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A Multivariate Mixture Regression Model for
Constrained Responses∗

Roberto Ascari†, Agnese Maria Di Brisco‡, Sonia Migliorati†, and Andrea Ongaro†

Abstract. Compositional data are vectors typically representing proportions of a
whole, that is, those whose elements are strictly positive and subject to a unit-sum
constraint. The increasing number of fields where this type of data arises makes
the development of proper statistical tools an important issue. From a regression
perspective, whenever the multivariate response is a compositional vector, a proper
model that accounts for the unit-sum constraint is the well-established Dirichlet
regression model. However, there are significant drawbacks mainly due to the
limited flexibility of the Dirichlet distribution. The aim of this contribution is to
introduce a new multivariate regression model for constrained responses, that is
based on the extended flexible Dirichlet distribution (which is a structured mixture
with Dirichlet distributed components). The new model is obtained by adopting
a novel reparameterization which allows for, among other things, the presence
of suitably designed cluster-specific regression patterns. It is shown to provide
considerably greater flexibility and better performance than the standard Dirichlet
regression model. In particular, from theoretical analysis, intensive simulation
studies in many challenging scenarios, as well as from a real data application,
it emerges that the new regression model can handle several issues affecting the
Dirichlet regression, such as the presence of outliers, latent groups, multi-modality,
and positive correlations.

Keywords: Dirichlet regression, simplex, outliers, latent clusters, Hamiltonian
Monte Carlo.

1 Introduction
Compositional data are vectors whose elements are strictly positive and subject to a
unit-sum constraint. Typically they are proportions of some whole and are encoun-
tered in several fields of science—for example, in medicine, economics, psychology,
and environmetrics. Being defined on the D-part simplex SD = {y : yj > 0, j =

1, . . . , D,

D∑
j=1

yj = 1}, their analysis is challenging and requires proper statistical tools.

This is particularly relevant in a regression context, where the constrained components
of the D-dimensional response variable are regressed onto covariates, and the standard
linear model is clearly unsuitable.
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Regression on the simplex is often carried out via log-ratio data transformation,
mapping SD onto R

D−1, so that traditional multivariate techniques can be applied
(Aitchison, 2003). However, this approach can have some serious limitations as the
resulting parameter estimates are only interpretable in the transformed space, whereas
the main aim of the analysis is to assess and interpret the covariates’ effect on the
relative contributions of the original components of the whole. Moreover, the common
presence of skewness, heteroscedasticity, non-normality of transformed data as well as
outliers (Maier, 2014) can represent further relevant issues within the transformation
approach.

An alternative solution for the regression of compositional responses is the Dirichlet
model (Campbell and Mosimann, 1987; Hijazi and Jernigan, 2009), which assumes that
the response variable follows a Dirichlet distribution. Typically, in accordance with a
GLM-like strategy, a multinomial logit function linking the response mean vector to
the covariates entails easiness of interpretation of the regression coefficients in terms
of log-odds ratios. This model has been successfully applied both via maximum like-
lihood (Gueorguieva et al., 2008; Hijazi and Jernigan, 2009; Maier, 2014; Ankam and
Bouguila, 2019; Morais et al., 2018) and within a Bayesian framework (Camargo et al.,
2012; van der Merwe, 2019; Da-Silva and Rodrigues, 2015). Moreover, some extensions
to account for zero patterns have been proposed as well (Tsagris and Stewart, 2018).
The Dirichlet distribution is the most well-known and widespread distribution on the
simplex, showing many desirable mathematical and statistical properties. However, it is
unsuitable for modelling most compositional data due to its implied many forms of sim-
plicial independences (such as compositional invariance, subcompositional invariance,
partition independence, neutrality, and subcompositional independence) and limited
flexibility. This is related to the fact that, once the mean vector has been fixed, a single
parameter controls the whole covariance matrix, which is always characterized by neg-
ative covariances. Moreover, the Dirichlet model fails to model a wide range of relevant
phenomena, including heavy tailed and multi-modal responses.

Recently, a new generalization of the Dirichlet—the extended flexible Dirichlet (EFD)
distribution (Ongaro et al., 2020)—has been proposed. The EFD is a structured mixture
with Dirichlet components. In a general Dirichlet mixture model each component has its
own parameters which are totally unrelated to the parameters of the other components.
On the contrary, in the EFD the parameters of each component are strictly linked to
the remaining component-specific parameters (see Section 2.2). This structured mixture
model has the advantage of displaying a clear pattern of relations among the compo-
nents of the mixture, and of making the model identifiable, unlike the general Dirichlet
mixture model.

The EFD distribution displays considerable flexibility in modeling dependence, as
well as independence notions appropriate for compositional data, allowing also for heavy
tails, multi-modality, and positive correlations. In particular, (even high) positive cor-
relations can be reached by choosing parameter values so that the component mean
vectors are arranged along a line with positive slope (for a deeper insight see Section
3.4 of Ongaro et al. (2020)). The EFD maintains several probabilistic and composi-
tional properties of the Dirichlet, including identifiability, explicit expressions of joint
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moments, as well as closure under some inferentially important operations. This leads
to a substantially greater ability in capturing various data patterns, while keeping the
distribution sufficiently tractable from an inferential perspective in terms of compu-
tational compliance, stability of the estimation procedure, and accuracy in evaluating
estimator performances.

The aim of the present paper is to provide a new and more flexible regression model
for multivariate compositional responses based on the EFD distribution. First, we pro-
pose a new parameterization of this distribution specifically designed for the regression
context, which allows for a clear and meaningful interpretation of parameters. Then, we
define a regression model based on it, which substantially extends the Dirichlet model
both because of the greater variety of possible shapes of the EFD, and the unique built-
in regression behavior. Indeed, on the one hand we directly model the response mean
vector as an appropriate function (i.e., the multinomial logit) of covariates, thus ensur-
ing interpretable effects of the covariates on the response variables. On the other hand,
we allow for the presence of suitably-designed, cluster-specific regression patterns that
are capable of capturing possible deviations from the main trend (for example, outliers
or latent groups). Finally, the model further enriches the analysis, if deemed conve-
nient, by regressing onto covariates also other important aspects such as the precision
parameter and/or relevant characteristics of the clusters.

We adopt a Bayesian approach for inference. In particular, a novel feature of the
model is a general probabilistic scheme defining prior distributions for the component
mixing weights, which lets the number and type of cluster-specific regression components
to be freely selected within the model.

The potential of the new model is illustrated by means of extensive simulation stud-
ies as well as a real data application with various choices of covariates. The new model
proves to be superior to the Dirichlet model in all examined settings. Indeed, it is capa-
ble of recognizing, by suitably arranging its mixture components, various data patterns,
such as latent groups, outliers, multi-modality, and positive correlations. Instead, typi-
cally these data patterns are not captured by the Dirichlet model. In any case, the new
model often displays substantially better fit and higher precision in parameter estimates
compared to the Dirichlet model.

The rest of this paper is organized as follows. In Section 2, we review the Dirichlet
and EFD distributions, proposing a regression-devised parameterization for the latter.
In Section 3, we introduce the new regression model and a variant which has the ob-
jective of smoothing the cluster-specific regression curves. An identifiability property
is proved as well. Section 4 briefly points to some possible further uses of the EFD in
the context of discrete compositional data. Section 5 is concerned with the Bayesian
estimation procedure and the details about the prior elicitation scheme with special
regard to cluster selection. Three intensive simulation studies characterized by different
purposes are presented and discussed in Section 6. Section 7 presents an application
to a compositional dataset studied in the ecological field. Finally, concluding remarks
are provided in Section 8, while the Supplementary Material (SM) (Ascari et al., 2023)
file provides further details especially (but not only) on simulations and applications
together with some proofs. Tables and figures in SM are labeled with prefix “S”.
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2 Distributions on the simplex
In this section we briefly review the Dirichlet and EFD distributions, and propose a
reparameterization of the latter, expressly devised for regression purposes.

2.1 Dirichlet and EFD distributions

A Dirichlet distributed D-dimensional random vector Y ∼ Dir(·;α) has the following
probability density function (p.d.f.):

fD(y;α) = Γ(α+)∏D
j=1 Γ(αj)

D∏
j=1

y
αj−1
j , (1)

where y ∈ SD, α = (α1, . . . , αD)ᵀ, αj > 0, and α+ =
∑D

j=1 αj . The Dirichlet distribu-
tion can freely model the mean vector, which is E [Yj ] = αj

α+ , but it dedicates only the
parameter α+ to handle the entire variance-covariance matrix.

