+p+1

under the Berger and Bernardo reference prior and n + p + 2 under the Jeffreys prior.

The modification of Algorithms 1 and 2 similar to the one derived for the normal
multivariate random effects model can also be obtained under the assumption of the
t-distribution. The application of the equality
(

1 + 1
d
tr
(

Ψ−1
n∑

i=1
(xi − μ)(xi − μ)�

))−(pn+d)/2

=
(

1 + n− 1
d

tr
(
Ψ−1S

))−(pn+d)/2

×
(

1 + 1
np + d− p

n(np + d− p)
d + (n− 1)tr (Ψ−1S) (μ− x̄)�Ψ−1(μ− x̄)

)−(pn+d)/2

leads to another numerical procedure described in Algorithm S.2 in the supplement
material (see, Bodnar and Bodnar (2023)) when the posterior π(μ,Ψ|X) is derived by
applying the Berger and Bernardo reference prior. Under the Jeffreys prior the step (2)
of Algorithm S.2 should be modified by generating Ω(w) from IWp(n+ p+1, (n− 1)S).

To investigate the properties of the two proposed algorithms, we conduct a simu-
lation study for the t multivariate random effects model designed similarly to the one
presented in Section 5.1 for the normal multivariate random effect models. Also, we use
the same notations ‘Algorithm A’ and ‘Algorithm B’ to distinguish between the two
procedures to draw samples from the posterior distributions derived by employing the
Berger and Bernardo reference prior and the Jeffreys prior.

We use the empirical coverage probability of the credible interval constructed for μ1
as a performance measure and compute it based on 5000 independent repetitions. In
each simulation run, the data matrix X is simulated from the t multivariate random
effects model, i.e., from the model (1) with f(.) as in (34). The model parameters μ,
Ψ = τ2Ξ, and U = diag(U1, . . . ,Up) are chosen in the same way as the corresponding
parameters of the normal multivariate random effects model in Section 5.1. Finally, we
set p ∈ {2, 5}, n ∈ {10, 20}, and τ2 ∈ {0.25, 0.5, 0.75, 1, 2}.

The results of the simulation study are depicted in Figure 2 where the empirical
coverage probabilities of the constructed 95% credible intervals are presented. The em-
pirical coverage probabilities are larger than the chosen significance level of 95% in
almost all of the considered cases, independently of whether the Markov chains are
constructed following Algorithm A or Algorithm B. The application of the Berger and
Bernardo reference prior leads to slightly larger values of the empirical coverage prob-
abilities in most of the cases, although the differences are not statistically significant
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Figure 2: Coverage probabilities of the 95% credible intervals for the first element of μ
as a function of τ2 under the assumption of the t multivariate random effects model
when the Berger and Bernardo reference prior and the Jeffreys prior are employed. We
set p ∈ {2, 5} and n ∈ {10, 20}.

at 5% level. If n = 10, then the empirical coverage probabilities are larger than 95%
with the largest values obtained for p = 5, similar to the results obtained in the case of
the normal multivariate random effects model. Moreover, the deviations of the coverage
probabilities from the target value of 95% are statistically significant at 5% in almost
all of the considered cases. Finally, the coverage probabilities are close to 95% when the
sample size is n = 20 independently of the chosen values of p ∈ {2, 5}.

6 Empirical illustration
In this section we illustrate the derived theoretical findings on real data consisting of
results obtained in ten studies that assess the effectiveness of hypertension treatment
for reducing blood pressure. The treatment effects on the systolic blood pressure and
diastolic blood pressure are investigated in the studies where the negative values docu-
ment beneficial effect of the treatment. The data are provided in Table 1 and are taken
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Study Xi;1 (SBP) Xi;2 (DBP)
√

Ui;11 (SBP) ρi;12 = Ui;12√
Ui;11Ui;22

√
Ui;22 (DBP)

1 −6.66 −2.99 0.72 0.78 0.27
2 −14.17 −7.87 4.73 0.45 1.44
3 −12.88 −6.01 10.31 0.59 1.77
4 −8.71 −5.11 0.30 0.77 0.10
5 −8.70 −4.64 0.14 0.66 0.05
6 −10.60 −5.56 0.58 0.49 0.18
7 −11.36 −3.98 0.30 0.50 0.27
8 −17.93 −6.54 5.82 0.61 1.31
9 −6.55 −2.08 0.41 0.45 0.11
10 −10.26 −3.49 0.20 0.51 0.04

Table 1: Data collected in 10 studies about the effectiveness of hypertension treatment
with the aim to reduce blood pressure. The variables Xi;1 and Xi;2 denote the treatment
effects on the systolic blood pressure (SBP) and the diastolic blood pressures (DBP)
from the ith study, while Ui = (Ui;lj)lj=1,2 is the corresponding covariance matrix.

from Jackson et al. (2013) where the treatment effects in each study are provided to-
gether with the covariance matrices Ui which are assumed to be known throughout this
section.

