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1. Introduction

Nonlinear autoregressive (AR) processes have been extensively studied in the
literature; see Priestley [25], Tong [31], Tjøstheim [30], Fan and Yao [12] and Wu
and Shao [35], among others. To study such processes, one needs to deal with
two fundamental issues: stability and asymptotic theory. For the former, one
should develop sufficient conditions on the mechanism of the underlying process
so that it can have a stationary solution. The asymptotic theory is useful for
the related statistical inference. In this paper we shall consider both issues for
a general class of nonlinear AR(∞) models.

To fix the idea, we adopt the following setting. Let εt, t ∈ Z, be independent
and identically distributed (i.i.d.) random elements on the probability space
(Ω,F ,P). Consider

Xt = Fεt(Xt−1, Xt−2, Xt−3, . . .), t ∈ Z, (1)

where Fεt(x1, x2, . . .) = F (x1, x2, . . . ; εt) is a real-valued function and can be
viewed as the data generating mechanism of the process (Xt). We can view (1)
as an AR(∞) process. By Wu and Shao [35], for the special AR(1) process

Xt = Fεt(Xt−1), (2)

assuming that there exists x∗ such that E|Fε0(x∗)|p < ∞, p ≥ 1, and the con-
traction condition

L := sup
x �=x′

‖Fε0(x)− Fε0(x
′)‖p

|x′ − x| < 1, (3)

where ‖Z‖p = (E|Z|p)1/p, then there exists a stationary solution of the form

Xt = g(εt, εt−1, . . .) = g(ξt), (4)

where g is a measurable function and ξt = (εt, εt−1, . . .) is the shift process. See
Diaconis and Freedman [7] and Jarner and Tweedie [18] for related contribu-
tions. If condition (3) fails with L = 1, then (Xt) may not have a stationary
solution. A prominent example is the random walk Xt = Xt−1 + εt which has
L = 1. Shao and Wu [29] considered the AR(d) processes with finite lag d:

Xt = Fεt(Xt−1, . . . , Xt−d), t ∈ Z, (5)

and obtained a similar result: (5) has a stationary solution if

d∑
i=1

ai < 1, (6)

where ai ≥ 0 are Lipschitz constants: for all s1, . . . , sd;w1, . . . , wd:

‖Fεt(s1, . . . , sd)− Fεt(w1, . . . , wd)‖p ≤
d∑

i=1

ai|si − wi|.
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For the AR(∞) process (1), it turns out that, interestingly, contraction condition
like (3) may not be needed for stationarity. For example, consider the fractional
integration model

(1−B)dXt = εt, 0 < d < 1/2, (7)

where BXt = Xt−1 is the backshift operator. We can rewrite (7) in the form of
(1) with

Xt =
∑
k≥1

akXt−k + εt, where ak = − Γ(k − d)

Γ(k + 1)Γ(−d)
.

Then the Lipschitz constants (ak) for the corresponding linear function F have
sum

∑
k≥1 ak = 1, while (7) does have a stationary solution since 0 < d <

1/2. In Section 2 we shall study the stability problem for AR(∞) long memory
processes. Hence differently from (2), AR(∞) models can allow both short- and
long-range dependence.

For extension to spatial processes, we consider the simultaneous autoregres-
sive scheme

Xt = Gεt({Xt+v, v �= 0}), t, v ∈ Z
d, (8)

where Gεt(·) = G(·; εt) is a real-valued function. Let ηt = (εt−v, v ∈ Z
d). We say

that

Xt = g({εt−v, v ∈ Z
d}) = g(ηt), (9)

where g(·) is a measurable function, is a stationary solution if it satisfies the
relation (8). When d = 1, then (8) reduces to the two-sided AR(∞) process

Xt = Gεt(. . . , Xt−2, Xt−1, Xt+1, Xt+2, . . .). (10)

Differently from (1), the autoregressive scheme (10) allows non-causality. Prop-
erties for spatial processes are studied by Whittle [33] and Besag [3] among
others. Gaussian and linear spatial processes have been widely studied in the
literature. For linear processes Whittle [33] proposed ways to transform bilat-
eral models to unilateral ones so that results in time series can be applied. The
case with nonlinear processes is more challenging. Here, we will study stationary
distributions for bilateral models directly using an idea which is similar to loopy
propagation under a short-range dependence condition.