The EFD distribution (Ongaro et al., 2020) can be viewed as a particular Dirichlet
mixture. Specifically,

EFD(y;α, τ ,p) =
D∑

r=1
prDir(y;α + τrer), (2)

where y ∈ SD, er is a vector of zeros except for the r-th element which is equal
to 1, p = (p1, . . . , pD)ᵀ is such that 0 ≤ pr < 1 and

∑D
r=1 pr = 1, and the vector

α = (α1, . . . , αD)ᵀ has positive elements. The constraint pr < 1 (implying a minimum
of two components) is imposed to avoid identifiability issues. Note that we decided to
allow some pr’s to be equal to zero so that the model allows for a number of components
up to a maximum of D. If pr is null for some r (i.e., the corresponding cluster is not
present), the value of the parameter τr is immaterial, and it needs to be fixed to avoid
non identifiability. We decided to fix it to 1 for convention. Therefore, the definition of
the parameter space is completed by setting τr > 0 for any r such that pr > 0, and
τr = 1 for any r such that pr = 0. The p.d.f. of an EFD distribution is:

fEFD(y;α, τ ,p) =

⎛
⎝ D∏

j=1

y
αj−1
j

Γ(αj)

⎞
⎠ D∑

r=1
pr

Γ(αr)Γ(α+ + τr)
Γ(αr + τr)

yτrr . (3)

The mixture (2) defining the EFD is “structured,” in the sense that it entails suitable
links among the mixture components (note that hereafter “component,” also referred to
as “cluster” or “group,” will be reserved to indicate an element of a mixture). The links
are expressed by the parameter vector α, which is common to all components, and can
be interpreted (after normalization) as a barycenter of the model. The specificity of each
component is given by the parameters τr and the vectors er. The vector er conveys the
information that the r-th cluster is different from the others in its r-th element, which
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displays a higher mean (with respect to the r-th mean element of the other clusters).
The extent to which this mean is higher than the others is dictated by the parameter
τr. This fact will be discussed in detail in Section 2.2, where a new parametrization of
the EFD will be proposed (Equations (4) and (5)).

The EFD, besides displaying a far richer dependence structure than the Dirichlet,
greatly extends the variety of shapes of the Dirichlet p.d.f., particularly in terms of
multi-modality, asymmetry, and heavy tails. Concerning multi-modality, recall that the
Dirichlet is unimodal if and only if all αr’s are larger than one. It follows that, by suitably
choosing the parameters (possibly, but not necessarily, setting some pr’s to zero), any
number of modes up to D can be reached. As for the tails’ behavior, the Dirichlet
presents some limitations. To analyze this behavior, we study (1) on the frontier of the
simplex, when one or more elements go to zero. In this case, any unimodal Dirichlet has
tails always tending to zero. On the contrary, in the EFD, by choosing some αr’s equal
to one and others larger than one, it is possible to reach unimodal densities which can
be proved to have strictly positive (and finite) tails corresponding to the elements with
unitary αr. A figure illustrating two such interesting cases is reported in Section 1 of
the SM.

Finally, the EFD distribution shows several theoretical properties, such as some sim-
plicial forms of dependence/independence, simple expressions of marginal, conditional,
and sub-compositional distributions, and identifiability. Concerning identifiability, the
EFD can be shown to be identifiable in the following strong sense: Two EFD distri-
butions are the same if and only if the corresponding parameters are equal. Thus, for
example, no labeling issues occur as there is no invariance under permutation of the
components. This is generally not true for general mixture models, and can be proved
to fail specifically in case of arbitrary Dirichlet mixtures. All these properties make
the EFD tractable from computational and inferential viewpoints. For more details see
Ongaro et al. (2020).

It is worth noting that the EFD distribution contains the Dirichlet as an inner point
when τr = 1 and pr = αr/α

+ for every r = 1, . . . , D. Moreover, the flexible Dirich-
let (FD) distribution (Ongaro and Migliorati, 2013) is obtained by setting all the τr’s
equal (i.e., τ1 = · · · = τD = τ). This latter distribution, being a structured mixture
itself, displays several theoretical properties of interest for compositional data (Miglio-
rati et al., 2017). However, its cluster structure has been shown to be too restrictive for
modeling many types of data, as noted in Ongaro et al. (2020). In addition, the FD,
like the Dirichlet, only admits negative covariances. This led us to focus on the more
general EFD model, which, among other things, allows for high positive correlations.
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2.2 EFD reparametrization

With the aim of regressing a compositional vector onto a set of covariates, it is convenient
to work with parameterizations based on mean vectors. In the Dirichlet case, we thus
prefer to adopt the mean-precision parametrization, namely ᾱ = (ᾱ1, . . . , ᾱD)ᵀ ∈ SD,
where ᾱj = E [Yj ] = αj

α+ > 0 for j = 1, . . . , D, and α+ =
∑D

j=1 αj > 0, the latter repre-
senting the precision parameter. We denote the mean-precision parametrized Dirichlet
with Dirmp(·; ᾱ, α+). With this parametrization, the EFD can be rewritten as

EFD(y;α, τ ,p) =
D∑

r=1
prDirmp(y;λr, α

+ + τr), (4)

where
λr = (1 − wr)ᾱ + wrer, (5)

and wr = τr
α++τr

. Note that λr = (λr1, . . . , λrD)ᵀ, which represents the mean of the r-th
mixture component, can be interpreted as a weighted average of a common barycenter,
ᾱ, and the r-th simplex vertex er. Formula (5) clearly highlights the links and differences
among the component means: Each λr departs from the common barycenter ᾱ in its r-
th element, which is increased by a factor controlled by wr, being λrr = ᾱr +wr(1− ᾱr).
The exceedence wr(1 − ᾱr) is distributed among the other elements proportionally to
the ᾱh’s, that is, the ratios between the other elements of λr are the same as the ratios
of the corresponding ᾱh (h = 1, . . . , D;h �= r). Clearly, the larger wr, the farther apart
λr is from the common barycenter and from all the other component means.

For regression purposes, it is important to understand the consequences of this mix-
ture structure on the relation among the group means for any given element j of the
composition. For the symmetry properties of the model, we can assume, without loss
of generality, that τ1 ≥ . . . ≥ τD so that w1 ≥ . . . ≥ wD. Then, given a generic element
j, one can easily see that λjj > ᾱj > λDj ≥ . . . ≥ λ(j+1)j ≥ λ(j−1)j ≥ . . . ≥ λ1j , (j =
1, . . . , D). Thus, always with reference to the j-th element, the mean of the j-th group
is higher than all the others. Furthermore, the ordering among the other group means
is dictated only by the wr’s. Indeed, it holds that λrj

λhj
= 1−wr

1−wh
(j = 1, . . . , D; r, h �= j).

Obviously, if wr = wh, then the corresponding component means collapse for all ele-
ments different from {r, h}, thus reducing the number of different component means
for a given element. In the extreme case when all the wr’s are equal (i.e., in the FD
model), we just have two different component means for each j-th element, namely the
one relative to the j-th group and all the others which coincide.

Since our main objective is to regress the mean vector of the model onto covariates,
we need to find a further suitable parameterization of the EFD explicitly including the
mean vector μ. The first order moment of the EFD easily follows from its mixture
structure and Dirichlet distribution properties:

μj = E [Yj ] =
D∑

r=1
prλrj = ᾱj

D∑
r=1

pr(1 − wr) + pjwj , j = 1, . . . , D. (6)
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However, the parameterization of the EFD based on μj , pj and wj (j = 1, . . . , D) is not
variation independent, which may generate inferential difficulties (especially within a
Bayesian MCMC-based approach to inference), and may also prevent separate modeling
of any parameter as a function of covariates. This is due to the following constraints:

0 < ᾱj = μj − pjwj

1 −
∑

r prwr
< 1 j = 1, . . . , D, (7)

whereas the constraint
∑D

j=1 ᾱj = 1 is automatically satisfied. A careful investigation
of (7) shows that, to ensure that these inequalities are satisfied, it is sufficient to ask
that ᾱj > 0, thus pjwj < μj . This implies that a variation independent parameter space
can be obtained by reparameterizing either the wj ’s or the pj ’s. If μ is fixed, meaning
that is it not regressed onto covariates, either choices are equivalent. Instead, when
μ depends on covariates, different regression models are obtained by reparameterizing
either the wj ’s or the pj ’s. We decide to keep the pj ’s fixed and let the wj ’s vary together
with the μj ’s. The reasons for this choice are better discussed in Section 3. A natural
reparameterization of the wj ’s is given by

w̃j = wj

m(μj)
, j = 1, . . . , D, (8)

where m(μj) = min
{

μj

pj
, 1
}

, so that w̃j ∈ (0, 1) represents the extent to which each
mixture component departs from the common barycenter ᾱ.