Multivariate meta-analysis is performed by using data from Table 1 under the as-
sumption of the normal multivariate random effects model (Section 5.1) and the t mul-
tivariate random effects model (Section 5.2) when the Berger and Bernardo reference
prior and the Jeffreys prior are employed. The samples from the joint posterior dis-
tribution π(μ,Ψ|X) are drawn by applying two versions of the Metropolis-Hastings
algorithm which are described in Section 5.1 for the normal multivariate random effects
model and denoted by Algorithm A and Algorithm B, respectively. For each type of
the Metropolis-Hastings algorithm, the distributional class of the multivariate random
effects model, and the chosen prior, 105 realizations from the posterior distribution
π(μ,Ψ|X) are drawn with 10% used as burn-in sample.

The first two columns of Table 2 present the results for the normal multivariate ran-
dom effects model, while the results for the t multivariate random effects model with
d = 3 degrees of freedom are shown in the third and the fourth columns of the table.
For each chosen prior, random effects model, and numerical algorithm to draw a sample
from the posterior distribution, we compute the posterior mean and posterior median
as two Bayesian point estimators for the overall mean vector together with the posterior
standard deviation and 95% probability symmetric credible interval. In the case of the
t multivariate random effects model, we multiply Ui by d−2

d to ensure that the within-
study covariance matrix calculated under the assumption of the t multivariate random
effects model coincides with the one given in Table 1. Finally, for comparison purposes,
we also include the results obtained by three approaches of the frequentist statistics,
namely the maximum likelihood estimator and the restrictive maximum likelihood esti-
mator provided in Gasparrini et al. (2012), and the method of moment estimators from
Jackson et al. (2013). The three frequentist procedures are available in the R-package
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Normal random effects model t random effects model
μ1 (SBP) μ2 (DBP) μ1 (SBP) μ2 (DBP)

Jeffreys prior, Algorithm A
post. mean −9.79 −4.05 −10.15 −4.67

post. median −9.60 −4.27 −10.10 −4.66
post. sd. 0.88 0.93 1.08 0.60

cred. inter. [−11.73, −8.00] [−5.61, −2.66] [−12.44,-8.11] [−5.87,−3.51]
Jeffreys prior, Algorithm B

post. mean −9.78 −4.37 −10.03 −4.66
post. median −9.84 −4.37 −9.97 −4.65

post. sd. 0.74 0.50 1.13 0.61
cred. inter. [−11.46, −8.39] [−5.38, −3.38] [−12.46, −7.99] [−5.90, −3.51]

Berger and Bernardo reference prior, Algorithm A
post. mean −9.81 −4.49 −10.11 −4.67

post. median −9.87 −4.44 −10.06 −4.66
post. sd. 1.04 0.59 1.16 0.64

cred. inter. [−12.06, −8.00] [−5.78, −3.42] [−12.58, −7.97] [−5.96, −3.43]
Berger and Bernardo reference prior, Algorithm B

post. mean −9.70 −4.51 −10.08 −4.68
post. median −9.72 −4.53 −10.03 −4.65

post. sd. 1.01 0.58 1.13 0.64
cred. inter. [−11.88, −8.06] [−5.67, −3.49] [−12.50, −7.97] [−5.94, −3.42]

ML, Gasparrini et al. (2012)
estimator −9.47 −4.41 – –

stand. error 0.68 0.44 – –
cred. inter. [−10.79, −8.14] [−5.26, −3.55] – –

REML, Gasparrini et al. (2012)
estimator −9.51 −4.43 – –

stand. error 0.73 0.47 – –
cred. inter. [−10.95, −8.07] [−5.35, −3.51] – –

Method of moments, Jackson et al. (2013)
estimator −9.17 −4.31 – –

stand. error 0.55 0.36 – –
cred. inter. [−10.26, −8.08] [−5.02, −3.60] – –

Table 2: Results of Bayesian inference (posterior mean, posterior median, posterior stan-
dard deviation, 95% credible interval) for the parameter μ of the multivariate random
effects model obtained for the data from Table 1 by employing the Berger and Bernardo
reference prior and the Jeffreys prior. The samples from the posterior distributions are
drawn by Algorithm A and Algorithm B defined in Section 5.1. The last three panels
of the table include the results of the maximum likelihood estimator and the restrictive
maximum likelihood estimator described in Gasparrini et al. (2012), and the method of
moment estimators from Jackson et al. (2013).
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mvmeta (Gasparrini (2019)), while the Bayesian approaches are implemented in the
R-package BayesMultMeta (Bodnar et al. (2022)).