To perform statistical inference for the process (Xt) such as hypothesis test-
ing and construction of confidence intervals, we need to establish an asymptotic
theory. In particular we will present a central limit theorem and a Gaussian
approximation result. To this end, we need to measure the decay speed of
dependence. In this paper we adopt the framework of functional dependence
measures introduced by Wu [34] which is easy to work with for a broad class
of functions and enables us to obtain sharp approximation rate. The main task
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lies in building a convolution relationship between Lipschitz coefficients of Fεt(·)
and functional dependence measures of the underlying processes. See Section 3.1
for details.

Using the functional dependence decay results we can derive a CLT and a
quenched CLT for the stationary process, and a Gaussian approximation which
can be used in various applications such as change-point analysis. For the aug-
mented GARCH(1,1) model, Aue, Berkes and Horváth [1] obtained a Gaussian
approximation rate o(n5/12+ε), ε > 0. Using our result, we can derive a sharper
Gaussian approximation for both Model (1) and augmented GARCH(∞), and
our rate is optimal in view of the classical Gaussian approximation for i.i.d.
random variables by Komlós, Major and Tusnády [22].

The paper is organized as follows. In Section 2 we present sufficient condi-
tions for the existence of stationary distributions for both temporal and spatial
models. It turns out that, interestingly, our result can also be applied to random
coefficient models which are not in the form of (1); see Section 2.2 where the
augmented GARCH(∞) processes are discussed. In Section 3, we introduce func-
tional dependence measure and apply it to our models. Based on that we derive
the relationship of decay rate between coefficients and functional dependence
measure, and develop various asymptotic results. Proofs are given in Section 4.

2. Stationary distribution

In Section 2.1 we shall present sufficient conditions for the existence of sta-
tionary distributions of model (1) with short-range dependence. The theorem
is also applicable to random coefficient models; see Section 2.2. Section 2.3
(resp. 2.4) concerns long-range dependent processes (resp. simultaneous autore-
gressive schemes), while Section 2.5 deals with extensions to non-stationary
processes.

2.1. Short-range dependent AR(∞) processes

To state our main stability result for the process (1), we shall introduce a Lip-
schitz type condition. For a random variable Z, we say Z ∈ Lp, if ‖Z‖p :=
[E|Z|p]1/p < ∞.

Condition 1. (Stochastic Lipschitz Continuity). Assume that there exist con-
stants ak ≥ 0 k ∈ N, such that for all w = (w1, w2, . . .) and s = (s1, s2, . . .),
Fε0(w) ∈ Lp, p ≥ 1 and

‖Fε0(w)− Fε0(s)‖p ≤
∞∑
k=1

ak|wk − sk|. (11)

Definition 1. On a filtered probability space (Ω,F , (Ft)t∈Z,P), a process (Xt)
is said to be adapted, if for each t, Xt is Ft measurable.

From now on, always let Ft be the σ-field generated by ξt = (εt, εt−1, ...).



Stability and asymptotics for autoregressive processes 3727

Theorem 1. For (1), assume Condition 1 holds with p ≥ 1 and (ak)k≥1 satisfy

∞∑
k=1

ak < 1. (12)

Then there exists a unique strictly stationary solution in Lp adapted to (Ft)t∈Z.

To incorporate the case with 0 < p < 1, we need to slightly modify Condi-
tion 1.

Corollary 1. Let 0 < p < 1. Assume Condition 1 with (11) replaced by

E|Fε0(w1, w2, . . .)− Fε0(s1, s2, . . .)|p ≤
∞∑
k=1

ak|wk − sk|p. (13)

Further assume (12). Then (1) has a unique strictly stationary distribution in
Lp adapted to (Ft)t∈Z.

Example 1. Let Fε0(s1, s2, . . .) be Lipschitz continuous with constants hk(ε0),
namely,

|Fε0(s1, s2, . . .)− Fε0(w1, w2, . . .)| ≤
∞∑
k=1

hk(ε0)|wk − sk|. (14)

If hk(ε0) ∈ Lp, then we have (11) and (13) with ak = ‖hk(ε0)‖p
′

p , where
p′ = min(p, 1). For example, consider the infinite order bilinear process with
Fε0(s1, s2, . . .) = ε0 +

∑∞
i=1(ui + viε0)si, where ui, vi are real parameters, then

hi(ε0) = |ui + viε0|. Finite order bilinear processes are considered in Granger
and Andersen [16] and Rao and Gabr [27]. �

To study the existence of stationary solutions, we use the idea of backward
iteration, enlightened by the “coupling from the past” algorithm in Propp and
Wilson [26]. Traditionally forward iterations are considered. For the simple
Markov chain example (2), for convenience assume that 0 is in the state space,
one checks whether the forward iteration

X̃0 = 0, X̃t = Fεt ◦ . . . ◦ Fε1(X̃0) = Fεt(X̃t−1), t = 1, 2, . . . ,

converges weakly as t → ∞. If it converges weakly to a distribution π (say),
then π is a stationary distribution. For the backward iteration, we let

X
(t−n)
t = Fεt ◦ . . . ◦ Fεt−n+1(0) = Fεt(X

(t−n)
t−1 ), n = 1, 2, . . . ; X

(t)
t = 0, t ∈ Z.