The final parameterization of the EFD(·;μ,p, α+, w̃) is therefore based on μ ∈
SD, p = (p1, . . . , pD)ᵀ such that 0 ≤ pr < 1 and

∑D
r=1 pr = 1, α+ > 0, and w̃ =

(w̃1, . . . , w̃D)ᵀ with w̃j ∈ (0, 1), where we conventionally set w̃j = 1/2 if pj = 0.

3 The EFD regression model
A widely-used regression model for compositional responses is the Dirichlet regression
(DirReg) model that has two different ways of implementation. One way regresses the
parameters αj ’s of the standard Dirichlet parameterization (based on Equation (1)) onto
covariates (Hijazi and Jernigan, 2009; Gueorguieva et al., 2008; Camargo et al., 2012;
Maier, 2014; Ankam and Bouguila, 2019; Morais et al., 2018). The other way regresses
the Dirichlet mean values αj/α

+’s onto covariates (van der Merwe, 2019; Tsagris and
Stewart, 2018; Da-Silva and Rodrigues, 2015; Maier, 2014). In our opinion, the latter
is preferable as it provides more interpretable results in agreement with the general
GLM strategy (McCullagh and Nelder, 1989). Indeed, the αj ’s do not have a clear and
relevant meaning. As suggested by a referee, two other generalizations of the Dirichlet
distribution (Graf, 2020; Ankam and Bouguila, 2019) have been used in the literature
to construct a regression model. Though, neither of them regresses the mean value of
original data onto covariates (see Section 9 of the SM for more details on these two
models and a comparison with the EFDReg model on the real data application studied
in Section 7).

Our objective is to define a generalization of the mean-based Dirichlet regression
model by considering the EFD distribution for the response variables. Specifically, let
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Y = (Y1, . . . ,Yn)ᵀ be the response matrix such that Yi = (Yi1, . . ., Yij , . . . , YiD)ᵀ is a
D-dimensional vector on the simplex (i = 1, . . . , n), and let X = (x1, . . . ,xn)ᵀ be the
design matrix, where xi = (1, xi1, . . . , xit, . . . , xiT )ᵀ is a (T + 1) dimensional vector of
covariates values on the i-th sample unit. The mean vector μi of Yi can be regressed
onto covariates by choosing a smooth and invertible link function, which transforms the
expectation of the response variable to the linear predictor. Therefore, in our context
an adequate mapping from the simplex to the D− 1 Euclidean space must be selected.
Although any such function is compatible with our methodology, in the following we
make use of the multinomial logit function –say g– as it provides a simple interpretation
of the regression coefficients in terms of log-odds ratios. We then have

g(μij) = log
(

μij

μiD

)
= xᵀ

i βj , (9)

where μij = E [Yij ] and βj = (βj0,βj1, . . . , βjT )ᵀ is a vector of regression coefficients
(j = 1, . . . , D − 1). Thus, the expectation of the response can be written as:

μij = g−1(xᵀ
i βj) =

⎧⎨
⎩

exp(xᵀ
i βj)

1+
∑D−1

r=1 exp(xᵀ
i βr) , j = 1, . . . , D − 1

1
1+

∑D−1
r=1 exp(xᵀ

i βr) , j = D.
(10)

Note that the D-th element is conventionally fixed as baseline. Indeed, formally any
element of the composition can be placed in the D-th position as the EFD model is
symmetric in its elements. Thus, if there exists an element which is more important or
with a particularly significant meaning, then this element should be used as reference
for ease of interpretation. A further point to take into consideration when choosing the
reference element stems from possible computational instability due to low values of
the reference element. To reduce this problem a simple preprocessing step consists in
choosing as reference element the one with the highest sample mean.

The EFD regression (EFDReg) model is then defined by assuming that each Yi is
independently distributed as an EFD(·;μi,p, α+, w̃). With this notation, the DirReg
model is obtained instead by letting Yi follow a Dirichlet distribution Dirmp(·;μi, α

+),
that is, with mean μi and precision parameter α+.

In a regression perspective, the general mean μ varies with covariates. As a conse-
quence of the new parametrization of the EFD including μ, the component means λr

also vary with covariates (r = 1, . . . , D) following the relationships studied in Section 2.2
and further explored below. Our model can thus be viewed as a type of mixture regres-
sion model (Frühwirth-Schnatter, 2006), with specific relations occurring among group
regressions. However, our focus is different from general mixture regression models. In-
deed, in the latter models the main interest is on separately modeling the component
regressions which display arbitrarily different dependencies on covariates. The main in-
ferential objective of our model is to assess the general impact of covariates’ on the
mean vector of the response variable. In this respect, a mixture of regression models
usually does not produce clearly interpretable results.

Though our main regression focus is on the overall mean, interesting and inter-
pretable implications of our model in terms of component-specific regressions can be
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derived, as described in Section 2.2, with reference to the general behavior of λr. The
behavior of the wr’s which affect λr (see Formula (5)) are yet to be examined. Indeed,
the wr’s are not fixed, since they depend on μ in the adopted mean-based parameter-
ization, particularly wr = w̃r m(μr). This choice of wr has the advantage of reaching
the whole parameter space by varying w̃r. However, it induces a non-smooth piecewise
linear dependence of λr on μr and, therefore, on the covariates, which may not be al-
ways desirable. Thus, the identification of a further alternative parameterization giving
rise to smooth component-specific regression curves seems of interest. This can be ac-
complished by choosing wr proportional to the linear or parabolic function which best
approximates the upper constraint for wr given by m(μr). The maximum linear function
below m(μr) is the identity wr = μr. However, this solution seems too restrictive. We
therefore turned to parabolic curves, deriving the uniformly highest parabolic function
under the requirement of being below m(μr), thus obtaining the following function:

q(μr) =
{

μr

pr
[1 − (1 − pr)μr] if pr ≥ 1/2

μr(2 − μr) if pr < 1/2,
(11)

(see Section 2 of the SM for the full derivation, as well as a graphical illustration). This
parabolic choice originates a new regression model, hereafter denoted by EFDReg with
parabolic constraints (EFDRegP), by assuming that the responses are independently
distributed as EFD(·;μi,p, α+, ẇ), where

ẇr = wr

q(μr)
, r = 1, . . . , D. (12)

As shown in Figure S2, the trade-off for the smoothness of the new proposal is that it
cannot cover the whole parameter space, thus resulting in a slightly less flexible model.
Though note that, in our experience both in simulation studies and in real data analyses,
the parabolic approximation q(μr) shows a behavior comparable to the piecewise linear
function m(μr), except for the case of extreme values for w under the piecewise linear
function data generating mechanism. However, we investigated the possibility of more
sophisticated approximations, such as piecewise polynomial functions. The problem is
not trivial. One has to find the uniformly highest piecewise polynomial, which is at
the same time everywhere differentiable, nonnegative, and below the piecewise linear
natural constraint. We proved that a solution exists for the piecewise parabolic case
(see Section 3 of the SM, where further comments as well as a graphical illustration are
reported). Thus, this solution can be adopted if one is particularly concerned with this
type of flexibility, though with some additional computational burden. An analysis of
the proof used to derive the piecewise parabolic function highlights that no uniformly
optimal solution can be expected to exist for higher order piecewise polynomials.

To achieve a variation independent parameter space, all the above parametrizations
are based on the choice of letting the wj ’s vary with covariates and the pj ’s be fixed,
as anticipated in Section 2.2. Obviously, the constraints imposed by variation indepen-
dence, namely pjwj < μj , could be fulfilled by a variety of different modeling choices
for pj and wj as functions of μj , the simplest other choice being to fix the wj ’s and
let the pj ’s vary. Although this choice is certainly possible within our methodology,
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and may be adequate in some specific contexts, we believe that it is generally more
appropriate to fix the pj ’s and we stick to this choice in the present paper. Indeed, often
latent groups of fixed sizes are present, with possibly different behaviors with respect
to covariates. To better exemplify the implied differences between the two frameworks,
consider the simple case when the overall mean μj of the j-th element goes to zero. It
seems reasonable to expect that, in this case, all the group means tend to zero, which
is exactly what happens when the wj ’s are let free, as all the wj ’s then tend to zero.
Conversely, by fixing the wj ’s, μj → 0 has the implication that pj → 0, that is, one
group must vanish. This seems a less common scenario. Analogous remarks apply to
the case μj → 1.