All Bayesian point estimators derived under the assumption of the normal multivari-
ate random effects model are very similar and they are almost always slightly smaller
than those obtained by the frequentist approaches. In contrast, the computed Bayesian
standard errors are larger than those computed by the frequentist approaches, especially
when the method of moments is used in their computation. These results are in line
with statistical theory and reflect the fact that the Bayesian methods in contrast to
the frequentist approaches take automatically the uncertainty about the between-study
covariance matrix Ψ into account, while the frequentist methods usually ignore that Ψ
is an unknown nuisance parameter of the model which has to be estimated before the
inferences for the overall mean vector are constructed. Finally, we have that the credi-
ble intervals obtained by employing the Berger and Bernardo reference prior are wider
than those obtained by using the Jeffreys prior. Similar results are also obtained in the
simulation study of Section 5.1 (see, Figure 1), where the larger values of the coverage
probabilities are documented for the Berger and Bernardo reference prior. Such a result
was also documented in the univariate case in Bodnar (2019). Finally, in the case of
the t multivariate random effects model, the estimated elements of the overall mean
vector μ become even smaller than those observed under the of the normal multivariate
random effects model, while the corresponding Bayesian standard deviations increase
reflecting the impact of heavy tails of the t-distribution.

In Table 3 the Bayesian point estimators, posterior mean and posterior median, for
parameter matrix Ψ are presented. In all of the reported cases, the posterior means are
considerably larger than the posterior medians indicating that the marginal posterior
distributions of the components of Ψ are skewed to the right. A similar property of
the between-study variability is also observed in the univariate case (cf., Bodnar et al.
(2020)). Furthermore, similarly to the univariate case, the Bayesian estimates of the
between-study variability are larger than those obtained by the frequentist methods
(see, e.g., Bodnar et al. (2017)).

The two-dimensional credible regions at significance levels 0.9 (dark blue), 0.95 (light
blue), and 0.99 (green) for the elements of the mean vector μ are depicted in Figure 3
for the normal multivariate random effects model and in Figure 4 for the t multivariate
random effects model with d = 3 degrees of freedom. The credible regions obtained
under the assumption of the t-distribution are very similar, independently of whether
the Berger and Bernardo reference prior or the Jeffreys prior is employed, and the chosen
algorithm to draw samples from the posterior distribution. That is not longer the case
in Figure 3, where the credible regions computed for the normal multivariate random
effects model with Jeffreys prior and using Algorithm B appear to be slightly narrower.
Finally, the credible intervals obtained under the assumption of the t-distribution are
always wider reflecting the influence of heavy tails.

Finally, we present convergence diagnostic for the constructed Markov chains follow-
ing the recent approaches developed in Vehtari et al. (2021). Figures 5 and 6 depict the
ranks plots and Table 4 shows the split-R̂ estimates based on the rank normalization.
The computation is performed by generating four Markov chains of length 10000 with
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the burn-in period of 10000 for each algorithm constructed under the normal and t
multivariate random effects models when the model parameters are endowed with the
Berger and Bernardo reference prior and the Jeffreys prior. In the graphical presenta-
tions of Figures 5 and 6 we observe that the plots created under the assumption of the
t multivariate random effects model are closer to the plots, which are expected when a
sample from a uniform distribution is drawn. Moreover, a closer analysis of the plots
reveals that the plots obtained for the t multivariate random effects model show the
best performance in terms of the split-R̂ estimates based on rank normalization. All of
the histograms in the first row of Figure 6 are closest to the histograms correspond-
ing to the uniform distribution in comparison to the plots in other rows of Figures 5
and 6. As such, the rank plots suggest that the Markov chains constructed under the t
multivariate random effects model possess better convergence properties with the best
results achieved when the Jeffreys prior is used. These results are in line with the pre-
vious results depicted in Figures 3 and 4, where the credible sets constructed under the
t multivariate random effects model show smoother patterns than the ones computed
under the assumption of normality.