Under suitable conditions on Fεt(·), X
(t−n)
t converges almost surely as n → ∞

and the limit, denoted by Xt, satisfies (2). For the AR(∞) process (1), we follow
a similar idea to generate the sequence. Let

X
(t)
t = 0, X

(t−n)
t = Fεt(X

(t−n)
t−1 , . . . , X

(t−n)
t−n , 0, 0, . . .), n = 1, 2, . . . . (15)
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Note that X
(m)
n has the same distribution as X

(m+k)
n+k . Under suitable conditions,

the sum
∑∞

n=1 |X
(t−n+1)
t − X

(t−n)
t | exists and thus X

(t−n)
t converges almost

surely to Xt (say) as n → ∞. In the proof of Theorem 1 we shall make the
latter idea rigorous.

2.2. Random coefficient models

Interestingly, our stationarity theory also applies to the following process

Xt = f0(εt−1, εt−2, . . .) +

∞∑
k=1

fk(εt−1, ..., εt−k)Xt−k, t ∈ Z, (16)

where εt are i.i.d. and {fk}k≥0 are real-valued functions.
Let Λ : R+ → R be an invertible function. Based on (16), we can define the

augmented GARCH process Yt by restricting fk(εt−1, ..., εt−k) to fk(εt−k) and
letting

σ2
t = Λ−1(Xt), Yt = σtεt, (17)

provided that Λ(x) is invertible; see Duan [10]. Augmented GARCH contains
many commonly used ARCH models.

Example 2. [28] considered the general form ARCH(∞) process: let ξt, t ∈ Z,
be i.i.d. nonnegative random variables and

ρt = β0 +

∞∑
k=1

βkξt−kρt−k, Yt = ρtξt, (18)

where the parameters βk ≥ 0, k ≥ 0. �
Example 3. Motivated by a Box-Cox transformation of the conditional vari-
ances, the power GARCH has the form Yt = σtεt with

σδ
t = α0 +

∑
i≥1

αiσ
δ
t−i +

∑
i≥1

βi|Xt−i|δ = α0 +
∑
i≥1

(αi + βi|εt−i|δ)σδ
t−i.

The lag one version was considered by Carrasco and Chen [5] and they studied
its moment and mixing properties. �
Example 4. [23] studied the Exponential GARCH Yt = σtεt with

log σ2
t = w+

∑
k≥1

βk(θεt−k + λ(|εt−k| −E|εt−k|)) +
∑
k≥1

αk log σ
2
t−k. �

Example 5. Ding, Granger and Engle [8] introduced the asymmetric power
ARCH (PARCH) Yt = σtεt with

σδ
t = α0 +

∑
i≥1

αi(|Xt−i| − γiYt−i)
δ +

∑
j≥1

βjσ
δ
t−i

= α0 +
∑
i≥1

[αi(|εt−i| − γiεt−i)
δ + βi]σ

δ
t−i. �
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See [10] and Aue, Berkes and Horváth [1] for other GARCH models. Aue,
Berkes and Horváth [1] derived Gaussian approximation for partial sum pro-
cesses. [17] used blocking technique to derive various asymptotic properties.
The stability and asymptotic properties for infinite lag Augmented GARCH
have not been discussed in the literature. Here we can tackle the latter problem
by using the similar method as for process (1).

Corollary 2. Assume that f0(ε0, ε−1, . . .), fk(ε1, ..., εk), k ≥ 1, are in Lp with
p ≥ 1, ∑

k≥1

‖fk(ε1, ..., εk)‖p < 1. (19)

Then process (16) has a unique Lp strictly stationary solution with form Xt =
h(εt−1, εt−2, . . .) where h is a measurable function. Moreover, the expectation

EXt =
(
1−

∑
k≥1

Efk(ε1, ..., εk)
)−1

E(f0(ε0, ε−1, . . .)).