The above EFD-based regression models only regress the mean response onto covari-
ates. However, the variances of the responses are functions of the corresponding means,
thus they are indirectly modeled as functions of covariates too. In fact, a natural form
of heteroscedasticity is present, which accounts for the fact that the variance of Yij is
strictly dependent on its mean μi; its maximum being μij(1 − μij). However, it is pos-
sible to directly model the variance by letting α+ depend on covariates. Indeed, α+ is
a precision parameter, as the variance can be easily shown to be a decreasing function
of α+. In particular, a regression model for α+ can be defined as:

h(α+
i ) = xᵀ

i γ, (13)

where h(·) is a strictly monotone function from R
+ to R, usually the logarithm, and γ is

a vector of regression coefficients. There may also be specific contexts where it may be
desirable to model the weights pj ’s and even the group departures wj ’s as functions of
covariates. Again, this can be easily accommodated within the EFD regression model.

Finally, it is important to underline that the identifiability of the EFD distribution
implies that the EFD-based regression models are identifiable under the necessary con-
dition that the design matrix has full rank. This is a rather exceptional property for a
mixture model, which greatly helps in interpreting the parameters and, simultaneously,
in avoiding computational difficulties such as label-switching issues. Below, we provide
an identifiability result for the EFDReg model. We assume for simplicity that only the
mean depends on covariates. However, the result can be analogously proved for the
EFDRegP model and easily extended to the general case where some other parameters
are modeled as functions of covariates (see Section 4 of the SM for the proof).

Proposition 3.1. Consider a vector (Y1, . . . ,Yn)ᵀ of independent response variables
Yi ∼ EFD(μi,p, α+, w̃), i = 1, . . . , n. Suppose that

μi = g(xᵀ
i β1, . . . ,xᵀ

i βD−1),

where xi is a covariate vector of dimension T +1 ≤ n, and g(·) is an invertible function
from R

D−1 to SD. Let us denote by EFDReg(η), where η = (β1, . . . ,βD−1,p, α+, w̃)ᵀ,
the corresponding regression model, and let Y ∼ EFDReg(η) and Y′ ∼ EFDReg(η′).
Then, if the design matrix X is of full rank (T + 1), Y ∼ Y′ if and only if η = η′.
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4 EFD and discrete compositional data
In this section we briefly point to some possible further uses of the EFD not directly
related to continuous compositional data. We discuss them in this paper to better
highlight the potential of the EFD model, as also suggested by a referee. The EFD may
be considered as a prior distribution for the probability vector of a multinomial model,
which can be viewed as a distribution for discrete compositional data, thus generalizing
the usual Dirichlet prior. It can be shown that the EFD prior is still conjugate with a very
simple posterior expression. Specifically, let us consider a sample ti (i = 1, . . . , n) whose
elements are drawn independently from a multinomial with D categories and parameters
ni and π = (π1, . . . , πD)ᵀ, denoted by Mult(ni,π). If π is given an EFD(α, τ ,p) prior
distribution, then it can be shown that the posterior π | t1, . . . , tn is an EFD(α +
t+, τ ,p∗/p∗+), where t+ = (t+1 , . . . , t

+
D)ᵀ, t+j is the total count of the j-th category,

p∗j = pj
(αj + τj)[t

+
j ]

(α+ + τj)[t+]α
[t+j ]
j

,

p∗+ =
D∑

j=1
p∗j , t+ =

D∑
j=1

t+j , and α[y] = Γ(α+y)/Γ(α). Thus, in the posterior the hyperpa-

rameter α is updated with the same simple mechanism of the parameter of a Dirichlet
prior. Data also update the mixing weights p∗/p∗+. In particular, each weight p∗j/p∗+ de-
pends increasingly on the corresponding t+j , given the other t+r , r �= j (r, j = 1, . . . , D).

Moreover, the EFD distribution may provide a relevant contribution also in the
analysis of multivariate count data, that can be thought of as discrete compositions
summing to a fixed integer. This can be fulfilled via a compound approach that imposes a
proper simplex distribution (i.e., a prior distribution) on the parameters of a multinomial
model (as discussed above), but focusing on the resulting predictive distribution to
model data. A Dirichlet prior is a popular choice leading to the well-known Dirichlet-
multinomial (DM) distribution. The DM is a widespread and more flexible alternative
to the multinomial distribution. Specifically, if T = (T1, . . . , TD)ᵀ follows a multinomial
distribution with parameters n and π = (π1, . . . , πD)ᵀ, and π ∼ Dirmp(μ, α+), then the
DM(n,μ, α+) has probability mass function:

fDM(t;n,μ, α+) = n! Γ(α+)
Γ(n + α+)

D∏
r=1

Γ(tr + μrα
+)

tr! Γ(μrα+) . (14)

By compounding the multinomial with an EFD distribution, an EFD-multinomial dis-
tribution EFDM(·;n,α, τ ,p) is obtained. As a consequence of the Dirichlet mixture
structure in Equation (4) of the EFD, the new model can be written as an analogous
structured finite mixture with DM components:

fEFDM(t;n,α, τ ,p) =
D∑

r=1
prfDM(t;n,λr, α

+ + τr), (15)
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where λr is given by (5). A detailed analysis of the properties of this distribution goes
beyond the scope of the paper. Here we only highlight that this model can be used as
response distribution in a regression framework. To this end, it is convenient to derive
the mean vector of the EFDM distribution, which will then be linked to covariates. As
the mean of the DM(·;n,μ, α+) is nμ, the EFDM mean is n

∑D
r=1 prλr, thus being

proportional to the EFD mean (6). It follows that a mean-based reparametrization
strategy similar to the one proposed for the EFDReg model (see Sections 2.2 and 3)
can be adopted to define an EFDM regression model, keeping a similar interpretation
of parameters and component specific regressions.

5 Inferential issues
To obtain estimates of the unknown parameters of the DirReg, EFDReg, and EFDRegP

models we favor a Bayesian approach. This choice is mainly motivated by the difficulty,
both computational and analytical, of likelihood-based inferential approaches in dealing
with complex models such as mixtures. Conversely, the finite mixture structure of the
EFD distribution can be advantageously treated as an incomplete data problem within
the Bayesian paradigm (Frühwirth-Schnatter, 2006). Monte Carlo (MC) methods are
particularly suited for dealing with mixture models. Among these methods, a recent
solution is the Hamiltonian Monte Carlo (HMC) algorithm (Neal, 1994), a generaliza-
tion of the Metropolis algorithm which combines Markov Chain Monte Carlo (MCMC)
and deterministic simulation methods (for details on HMC and its implementation see
Section 7.1 of the SM).

The posterior distributions of the unknown parameters are simulated based on full
likelihood and prior distributions, which lead to the following full joint distribution:

n∏
i=1

f∗(yi;η) π(η),

where f∗(·; ·) denotes the p.d.f. of the assumed distribution (Dirichlet or EFD), η =
(β1, . . . ,βD−1,p, α+, w̃)ᵀ is the vector of all the unknown parameters, and π(η) is
its prior distribution. Regarding priors’ choice, we take advantage of the variation-
independent parameter space and suppose prior independence, that is:

π(η) = π(β1, . . . ,βD−1)π(p)π(α+)π(w̃).