Normal random effects model t random effects model
ψ11 (SBP) ψ21 ψ22 (DBP) ψ11 (SBP) ψ21 ψ22 (DBP)

Jeffreys prior, Algorithm A
post. mean 7.45 2.71 3.68 11.56 5.26 3.90

post. median 5.62 2.25 2.95 8.69 3.88 3.01
Jeffreys prior, Algorithm B

post. mean 6.62 2.82 2.71 10.81 4.92 3.75
post. median 4.29 2.14 2.16 7.99 3.64 2.98

Berger and Bernardo reference prior, Algorithm A
post. mean 9.32 3.88 3.13 13.13 6.14 4.64

post. median 6.62 2.77 2.57 9.75 4.34 3.39
Berger and Bernardo reference prior, Algorithm B

post. mean 8.79 3.71 3.12 12.24 5.71 4.39
post. median 7.56 2.97 2.65 8.84 4.12 3.34

ML, Gasparrini et al. (2012)
estimator 3.29 1.51 1.57 – – –

REML, Gasparrini et al. (2012)
estimator 3.92 1.81 1.83 – – –

Method of moments, Jackson et al. (2013)
estimator 2.03 0.2 1.04 – – –

Table 3: Posterior mean and posterior median for the parameter Ψ of the multivariate
random effects model obtained for the data from Table 1 by employing the Berger
and Bernardo reference prior and the Jeffreys prior. The samples from the posterior
distributions are drawn by Algorithm A and Algorithm B defined in Section 5.1. The
last three panels of the table include the results of the maximum likelihood estimator
and the restrictive maximum likelihood estimator described in Gasparrini et al. (2012),
and the method of moment estimators from Jackson et al. (2013).
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Figure 3: Credible sets for μ1 (SBP) and μ2 (DBP) obtained from the posterior distri-
bution π(μ|X) derived for the location parameters of the normal multivariate random
effects model by employing the Berger and Bernardo reference prior and the Jeffreys
prior and using data from Table 1. The samples from the posterior distributions are
drawn by Algorithm A and Algorithm B defined in Section 5.1.

All values of the computed split-R̂ estimates based on the rank normalization are
smaller than 1.1 (see, Table 4), the target value recommended in Gelman et al. (2013)
for deciding whether the constructed Markov chains possess good mixing properties.
Moreover, the values computed under the t multivariate random effects model with
the parameters endowed by the Jeffreys prior are all not larger than 1.01, the target
value recommended in Vehtari et al. (2021). This result confirms the previous conclusion
based on the rank plots, where the Markov chains constructed for the t random effects
model with the Jeffreys prior possess good mixing properties, independently of the
algorithm used for generating samples from the posterior distribution. Finally, we note
that the performance of the constructed Markov chains depends crucially on the way
how the samples from the posterior distribution are drawn. In particular, the choice
of the proposal distribution can be very important. In this paper, two possible choices
of the proposal distribution are considered. Using them, good mixing properties of the
constructed Markov chains are documented. However, other choices of the proposal
distribution might lead to even better results.
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Figure 4: Credible sets for μ1 (SBP) and μ2 (DBP) obtained from the posterior distri-
bution π(μ|X) derived for the location parameters of the t multivariate random effects
model by employing the Berger and Bernardo reference prior and the Jeffreys prior and
using data from Table 1. The samples from the posterior distributions are drawn by
Algorithm A and Algorithm B defined in Section 5.2.

7 Summary
Multivariate random effects model is one of the most used statistical tools in multi-
variate meta-analysis where the aim is to combine multiple values obtained in several
studies into a single value. The parameters of the multivariate random effects model are
usually estimated from the viewpoint of frequentist statistics, while several subjective
Bayesian approaches based on the informative priors exist in the literature. Although
both methods provide a good fit of the model to real data when the sample size is
relatively large due to the asymptotic theorems in the frequentist statistics and the
Bernstein-von-Mises theorem in Bayesian statistics, the results might be different when
a sample of small size is present which is the case in the majority of meta-analyses.
When the sample size is not large enough the asymptotic approximation might deviate
considerably from the exact sample distribution of the estimated parameters or/and
the influence of the chosen informative prior might have a significant impact on the
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Figure 5: Rank plots of posterior draws from four chains in the case of the parameter μ1
(SBP) of the normal multivariate random effects model by employing the Jeffreys prior
(first and second rows) and the Berger and Bernardo reference prior (third and fourth
rows), and by using data from Table 1. The samples from the posterior distributions
are drawn by Algorithm A (first and third rows) and Algorithm B (second and fourth
rows) defined in Section 5.1.

posterior. Methods of the objective Bayesian statistics propose a solution to the chal-
lenges related to the insufficient sample size by providing the model parameters with
noninformative prior. In particular, the Berger and Bernardo reference prior is derived
by maximizing the Shannon mutual information, i.e. by choosing the prior with the
smallest impact on the posterior.