Remark 1. Inequalities (12) and (19) can be viewed as contracting conditions.
In situations that they equal 1, extra assumptions are needed to guarantee a sta-
tionary solution; see Section 2.3. Such a process can be long-memory. �

For 0 < p < 1, we need a slight modification of condition (19) and consider
an approach similar to Corollary 1. Douc, Roueff and Soulier [9] used Volterra
expansion to establish the stationary distribution. Here we can deal with a more
general situation.

Corollary 3. If E|f0(ε0, ε−1, . . .)|p < ∞ and
∑

k≥1 E|fk(ε1, ..., εk)|p < 1, 0 <
p < 1, then there exists a stationary solution for (16) which has a finite pth
norm.

Remark 2. Notice that in Model (16), if all coefficients fk ≥ 0 for k ≥ 0, then
the stationary distribution for (16) is nonnegative. This is useful in checking
the existence of Λ−1(Xt), for example if Λ(x) = x, then for σ2

t = Λ−1(Xt), we
require Xt to be nonnegative. �
Example 6. For the ARCH(∞) model (18), we let in (17) Xt = ρt, εk = ξk and
fk(x) = βkx. Corollary 2 gives the sufficient condition for stationarity of (Yt):( ∞∑

k=1

βk

)
Eξ0 < 1.

The above condition is also proposed in Giraitis, Kokoszka and Leipus [13].
With the special structure (18), they apply the Volterra series expansion, which
is also used in subsequent works; see Kazakevicius and Leipus [21], Giraitis,
Leipus and Surgailis [14, 15] among others. In comparison, our treatment does
not rely on this special structure. Instead we use a convolution relation and
backward generation which can be applied to a broader class of nonlinear
models. �
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2.3. Long-range dependent AR(∞) processes

If condition (12) in Theorem 1 is violated and
∑∞

k=1 ak = 1, as the fractional
integration process (7) shows, a stationary solution can still possibly exist. For
convenience we still assume that 0 is in the state space. For process (1) define

X
(t)
t+k recursively:

X
(t)
t = 0, X

(t)
t+k = Fεt+k

(X
(t)
t+k−1, . . . , X

(t)
t , 0, . . .), k ≥ 1. (20)

Condition 2. There exists some p > 0 such that

∞∑
k=0

‖E
(
X

(−k−1)
0 |G−k+1

)
−X

(−k)
0 ‖p < ∞, where Gt = (εt, εt+1, . . .).

We can view Gt as a backward shift process. This condition can be interpreted
as that the cumulative influence of the initial state is finite. It holds for many
processes. Below we shall consider the example of random coefficient AR models.

Example 7. Let fk, k ≥ 0, be real valued functions with Ef0(εt) = 0. Consider
the process

Xt =
∑
k≥1

fk(εt)Xt−k + f0(εt). (21)

A special case of (21) is the bilinear model with fk(εt) = uk+vkεt, where uk, vk
are real parameters. Construct sequence (X

(t−n)
t ) by (20) based on (21):

X
(t)
t = 0, X

(t−n)
t =

n∑
k=1

fk(εt)X
(t−n)
t−k + f0(εt).

Thus the difference follows

E(X
(t−n−1)
t |Gt−n+1)−X

(t−n)
t =

n∑
k=1

fk(εt)
(
E(X

(t−n−1)
t−k |Gt−n+1)−X

(t−n)
t−k

)
.

(22)

Notice the initial value for above iteration is

E(X
(t−n−1)
t−n |Gt−n+1)−X

(t−n)
t−n = Ef0(εt−n) = 0.

Consequently by induction and (22) we get E(X
(t−n−1)
t |Gt−n+1)−X

(t−n)
t = 0,

hence Condition 2 naturally holds. �
For a sequence l=(l1, l2, ...), denote the generating functionQl(s)=

∑∞
n=1lns

n.

Theorem 2. For process (1), let (11) in Condition 1 hold with coefficients
a = (a1, a2, ...), p ≥ 2. Assume Fε0(0, 0, ...) ∈ Lp and Condition 2. Assume
Qa(1) = 1 and ∫ 2π

0

1

|1−Qa(eiθ)|2
dθ < ∞. (23)

Then (1) exists a stationary Lp solution.
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We now apply Theorem 2 to (21). Assume that ak = ‖fk(ε0)‖p < ∞, p ≥ 2
and (23) holds, then there exists a stationary Lp solution.