Moreover, we adopt non- or weakly-informative priors to induce minimum impact on
the posteriors (Albert, 2009). In particular, we select a multivariate normal with zero
mean vector and diagonal covariance matrix with large values of the variances σ2

j as
non-informative prior for the regression parameters βj (j = 1, . . . , D−1). If the precision
parameter α+ is also regressed onto a set of covariates, an equivalent non-informative
multivariate normal prior (with variances τ 2) is set for the regression coefficients γ.
Otherwise, the precision parameter α+ follows a Gamma(g, g) distribution, with g small
enough to induce a large variability. Moreover, we adopt a Uniform(0, 1) prior for wN

j ,
namely the normalized version of wj , j = 1, . . . , D, which is w̃j for the EFDReg model
and ẇj for the EFDRegP model (see Formulas (8) and (12), respectively).
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The elicitation of a prior for the weights p is a more critical task. Indeed, a standard
choice, such as the uniform distribution corresponding to a Dirichlet with hyperparam-
eters all equal to one, implies that, with probability one, all the D possible components
of the mixture defining the EFD distribution are present. The same holds true by adopt-
ing any absolutely continuous (with respect to the Lebesgue measure) distribution on
the D-dimensional simplex. On the contrary, as stressed in Section 2, we think it is
an important element of flexibility to let the number K (2 ≤ K ≤ D) of the mixture
components (i.e., the number of non zero weights pj ’s) to be freely selected within the
model. Incidentally, notice that our model can display up to D components, where D
coincides with data dimensionality. Thus, we will endow K with a prior distribution, so
that its value may be inferred by inspecting the corresponding posterior. In addition,
since the number of modes of the distribution is a function (also) of K, this number
will be random in our framework, and may be therefore inferred from data. This is
relevant from a theoretical, computational, as well as applicative point of view. In par-
ticular, according to our experience, when the real number of clusters is lower than
D, convergence problems in posterior simulation algorithms arise, leading to extremely
dispersed posterior distributions. Therefore, we decided to devise a general probabilistic
scheme generating prior distributions which randomly select the clusters to be included
in the model. Incidentally, note that the constraint K ≥ 2 has been imposed to keep
identifiability of the model, as mentioned in Section 2.1. Further details are captured
below.

A general way to define such a scheme is to first extract the number of clusters
according to a discrete random variable K with values in {2, . . . , D}. Here, a standard
choice is the uniform distribution, but alternatives may be easily implemented if prior
information is available. Then, conditionally on K, the probability of including a specific
set of clusters has to be defined, that is we need to express a probability measure over
the unordered sets GK composed by K distinct elements chosen from {1, . . . , D}. In the
absence of prior information on the probabilities of inclusion of the different clusters, one
can treat them symmetrically. Therefore, a non informative prior is obtained assuming
a uniform distribution on GK . Specifically, we have:

P (GK = {i1, . . . , iK}) = 1(
D
K

) , (16)

where the ij ’s are all distinct with range {1, . . . , D}. In this case it can be proved that
the probability that GK includes the generic i-th cluster is K/D. Although, in some
contexts, prior information may be available on the probability that each cluster is
present in the mixture. One way to incorporate this information in the prior is to express
probabilities 0 < θr < 1, with

∑D
r=1 θr = 1, which quantify the relative propensity of

each cluster to enter the mixture. We then propose a natural probabilistic scheme to
sequentially sample the K clusters, which can be interpreted as follows (for a formal
definition see Section 6.1 of the SM). Consider a population formed by D groups, the
r-th group having frequency θr. Then, choose the first K distinct groups extracted from
an i.i.d. sample of this population. Interestingly, if we select that the θr’s all equal (thus,
equal to 1/D), we obtain for Gk the uniform non-informative distribution in (16). The
latter is therefore a special case of the general scheme here introduced.
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The prior for the weights p is then completed by choosing, conditionally on K and
on GK , a distribution for the selected mixing weights on the K dimensional simplex,
the standard non-informative choice being the uniform distribution.

In applications we found it convenient to allow K to also take the value 1, in which
case the model is set to coincide with the DirReg model. Even though this choice leads
to loss of identifiability, it is computationally and inferentially highly beneficial. Indeed,
by so doing we include the DirReg model as a particular case of the EFDReg model,
and can give positive prior probability to it. Please note that in absence of covariates,
the Dirichlet distribution is a particular case of the EFD, namely Dirmp(·;μ, α+) =
EFD(·;μ,p = μ, α+, w̃r = 1/(1 + α+), r = 1, . . . , D) (see Section 2.1). Instead, the
DirReg model is not included in the EFDReg, unless p is forced to depend on covariates
through the same regression used to model μ. In addition, it can be shown that in
this new setting, non-identifiability is restricted to those very special configurations of
regression coefficients and covariate values leading to μi = μ for every i = 1, . . . , n, and
therefore it is practically irrelevant. The above described choice will be made in the
following simulations and application, together with uniform priors on K, on GK (see
Formula (16)), and on the selected pr’s.

However, this prior can face computational inefficiency for large values of D, as the
number of possible clusters to be considered increases exponentially with D. Therefore,
we devised a further new prior which scales well with D, although it is not as general and
flexible as the original one. Essentially, we jointly select K and the set of clusters GK by
simply drawing i.i.d. Bernoulli random variables Bi ∼ Bin(1, θ), i = 1, . . . , D, so that
cluster i is included if Bi = 1. As this mechanism allows for the possibility of choosing
K = 0 (i.e., no cluster), to force the presence of at least one cluster we slightly modify
it by first including a cluster chosen at random. A more precise formulation is given
in Section 6.2 of the SM, where we also prove that the new prior is a particular case
of the original prior, obtained by assigning to K a (shifted) binomial distribution and,
conditional on K, a uniform distribution to GK . Notice also that the parameter θ, which
determines the new prior, can be chosen by simply fixing the expected (prior) number
of clusters. This new prior allows convergence of algorithms even for large values (up to
100) of D. However, the involved computational cost rapidly increases with D and with
the larger sample sizes required to reliably estimate the consequent growing number
of parameters (for example, a value of D = 100 involves hundreds of parameters). A
simulation study performed with n = 500 showed reliable results with D up to 25 (see
Section 10 of the SM for details).

In conclusion, the two EFD-based regression models are summarized by the directed
acyclic graph (DAG) in Figure 1. The observed variables, the random variables (includ-
ing latent variables), and the hyperparameters of the prior distributions are represented
as rectangles, non-filled circles, and filled circles, respectively. The Zi are the latent
membership variables of the mixture components. Moreover, the red dashed elements
are optional and highlight the possibility of enriching the model with a regression for
the precision parameter as in Equation (13). In this case, for ease of reading, we omitted
to add the subscript i to α+ and to place it inside the thick rectangle.
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Figure 1: DAG for EFD-based regression models. Observed variables (rectangle-shaped
nodes), random variables including latent variables (non-filled circle-shaped nodes), and
fixed hyperparameters (filled circle-shaped nodes) are represented. Red dashed edges
and red nodes represent optional elements to account for a regression model for the
precision parameter α+.

6 Simulation studies
To compare the performances of the EFDReg, EFDRegP, and DirReg models, we
simulated a variety of scenarios that cover many potentially challenging problems,
among which are multi-modality, presence of heavy tails, outliers, and latent groups.
In what follows, we illustrate the samples’ simulation schemes and the main infer-
ential results for each scenario. We take advantage of the HMC algorithm for esti-
mating the vector of unknown parameters η, which varies according to the consid-
ered model. More specifically, in the DirReg model η = (β1, . . . ,βD−1, α

+)ᵀ, whereas
in the EFDReg model η = (β1, . . . ,βD−1, α

+,p, w̃)ᵀ, and in the EFDRegP model
η = (β1, . . . ,βD−1, α

+,p, ẇ)ᵀ. For the sake of simplicity, we shall denote the normal-
ized version of w by wN , thus having wN = w̃ or wN = ẇ in the EFDReg and in
the EFDRegP models, respectively. Each scenario is replicated 200 times to obtain MC
measures regarding the estimation performances, such as MC estimators’ mean, their
root mean squared errors (rMSEs), and the coverage level of the 95% credible sets (CSs).

The algorithm is implemented via the Stan modeling language (Stan Development
Team, 2016). Details on the Stan implementation and on convergence diagnostics can
be found in Section 7.1 of the SM. Moreover, Stan codes for the described/proposed
models are available upon request to the authors.