Flexible objective Bayesian procedures for the parameters of the multivariate ran-
dom effects model are developed by employing two noninformative priors, the Berger
and Bernardo reference prior and the Jeffreys prior. The analytical expressions of both
the priors are obtained and the corresponding posteriors are derived. The results are
established for a general class of multivariate random effects models which include the
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Figure 6: Rank plots of posterior draws from four chains in the case of the parameter
μ1 (SBP) of the t multivariate random effects model by employing the Jeffreys prior
(first and second rows) and the Berger and Bernardo reference prior (third and fourth
rows), and by using data from Table 1. The samples from the posterior distributions
are drawn by Algorithm A (first and third rows) and Algorithm B (second and fourth
rows) defined in Section 5.1.

normal multivariate random effects model as a special case. Moreover, the propriety of
the posteriors is proved under a weak condition, which requires that the sample size
is larger than the dimension of the data-generating model only, independently of the
specific class of the multivariate random effects model. Finally, the Metropolis-Hastings
algorithm has been developed in the paper to draw samples from the posterior derived
for the parameters of the model. Via simulations, it is shown that the considered nu-
merical procedures lead to similar results in the case of the normal multivariate random
effects model and the t multivariate random effects model. In an empirical illustration
based on data consisting of ten studies about the effectiveness of hypertension treatment
for reducing blood pressure, a beneficial effect of the treatments on both systolic blood
pressure and diastolic blood pressure is found.
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μ1 (SBP) μ2 (DBP) ψ11 (SBP) ψ21 ψ22 (DBP)
Jeffreys prior, Algorithm A

normal 1.006 1.010 1.007 1.002 1.003
t-dist. 1.003 1.004 1.005 1.001 1.004

Jeffreys prior, Algorithm B
normal 1.078 1.044 1.025 1.017 1.026
t-dist. 1.010 1.008 1.006 1.007 1.005

Berger and Bernardo reference prior, Algorithm A
normal 1.006 1.013 1.095 1.068 1.108
t-dist. 1.049 1.026 1.021 1.017 1.033

Berger and Bernardo reference prior, Algorithm B
normal 1.020 1.031 1.046 1.020 1.031
t-dist. 1.014 1.010 1.051 1.032 1.023

Table 4: Split-R̂ estimates based on the rank normalization (see, Vehtari et al. (2021))
and computed for the normal multivariate random effects model and for the t multi-
variate random effects model by employing the Berger and Bernardo reference prior
and the Jeffreys prior and by using data from Table 1. The samples from the posterior
distributions are drawn by Algorithm A and Algorithm B defined in Section 5.1.

Using the convergence diagnostics, recently proposed in Vehtari et al. (2021), good
mixing properties are documented when the Markov chains are constructed under the
t multivariate random effects model with the Jeffreys prior, independently of the algo-
rithm used to generate samples from the posterior distribution. These findings might be
considered as a justification of the t multivariate random effects model to analyze the
effectiveness of hypertension treatment for reducing blood pressure. On the other side,
the convergence diagnostic presents only one of many aspects of performing Bayesian
inference procedures. A detailed analysis based on the Bayesian model selection is re-
quired to provide general recommendations about the choice of an elliptically contoured
distribution to be used in practice. This challenging problem is not treated in the present
paper and is left for future research.

The proposed multivariate approach is designed for meta-analysis whose outcomes
can be described by continuous random variables. Vázquez-Polo et al. (2015) pointed
out that the meta-analysis methods proposed for continuous outcomes can be used with
caution only for performing meta-analysis in the case of sparse discrete data. In the uni-
variate case, several approaches both from the frequentist and Bayesian statistics have
been developed how to pool the results of the studies with discrete outcomes together
(see, e.g., Liu et al. (2014); Moreno et al. (2014); Bender et al. (2018); Quaife et al.
(2018)). Recently, Jain et al. (2022) discusses the application of the copula modeling for
the multivariate meta-analysis with discrete outcomes from both viewpoints of the fre-
quentist and Bayesian statistics. Since the family of elliptically contoured distributions
includes also discrete distributions, the multivariate approach considered in the paper
can lead to new methods how to combine the results of studies with discrete outcomes.
Further investigation in this direction is left for future research.
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Supplementary Material
Supplement to “Objective Bayesian meta-analysis based on generalized marginal mul-
tivariate random effects model” (DOI: 10.1214/23-BA1363SUPP; .pdf). Supplement A:
The proofs of the theoretical results are provided. Supplement B: Metropolis-Hastings
algorithms are provided for drawing samples from the posterior distribution when the
samples are generated first from the marginal posterior of Ψ and then from the condi-
tional posterior of μ given Ψ.
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