Remark 3. Note that Qa(1) = 1. If 1−Qa(s) = (1−s)dG(s) where 0 < d < 1/2
and |G(s)| is bounded from below by a constant c > 0, then (23) holds. Also we
can replace (23) by some corresponding conditions on the tail sum,

∫ 2π

0

1

|QA(eiθ)(e−iθ − 1)|2 dθ < ∞, A1 = 1, (24)

where A = (A1, A2, ...), Ak =
∑

s≥k as and QA(s) =
∑

k≥1 Aks
k, then we obtain

(23) since

Qa(s) =
∑
k≥1

(Ak −Ak+1)s
k =

∑
k≥1

Ak(s
k − sk−1) +A1 = QA(s)(1− s−1) + 1.

�

In the following example we shall apply Tauberian’s Theorem to verify (24).
For sequenceses (an) and (bn), denote an ∼ bn, if an/bn → 1 as n → ∞.

Example 8. Assume Ak ∼ c0k
−α with c0 > 0, 0 < α < 1/2 and A0 = 1,

then A0 + . . . + An ∼ c0(1 − α)−1n1−α. If QA(s) has no zero root for |s| ≤ 1,
by Tauberian’s Theorem, QA(s) ∼ c1(1 − s)α−1, s → 1− where c1 = c0Γ(2 −
α)(1− α)−1. Thus

QA(s)(s
−1 − 1) ∼ c1s

−1(1− s)α, s → 1− . (25)

Since 2α < 1, |1 − eiθ|−2α is integrable for θ around a neighbor of 0 and 2π.
By (25) we have (24). If α ≥ 1/2, then the integral in (24) is ∞ and τn are
no longer square summable. For example, if ak ∼ c1k

−1−α with α ≥ 1/2 and∑∞
k=1 ak = 1, the stationary solution does not exist. �

An analagous result can be derived for process (16). For t ∈ Z, n ∈ N define
recursively

X
(t)
t = 0, X

(t−n)
t = E(f0(εt−1, εt−2, . . .)|Gt−n) +

n∑
k=1

fk(εt−1, ..., εt−k)X
(t−n)
t−k .

(26)

Let ηj = f0(εj , εj−1, . . .). As in (32) let functional dependence measure δj,p =
‖ηj − ηj,0‖p, j ≥ 0.

Corollary 4. For process (16), assume that f0(ε0, ε−1, . . .), fk(ε0), k ≥ 1 are
in Lp with p ≥ 2 and E(f0(ε1, ε2, ...)) = 0. Denote ak = ‖fk(ε1, ..., εk)‖p and
bk = δk,p. Assume

∑
k≥1 ak = 1,

∑
k≥1 b

2
k < ∞ and (53). Then (16) exists a

stationary Lp solution.
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Remark 4. When Ef0(ε0, ε1, ...) = 0, we have

∞∑
k=0

‖E
(
X

(−k−1)
0 |G−k

)
−X

(−k)
0 ‖p < ∞, (27)

which is an analogue of Condition 2 for process (16) and it also implies the
cumulative influence of initial state is finite. From the recursive equation

X
(t−n)
t −E(X

(t−n−1)
t |Gt−n)=

n∑
k=1

fk(εt−1, ..., εt−k)
(
X

(t−n)
t−k −E(X

(t−n−1)
t−k |Gt−n)

)
,

and that the initial value X
(t)
t − E(X

(t−1)
t |Gt) = −Ef0(ε0, ε1, ...) = 0, we have

X
(t−n)
t = E(X

(t−n−1)
t |Gt−n). Thus (27) directly follows. �

2.4. Simultaneous autoregressive schemes

In this section we shall consider stationary distribution for spatial models. Linear
spatial processes were studied in Whittle [33] and Besag [3] among others. For
the form (10), which can be viewed as a bilateral version of Model (1), we adopt
an idea which is similar to the loopy propagation commonly used in machine
learning. First set the initial values to be zero, and then update them based on
previous results:

X
{0}
t = 0, X

{k+1}
t = Gεt(. . . , X

{k}
t−1, X

{k}
t+1, . . .) t ∈ Z, k = 0, 1, . . . . (28)

Similarly, we can set the initial value and update them for the general form (8).

Under suitable conditions on G (cf Condition 3), X
{k}
t has a limit as k → ∞;

cf Theorem 3.

Condition 3. There exist constants av ≥ 0, v ∈ Z
d, and p ≥ 1, such that

|Gε0({wv, v �= 0})−Gε0({sv, v �= 0})| ≤
∑
v �=0

av|wv − sv| (29)

holds for all wv, sv ∈ R, and ‖Gε0(o)‖p < ∞, where o = {ov, v �= 0} with all
ov = 0.

Theorem 3. Assume Condition 3 with some p ≥ 1 and the contraction condi-
tion

∑
k �=0 ak < 1. Then there exists a unique Lp stationary solution for (8).