For space constraints in the next subsections we report brief comments on all con-
sidered scenarios, whereas a deeper analysis is devoted to only a few cases. Full details
and a self-contained presentation of results can be found in Sections 7.3–7.9 of the SM.
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6.1 Fitting studies
First, some fitting studies are considered by simulating data from the DirReg (sce-
nario (i)), EFDReg (scenario (ii)), EFDRegP (scenario (iii)), and the additive logistic-
normal (ALN) (Aitchison, 2003) (scenario (iv)) regression models. The objective of
these studies is to analyze the goodness of fit and estimates of regression coefficients
of each model under different data generating mechanisms. The sample size is set to
n = 150, and the multivariate response lies on the 3-part simplex (so that results are
easier to be visualized). In scenarios (i)–(iii), we regress the mean (see Equation (9))
onto a quantitative covariate X, uniformly distributed in (−0.5, 0.5) with regression
coefficients set equal to β10 = −1, β11 = 1.5, β20 = 0.5, and β21 = −3. In scenario (i),
the response is Dirichlet distributed with precision parameter α+ = 50. In scenarios (ii)
and (iii) (EFDReg and EFDRegP respectively), the remaining parameters of the models
are fixed equal to α+ = 50, p = (0.5, 0.3, 0.2)ᵀ, and wN = (0.6, 0.2, 0.9)ᵀ. In scenario
(iv), data are generated from an ALN regression model, that is(

log
(
Yi1

Yi3

)
, log

(
Yi2

Yi3

))ᵀ
∼ N2

((
1 + 2xi

0.5 − 3xi

)
,

[
1.5 2
2 4

])
. (17)

Hereafter, the goodness of fit of each model will be quantified through the Watanabe-
Akaike information criterion (WAIC) (Watanabe, 2010; Vehtari et al., 2017). Models
with better fit are associated with smaller WAIC values (see Section 7.2 of the SM for
more details). The WAIC values of all models in scenario (i) are almost identical, despite
the data generating mechanism should favor the DirReg model. The precision of all
parameter estimates is very similar among competing models as well, and the regression
curves are almost completely overlapped. The posterior mode of the discrete parameter
K is equal to 1 under both the EFDReg and EFDRegP models, thus indicating that
both models adapt to data without overfitting (see Section 7.3 of the SM).

Focusing on scenario (ii) (EFDReg generating model), it is worth noting the pres-
ence of clusters characterizing the response (Figure 2). It must also be underlined that
the chosen parameters’ configuration results in a very extreme location of one cluster,
namely the third one corresponding to wN

3 = 0.9. The purpose of this choice is to test
the EFDRegP model’s behavior in a case which is theoretically known to be most critical
for such a model given its parameter space constraints. Table 1 shows that the EFDReg
model provides very good estimates of all parameters (smallest biases, smallest rMSEs,
and highest coverages) together with (by far) the lowest WAIC in all replications. More-
over, coherently with the data structure, the posterior distribution of K is degenerate
at 3. On the contrary, the EFDRegP model fails to fully capture the data pattern (the
posterior mode of the number of mixture components is equal to 2). However, it still
performs substantially better than the DirReg model, as highlighted by Table 1 and
Figure 2. Note also in Figure 2 the peculiar and rather extreme behavior of the third
component of the model (red dotted lines in center and right panels).

As for scenario (iii), where data are generated from the EFDRegP model, both the
EFD-based regression models use three mixture components to properly fit the data
in almost all replications (see Section 7.5 of the SM). Overall, the EFDRegP produces
better fitting and estimates, but the discrepancy with respect to the EFDReg is not as
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Figure 2: One randomly selected replication from the EFDReg fitting study (scenario
(ii)). Estimated EFDReg (red), EFDRegP (blue), and DirReg (black) models. Solid
curves refer to μ. Regression curves for λ1 (dashed), λ2 (dot-dashed), and λ3 (dotted)
are present only if the corresponding components are selected by the model.

DirReg EFDReg EFDRegP

Parameter MC mean rMSE coverage MC mean rMSE coverage MC mean rMSE coverage
β10 = −1 −0.490 0.516 0 −1.008 0.077 0.985 −1.751 0.773 0.07
β11 = 1.5 −0.328 1.853 0 1.504 0.141 0.96 1.081 0.522 0.6
β20 = 0.5 0.562 0.126 0.8 0.503 0.071 0.935 −0.299 0.817 0.06
β21 = −3 −3.157 0.354 0.915 −3.023 0.11 0.95 −2.843 0.276 0.685
α+ = 50 3.358 46.644 0 50.594 4.412 0.955 7.940 42.11 0
K — 3 (100%) 2 (77%)
Mixture
comp.

— — 2 and 3

WAIC −544.440 (0%) −1127.342 (100%) −736.678 (0%)

Table 1: Results from the EFDReg fitting study (scenario (ii)). MC means, rMSEs,
and coverage probabilities under each model are reported. For the parameter K, the
posterior mode together with its posterior probability (in parenthesis) and the chosen
components when the mode is less than D = 3 are reported. Last row shows the average
WAIC and the % of times that model was the best model.
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Figure 3: Correlation coefficients of the fitted DirReg (dashed lines) and EFDReg (solid
lines) models as a function of the continuous covariate X in fitting scenario (iv). Each
point refers to a correlation computed on a sample from the ALN model for a fixed
value of X.

large as in the previous (quite extreme) scenario (ii). The DirReg produces substantially
poorer results than the other two models. We highlight that in both scenarios (ii)
and (iii), the DirReg model displays particular difficulties in estimating the regression
coefficients (namely β11 and β21).

In scenario (iv), all three models adequately capture the pattern of dependence
between response variables and the covariate, despite the regression implied by the
ALN model is quite different from the regression implied by the three Dirichlet-based
models. Though, the EFDReg and EFDRegP models show better fits and predictive
ability than the DirReg model (see Section 7.6 of the SM). Additionally, the ability
of the EFDReg model (the EFDRegP model giving similar results) in recovering the
pattern and the sign of the correlation coefficients between the compositional variables
is assessed. Figure 3 shows the correlation coefficients of the fitted DirReg (dashed
line) and EFDReg (solid line) models as the continuous covariate X varies. The points
correspond to pairwise sample MC correlation coefficients relative to ALN-generated
data given X. Interestingly, the EFDReg model produces a very accurate fitting unlike
the DirReg model, and it succeeds in identifying positive correlations (see center panel
of Figure 3).
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6.2 Linear predictor misspecification and latent groups
The second simulation study aims at exploring the presence of latent structures in
the data. We focus on two different cases: The first case, scenario (a), considers a
latent (unobserved) covariate (linear predictor misspecification), whereas the second
case, scenario (b), assumes a finite mixture of two Dirichlet components with the same
mean, but different precision parameters. In scenario (a), the additional covariate has
been included in the data generating process, but omitted in all three regression models.
In particular, we replicated the generating mechanism of scenario (i) by adding a latent
dichotomous covariate, whose categories have relative frequencies of 0.3 and 0.7. The
additional regression coefficients are set equal to β12 = 4 and β12 = 2.5 (scenarios (a.1)
and (a.2), respectively) and β22 = 2. Here we comment on scenario (a.1), but results
from scenario (a.2) are consistent, as illustrated in Section 7.7 of the SM, where full
details on both scenarios are presented.

The presence of latent variables in data is particularly challenging for the DirReg
which, in fact, shows by far the worst adaptation to data (WAIC equal to −451.0).
Conversely, the EFDRegP model provides a slightly better fit to data (WAIC equal to
−848.8) than the EFDReg one (WAIC equal to −819.0), and results show that it is
the preferable model in 74.5% of replications. Indeed, the latent covariate affects the
estimates of regression coefficients and precision parameter of all models (see Table
S6). However, the EFDReg and EFDRegP models recognize the presence of two latent
groups, which can not be captured by the DirReg model (see Section 7.7 of the SM).

As for scenario (b), the regression coefficients for the mean vector are the same as
used in scenario (i). The first DirReg component is characterized by a precision α+

1 = 50
and a mixing weight of 0.6, whereas the second by a smaller precision α+

2 = 3.5 and a
mixing weight of 0.4, thus inducing heavy tails. Note that all data share the same re-
gression curve, which is an assumption in agreement with the DirReg regression model.
Despite that, all three models produce reliable estimates of the regression coefficients
(see Table 2). In addition, the EFD-based regression models better capture the inflated
variability through their mixture components, thus providing a better WAIC (see Sec-
tion 7.8 of the SM).