Example 9. Let hv, kv, v ∈ Z
d, be real coefficients. Consider the spatial thresh-

old AR model

Xk =
∑
v �=0

(hv max(Xk−v, 0) + kv min(Xk−v, 0)) + εk, k ∈ Z
d,

with εk ∈ Lp, p ≥ 1. Then Condition 3 holds with av = max(|hv|, |kv|).
This example is a spatial generalization of threshold AR processes of
Tong [31]. �
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2.5. Extension to non-stationary processes

Though stationary models work well in many cases, they may be unsuitable
for more complicated situations: when the location domain has boundary or
is non-lattice, due to different configuration of neighborhood, there is hardly a
geometric or physical base to assume stationarity. For those irregular cases, the
function G (8) can be location dependent. Paulik, Das and Loh [24], Brunsdon,
Fotheringham and Charlton [4] studied linear cases and Jenish and Prucha [19,
20] derived LLN and CLT for nonlinear situations under mixing or near-epoch
dependence. Here we consider the model:

Xt = G(t)({Xv, v ∈ Θt}; εt), t ∈ Θ, (30)

where Θ is a set with countably many points, Θt ⊆ Θ which may change with t
and the data generating mechanism G(t) is a real-valued measurable function.

The above setting may appear in practice, for instance if the lattice exists
boundary, or if we are not dealing with regular lattice but just certain undirected
graphs etc, then the relative configuration for each point will be different and
it is no longer appropriate to assume same function G for every point.

For this more general situation, under certain uniform bounded conditions
on G(v), there exists measurable function Ht such that Xt = Ht(ξ) satisfies the
system (30) where ξ = (εt)t∈Θ.

Condition 4. Assume there exists coefficients at,s ≥ 0, ρ < 1, M < ∞ and
p ≥ 1 such that the data generating mechanism G(t) satisfies

|G(t)({ws, s ∈ Θt}; εt)−G(t)({vs, s ∈ Θt}; εt)| ≤
∑
s∈Θt

at,s|ws − vs|,

with sup
t∈Θ

∑
s∈Θt

at,s ≤ ρ and sup
t∈Θ

‖G(t)(. . . , 0, . . . ; ε0)‖p ≤ M.

Corollary 5. If (G(t))t∈Θ satisfy Condition 4, then there exists a measurable
function Ht such that Xt = Ht(ξ) ∈ Lp and (30) holds.

3. Functional dependence measures and asymptotic results

3.1. Functional dependence measures

In this section, we shall compute functional dependence measure introduced by
Wu [34] for the processes (1) and (8). In view of (4) and (9), we consider the
form

Xi = g(εi−j , j ∈ Ξ), i ∈ Θ, (31)

where data generating mechanism g is a real-valued measurable function such
that Xi is properly defined, and εi, i ∈ Θ, are i.i.d. random variables. For model
(1) with representation (4), Ξ = {0, 1, 2, . . .} and Θ = Z. For spatial process on
lattice in Z

d, both Ξ and Θ are Z
d.
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Assume that Xi ∈ Lp, p > 0. Let ε′j , εi, i, j ∈ Θ, be i.i.d. random variables.
In view of (31), Xt is a random variable constructed on the underlying random
sequence (εi, i ∈ Θ). Therefore instead of directly describing the relationship
betweenXs andXt, we use functional dependence measure to capture the extent
to which Xt depends on the underlying random variables (εi). Change εt−i to
ε′t−i and keep other εi unchanged, we get a copy of Xt which is denoted by
Xt,t−i. By stationarity, the functional dependence measure

δi,p = ‖Xt −Xt,t−i‖p = ‖Xi −Xi,0‖p. (32)

To deal with functional dependence measures, we need the following Theo-
rem 4 which concerns magnitudes of the convolved sequences. The result is of
independent interest. Case (v) provides an explicit decay speed of the functional
dependence measure and it implies that the bound in case (ii) is sharp.

Theorem 4. Let (uk)k≥1 and (vk)k≥1 be nonnegative sequences with A :=∑∞
k=1 uk < 1 and B :=

∑∞
k=1 vk < ∞. Define (τi)i≥0 recursively by τ0 = c ≥ 0

and for n ≥ 1,

τn =

n∑
k=1

ukτn−k + vn. (33)

Let δ = 1−A. Then (i)
∑∞

k=1 τk = (B + c)/δ. For θ > 1 we have the following:
(ii) if un + vn = O(n−θ), then τn = O(n−θ); (iii) if c > 0, un + vn � n−θ, then
τn � n−θ; (iv) if

∑∞
k=n(uk + vk) = O(n−(θ−1)), then

∑∞
k=n τk = O(n−(θ−1));

and (v) if vn ≡ 0 and un ∼ Cn−θ for some C > 0, then τn ∼ (Cc/δ2)n−θ.

In the following two sections, we will apply this dependence measure into
our models and derive relationship of decay rate between the functional depen-
dence measure and Lipschitz coefficients. The functional dependence measure
of the underlying procedures can be quite useful for further deriving asymptotic
properties; cf Section 3.2–3.4.

3.1.1. AR(∞) and random coefficient processes

In this subsection we shall apply Theorem 4 to relate Lipchitz coefficients in
(11) or (29) with functional dependence measures; cf. Corollary 6, Corollary 7.
In view of Example 10 below, the bounds in these corollaries are sharp.

Corollary 6. Let (Xi)i∈Z be a nonlinear AR(∞) process (1). Assume condi-
tions in Theorem 1 are satisfied with p ≥ 1 and coefficients (ai)i∈N. Recall the
functional dependence measure δi,p = ‖Xi − Xi,0‖p. Then (i)

∑
i≥0 δi,p < ∞.

For θ > 1 we have the following: (ii) if an = O(n−θ), then δn,p = O(n−θ); (iii)
if
∑

m≥n am = O(n1−θ), then
∑

m≥n δm,p = O(n1−θ).

Example 10. For the special linear AR(∞) process:

Xt =
∑
k≥1

akXt−k + εt,
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where ak ≥ 0 and (εt) are i.i.d random variables. The corresponding MA(∞)
process is

Xt =
∑
k≥0

τkεt−k, (34)

where τk satisfies the recursion

τn =

n∑
i=1

akτn−k, τ0 = 1. (35)

This is a special case of (33) with un = an, vn = 0. By Theorem 4(v), if
an ∼ cn−θ holds for some constant c > 0, then τn ∼ cn−θ(1 −

∑
k≥1 ak)

−2.
�

Before stating the proof of Corollary 6, we need some notation. Let εi, ε
′
j , i, j ∈

Z, be i.i.d. random variables, ξt = (εt, εt−1, ...), ξt,0 = (εt, . . . , ε1, ε
′
0, ε−1, . . .) and

the coupled process Xt,0 = g(ξt,0). Denote ξji = (εi, εi+1, ..., εj), i ≤ j.

Proof of Corollary 6. By Theorem 1, (1) has a stationary solution of form (4).
Observe that the process (Xt,0) satisfy the recursion

Xt,0 = Fεt(Xt−1,0, Xt−2,0, . . .) when t �= 0, and X0,0 = Fε′0
(X−1, X−2, . . .).

Since εt is independent of ξt−1, Condition 1 implies that, for t ≥ 1,

(
E
(
|Xt,0 −Xt|p

∣∣ξt−1

))1/p ≤
∞∑
k=1

ak|Xt−k,0 −Xt−k| =
t∑

k=1

ak|Xt−k,0 −Xt−k|.

By Minkowski’s inequality,

δt,p ≤
t∑

k=1

akδt−k,p. (36)

Let un = an, vn = 0, n ≥ 1, τ0 = δ0,p. Clearly by (36), δi,p ≤ τiδ0,p, i ≥ 0.
Result follows from Theorem 4 (i) (ii) and (iv).

We can similarly have a corresponding result for the process (16).

Corollary 7. Let (Xi)i∈Z be the random coefficient AR(∞) process defined
in (16). Assume that conditions in Corollary 2 are satisfied with p ≥ 1 and
coefficients f0(ξ0), fk(ξ

k
1 ), k ≥ 1. Denote θk,p = ‖f0(ξk−1)− f0(ξk−1,0)‖p and

ak = ‖fk(ξk1 )‖p, bk = θk,p +
∑
i>k

‖fk(ξk−i
k−1)− fk(ξ

k−i
k−1,0)‖p‖X0‖p. (37)

Assume bk < ∞. Then (i)
∑

i≥0 δi,p < ∞. For β > 1 we have the following: (ii)

if an + bn = O(n−β), then δn,p = O(n−β); (iii) if
∑

m≥n(am + bm) = O(n1−β),

then
∑

m≥n δm,p = O(n1−β).
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Remark 5. For the PGARCH and asymmetric PGARCH, θt,p = 0 for
any t. �

Proof of Corollary 7. Change ε0 to ε′0 and we can similarly obtain a new se-
quence Xt,0 which satisfies

‖Xt −Xt,0‖p ≤ θt,p +

t−1∑
k=1

‖fk(ξk1 )‖p‖Xt−k −Xt−k,0‖p

+
∑
k≥t

∥∥fk(ξt−k
t−1 )− fk(ξ

t−k
t−1,0)

∥∥
p
‖X0‖p.