6.3 Outliers
In a compositional framework, (multivariate) outliers can typically arise due to measure-
ment errors, heavy tails, or multi-modality. To study this aspect, we generated outliers
through the perturbation operator, which is the compositional version of the addition
operation, and is defined as y⊕ δ = C ((y1 · δ1, . . . , yD · δD)ᵀ) ∈ SD, where y and δ are
vectors on the simplex playing the roles of perturbed and perturbing elements, respec-
tively. Moreover, the closure operation C(·) is defined as C(q) = (q1/q+, . . . , qD/q+)ᵀ

with q+ =
∑D

j=1 qj and qj > 0, j = 1, . . . , D. The neutral element of the perturba-
tion operation is δ = (1/D, . . . , 1/D)ᵀ, so that if element yj is perturbed by δj greater
(lower) than 1/D, the perturbation is upward (downward). In this scenario, data are
generated from a DirReg model with the same β1,β2, and α+ parameters as in scenario
(i).
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DirReg EFDReg EFDRegP

Parameter MC mean rMSE coverage MC mean rMSE coverage MC mean rMSE coverage
β10 = −1 −0.994 0.1 0.8980 −0.949 0.126 0.8673 −0.950 0.118 0.8520
β11 = 1.5 1.469 0.377 0.8724 1.329 0.429 0.8112 1.295 0.475 0.7755
β20 = 0.5 0.505 0.073 0.9592 0.506 0.073 0.9694 0.496 0.077 0.9235
β21 = −3 −3.008 0.274 0.9490 −2.901 0.277 0.9184 −3.015 0.263 0.9082
α+

1 = 50 6.538 7.626 7.690
α+

2 = 3.5
K — 3 (76.02%) 3 (79.08%)

WAIC −769.648 (8%) −790.309 (38%) −790.581 (54%)

Table 2: Results from the latent groups study (scenario (b)). MC means, rMSEs, and
coverage probabilities under each model are reported. For the parameter K, the posterior
mode together with its posterior probability (in parenthesis) are reported. Last row
shows the average WAIC and the % of times that model was the best model.

Then, 15 observations (i.e., 10% of the data) are perturbed according to two different
schemes. In the first one (scenario (I)), we perturb observations with covariate X greater
than its third tertile, whereas in the second scenario (scenario (II)), we perturb uniformly
over the range of X. In both cases, we use δ = (0.82, 0.09, 0.09)ᵀ (complete results are
given in Section 7.9 of the SM).

As expected, since the chosen δ value highly perturbs the first element of the com-
position upwards, all three models show some difficulties in estimating β10 and β11
regression coefficients, with the EFDReg displaying worse performances particularly for
β11. However, both EFD-based regression models reach a substantially better and com-
parable fit in terms of WAIC (lower than −800 in both cases, versus a value around −666
for the DirReg) and a higher estimate of the precision parameter α+. This is because
the EFD-based regression models can recognize two sub-populations, namely the main
data body and the outlying observations. In particular, the first mixture component is
dedicated to the outlying observations in coherence with the choice of δ, which perturbs
upward only the first element of the composition. Moreover, the estimated value of the
mixing weight p1 takes values between 0.1 and 0.2 for both the EFD-based models under
both scenarios, which is close to the true proportion of outliers.

These remarks are further confirmed by inspecting the presence of possibly influential
observations through the conditional-predictive ordinate (CPO) diagnostic (Gelman
et al., 2013). CPO is a Bayesian measure used to detect unlikely observations given the
fitted model, which is defined as the predictive density of the i-th unit once it has been
excluded from the dataset (see Section 7.2 of the SM for details). Figure 4 compares the
estimated CPOs under each model for the 15 outlying observations of scenarios (I) and
(II). Both EFD-based regression models show a general better fit to outliers since their
estimated CPO values are almost always much greater than the DirReg’s one. This also
suggests that outliers are less influential under the two former models.

In summary, all considerations drawn in this section support using the EFDReg
and EFDRegP models, as they do not perform worse than the DirReg model when the
latter is true, while displaying a clearly superior behavior in all other cases. The two
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Figure 4: Distribution of the estimated CPO values by model (shapes and colors) for
the outlying observations in a randomly selected replication from the outlier study (left
panel: Scenario (I); right panel: Scenario (II)). X-axis reports the corresponding values
of the covariate.

new EFD-based regression models show comparable performances except in extreme
cases (scenario (ii) of the fitting study in Section 6.1). We thus generally prefer the
EFDRegP model due to its smooth regression functions, even though, in practice, both
models can be estimated and compared in any single application.

7 Application to plants data
We further studied the performance of our models using a real data application where the
proportion of biomass in roots (RMF), stems (SMF), and leaves (LMF) were evaluated
on a sample of n = 500 plants (Poorter et al., 1995). Douma et al. (2019) used this 3-part
composition to illustrate the DirReg model. The goal of the original study was to detect
differences in the composition between slow- and fast-growing species, while considering
different nitrate supply levels (high or low). For this reason, Poorter et al. considered two
different species of plants: Deschampsia flexuosa (D. flexuosa) and Holcus lanatus (H.
lanatus), that are slow- and fast-growing species, respectively. Replicated plants were
harvested at different times (after 21–49 days) and biomass was recorded, including the
total amount of biomass (TDM). The latter is the size of the composition, which is not
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Figure 5: Ternary diagram of plants data. Black square refers to predicted mean under
EFD models, whereas black circle and triangle represent EFDs λ1 and λ3, respectively.

constant for every plant. Figure 5 shows the ternary diagram of the data, with shapes
and colors representing different combinations of species and nitrate supply. We can
see that almost every plant has a mild-to-low amount of biomass attributable to its
stems (10–30%), whereas the remaining biomass composition depends on the specific
combination of species and nitrate supply level. For example, H. lanatus plants treated
with low nitrate supply are characterized by a larger proportion of roots biomass, while
D. flexuosa plants with high nitrate supply are characterized by a higher proportion of
leaves biomass.

We first estimated the parameters without considering any covariates (scenario A).
Note that in this case the two EFD models are equivalent apart from a slightly smaller
parameter space for the EFD with parabolic constraints, thus we only discuss the EFD
model. From Table 3, we can see that the EFD model detects two latent groups of
similar size (p1 ≈ 0.54 and p3 ≈ 0.46). Plotting the estimated λ1 and λ3 in the ternary
diagram in Figure 5, we can describe these groups as the H. lanatus plants treated
with low nitrate supply and the D. flexuosa plants treated with high nitrate supply,
respectively. This shows how the EFD can properly detect sub-populations even without
explanatory variables, leading to a far better WAIC than the Dirichlet. In addition, it is
interesting to analyze how the two models capture correlations among the three biomass
proportions (see Table 4 where sampling and estimated correlations are reported). The
Dirichlet model produces substantially worse estimates than the EFD. In particular, and
different from the EFD, it completely fails to recognize the positive association between
LMF and SMF, and it highly overestimates the two remaining (negative) correlations.
Finally, we graphically compare the fitting of uni- and bi-dimensional densities (Figures
S21–S23). The ability of the EFD model to properly capture bi-modality when present
is apparent, but a substantial better fit than the Dirichlet is provided in the unimodal
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DirReg EFDReg
Parameter Mean 95% CS Mean 95% CS

μ1 0.448 (0.441, 0.455) 0.452 (0.444, 0.460)
μ2 0.168 (0.163, 0.173) 0.163 (0.160, 0.167)
μ3 0.384 (0.378, 0.391) 0.385 (0.378, 0.391)
α+ 42.24 (38.605, 45.936) 91.217 (82.744, 99.973)
p1 — — 0.541 (0.489, 0.593)
p2 — — — —
p3 — — 0.459 (0.407, 0.511)
wN

1 — — 0.298 (0.269, 0.327)
wN

2 — — — —
wN

3 — — 0.032 (0.006, 0.059)
K — 2 (89.35%)

Mixture components — 1 and 3 (87.98%)
WAIC −2729.4 −3096.3

Table 3: Plants data, no covariate case (scenario A). Posterior means and 95% CSs
of the parameters under the DirReg and EFDReg models. For the parameter K the
posterior mode, its posterior probability and the chosen components are reported.

LMF vs SMF LMF vs RMF SMF vs RMF
Sample 0.497 −0.949 −0.745
Dirichlet −0.355 (−0.361, −0.348) −0.711(−0.719, −0.705) −0.405 (−0.411, −0.398)

EFD 0.215 (0.153, 0.269) −0.905 (−0.916, −0.893) −0.601 (−0.651, −0.560)

Table 4: Plants data, no covariate case (scenario A). Sample correlations together with
posterior means (and 95% CSs in parenthesis) of estimated correlations.

cases as well. Note also the complete inadequacy of the latter in modeling positive
dependence between SMF and LMF.

We then extended the model in two directions. In the first (scenario B), we added
the logarithm of the size as covariate, to investigate whether big plants have a different
biomass composition than small plants. In the second (scenario C), we investigated the
dependence on time, and added one categorical covariate (namely the species) while
neglecting the second (nitrate level). From Table 5, it emerges that the EFDReg and
EFDRegP models provide similar estimates of the parameters and similar WAIC values.
Moreover, both models still recognize the presence of two (different) latent subpopula-
tions (see Figure 6). In particular, the EFD-based group regressions detect the latent
covariate (see Figure 6 where the model displays a quite remarkable fitting to high
and low nitrate cases). As a consequence, the WAIC of the EFD models results in much
smaller values than the DirReg one, and the estimate of the precision parameter is much
higher. Similar remarks apply to scenario B. See Section 8.2 of the SM for a complete
analysis of scenarios B and C.

Moreover, we considered the model used by Douma and Weedon, including the stan-
dardized time of harvest, its quadratic transformation, the logarithm of the size of the
composition, and several double and triple interaction terms as covariates (scenario D).
Furthermore, we included a regression on the precision parameter α+, adopting a log-
arithm link function as illustrated in Section 3 and priors specified in Section 5 for
regression coefficients γ. We modeled the precision parameter adopting the same vari-
ables chosen by Douma and Weedon, namely species, nitrate supply, standardized time
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DirReg EFDReg EFDRegP

Parameter Mean 95% CS Mean 95% CS Mean 95% CS
R

M
F Intercept −0.038 (−0.072, −0.004) −0.048 (−0.081, −0.015) −0.070 (−0.107, −0.033)

Species 0.426 (0.375, 0.477) 0.494 (0.445, 0.544) 0.508 (0.460, 0.555)
Time 0.172 (0.147, 0.197) 0.146 (0.122, 0.170) 0.144 (0.120 , 0.168)

SM
F Intercept −0.906 (−0.950, −0.862) −0.916 (−0.945, −0.888) −0.912 (−0.942, −0.883)

Species 0.144 (0.076, 0.212) 0.135 (0.089, 0.181) 0.133 (0.088, 0.178)
Time 0.064 (0.031, 0.098) 0.068 (0.045, 0.091) 0.068 (0.046, 0.090)
α+ 59.34 (54.19, 64.67) 124.91 (113.07, 137.25) 124.37 (112.67, 136.46)
p1 — — 0.453 (0.426, 0.484) 0.386 (0.335, 0.439)
p2 — — 0.547 (0.516, 0.574) 0.614 (0.561, 0.665)
p3 — — — — — —
wN

1 — — 0.236 (0.221, 0.252) 0.331 (0.309, 0.351)
wN

2 — — 0.050 (0.024, 0.078) 0.058 (0.024, 0.091)
wN

3 — — — — — —
K — 2 (100%) 2 (90.84%)
Mixture
compo-
nents

— 1 and 2 (99.995%) 1 and 2 (100%)

WAIC −3061.8 −3372.2 −3365.7

Table 5: Plants data with time and species as covariates (scenario C). Posterior means
and 95% CSs of the parameters under the DirReg, EFDReg, and the EFDRegP models.
Posterior means with associated 95% CSs not containing the zero are rendered in bold.
For the parameter K, the posterior mode, its posterior probability, and the chosen
components are reported.

Figure 6: Plants data with time and species as covariates (scenario C): D. flexuosa
plants. Fitted curves for the EFDReg (red), EFDRegP (blue), and DirReg (black) mod-
els. The curves refer to parameters μ (solid), λ1 (dashed), and λ2 (dot-dashed).
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of harvest, and the interaction term between time and species. Table S14 shows that
estimates of the regression coefficients are consistent across the three models. In partic-
ular, all the covariates introduced in the model provide a significant effect for at least
one element of the composition or for the regression of the precision parameter. This
is due to the variable selection performed by Douma and Weedon that we replicated.
Both EFD-based regression models detect two latent groups of similar magnitude.

Figure 7 plots the predicted precision parameter α+ as a function of the time of
harvest, distinguishing on the basis of species and nitrate supply (we only report the
EFDReg model as the EFDRegP is nearly identical). Since the curves are very different
and highly dependent on time, at least for H. lanatus, the importance of modeling α+

as a function of covariates is evident. Finally, we note that, even under scenario D,
where the presence of so many (properly selected) covariates makes likely the absence
of residual latent groups, the estimated precision is uniformly higher in the EFDReg
model than in the DirReg, leading to a better fitting.

We enriched the analysis of plants data by comparing the proposed models with
respect to the models proposed by Graf (2020) and Ankam and Bouguila (2019). Since
these competing models greatly differ from the DirReg and EFDReg models in terms of
regression structure, and inferential approach, we based the comparison on the predictive
ability of the models. Results are illustrated in Section 9 of the SM. Here we just remark
that the EFDReg model shows the best predictive ability in all scenarios.

Figure 7: Plants data with all covariates (scenario D). Predicted precision under the
DirReg (solid) and the EFDReg (dashed) models as function of time. Species and nitrate
supply differ in color.
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Finally, it is noteworthy that a numerical investigation (reported in Section 5 of the
SM) showed robustness in the inferential conclusions with respect to different choices of
the hyperparameter g appearing in the prior for the precision parameter α+, the prior
variance of the multivariate normal distributions for the regression coefficients, as well
as with respect to alternative non- or weakly-informative priors.

8 Concluding remarks
Since both the EFDReg and EFDRegP models represent a clear improvement over the
usual DirReg model, in future work we plan to extend them to further increase their
flexibility, fitting ability, and interpretation of more complex data patterns. A relevant
extension is the inclusion of random effects to allow for responses with a hierarchical
structure (typically measured longitudinally or clustered), so that within-subject corre-
lation can be handled. In some contexts the presence of values of the response on the
support boundary (i.e., zero values for one or more elements) is certainly a relevant
issue. Being continuous distributions, neither the Dirichlet nor the EFD can account for
the presence of these values. Thus, it seems useful to study an “inflated” version of the
EFDReg model obtained by introducing a discrete probabilistic scheme giving positive
mass to zero values.

Note that, in principle, to achieve an even stronger flexibility one could consider a
mixture of arbitrary Dirichlet regression models (i.e., where each component of the mix-
ture has parameters completely unrelated to the other components’ parameters). To the
best of our knowledge this framework has not been explored in the literature. Though
potentially interesting, this model faces severe estimation issues (going beyond the scope
of this work) due to substantial identifiability problems generating label switching dif-
ficulties and unreliable posteriors, as we could experience even in simple simulation
frameworks, as well as in application to real data. Furthermore, the general mixture
type of regression model usually separately models the component regressions which
display arbitrarily different dependencies on covariates. Therefore, unlike our model, it
is unable to provide an easily interpretable evaluation of the general impact of covariates
on the mean vector of the response variable.

As pointed to in Section 4, the potential of the EFDM distribution to analyze count
data in a regression context seems worth exploring. The resulting model should be
compared with the existing literature on the topic, which has recently become extensive
especially with applications to microbiome data (e.g., see Chen and Li (2013); Subedi
et al. (2020), and, for a Bayesian nonparametric approach, Ren et al. (2017)).

Finally, the use of the EFD as a prior for the weights of a generic mixture model
could be a further issue to be tackled.

Supplementary Material
Supplementary Material of “A new multivariate regression model for bounded responses”
(DOI: 10.1214/22-BA1359SUPP; .pdf). Section 1 describes the EFD tails’ behavior. Sec-

https://doi.org/10.1214/22-BA1359SUPP
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tions 2 and 3 illustrate the derivation of the EFDReg parabolic and piecewise parabolic
polynomial constraints, respectively. Section 4 provides proof of Proposition 1. Section
5 shows the results of the sensitivity analysis. Section 6 describes the general and simpli-
fied priors introduced for the cluster choice. Section 7 is devoted to a detailed description
of the simulation studies. HMC Stan implementation, model diagnostic tools and com-
parison criteria can be found in Subsections 7.1 and 7.2. Subsections from 7.3 to 7.9
include a self-contained presentation of all simulation results. Section 8 includes a fully
detailed description of the results concerning the application to plants data. Section 9
shows a brief comparison of our proposed model with competing models referring to
plants data. Finally, Section 10 shows the performance of the proposed EFDReg model
in the case of large values of D, through some simulation studies.
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