Let un = an and vn = bn as in (37). Then the result follows from Theorem 4.

3.1.2. Functional dependence measure for simultaneous autoregressive schemes

Consider the process (8). Recall the generating mechanism of (X
{k}
t )t∈Zd in

(28) and let (δ
{k}
t )t∈Zd be the functional dependence measure, that is δ

{k}
t =

‖X{k}
t −X

{k}
t,0 ‖p. Write X ∈ Lp, if ‖X‖p < ∞.

Condition 5. Let p ≥ 1. For the data generating mechanism Gε0 in (8), assume
that

g(ε0, ε
′
0) := sup

wv,v∈Zd

|Gε0({wv, v ∈ Z
d})−Gε′0

({wv, v ∈ Z
d})| ∈ Lp.

Condition 5 holds, for instance, when Gε0({wv, v ∈ Z
d}) = F ({wv, v ∈

Z
d}) + f(ε0) with f(ε0) ∈ Lp. Without loss of generality, set ‖g(ε0, ε′0)‖p = 1.

Define (τ
{k}
t )t∈Zd , k = 0, 1, . . ., recursively through

τ
{0}
t = 0, τ

{k+1}
t =

∑
v �=0

avτ
{k}
t+v + 1{t=0}. (38)

Then the functional dependence measure δ
{k}
t ≤ τ

{k}
t . Under certain conditions

we can develop results similar as Theorem 4 for τ
{k}
t and therefore also bound

δ
{k}
t . Since X

{k}
t converges to Xt as k → ∞, δ

{k}
t goes to δt, results are thus

established for (δt)t∈Zd , where δt is the functional dependence measure of the
stationary Lp process (8).

Proposition 1. Assume that function G satisfies Conditions 3 and 5 with p ≥ 1
and sequence (av)v∈Zd satisfy

∑
v �=0 av < 1, then

∑
v∈Zd δv < ∞. If moreover

assume av = O(|v|−d+1−β) for some β > 1, then δv = O(|v|−β).

For the line transect model (10) with d = 1, we have δv,p = O(|v|−β), β > 1,
provided that av = O(|v|−β), which is the same as Theorem 4. For higher
dimension Z

d, we require an extra factor |v|1−d.
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Example 11. If the process only contains finite order, then we can have geo-
metric moment contraction ([35]) under milder conditions. To be specific, for
Xt = Gεt(Xs, s ∈ Θ), t ∈ Z

d, assuming that the index set Θ has only finitely
many vectors in Z

d-{0}, then r = max{|v|, v ∈ Θ} is finite and functional de-
pendence measure of Xt decays geometrically, provided that Condition 3 holds
with ρ =

∑
v∈Θ av < 1. Let K = [|t|/r]. Then

‖Xt −Xt,0‖p ≤
∑
i1∈Θ

ai1‖Xt+i1 −Xt+i1,0‖p

≤
∑∑
i1,i2∈Θ

ai1ai2‖Xt+i1+i2 −Xt+i1+i2,0‖p

≤ . . . ≤
∑

. . .
∑

i1,...,iK∈Θ

ai1 . . . aiK (2‖X0‖p) = 2ρK‖X0‖p.

Hence we can have geometric moment contraction δt = O(ρ|t|/r). In the nonlin-
ear time series setting;

(
cf (5) and (6)

)
, Shao and Wu [29] obtained a similar

result. �

3.1.3. Functional dependence measure for non-stationary simultaneous
autoregressive schemes

Let (Θ, d) be a metric space containing countably many indices. By Corollary 5,
we can construct (Xt)t∈Θ satisfying (30). Interestingly, we can obtain similar
results as Proposition 1 for such a system. To account for non-stationarity, we
define the functional dependence measure

δ∗s,v = ‖Xs −Xs,v‖p, and δ∗t = sup
{(s,v)∈Θ2|d(s,v)=t}

δ∗s,v. (39)

Condition 6. Let p ≥ 1. For G(t) in (30), assume that for all t ∈ Θ,

gt(εt, ε
′
t) := sup

wv,v∈Θt

|G(t)({wv, v ∈ Θt}; εt)−G(t)({wv, v ∈ Θt}; ε′t)| ∈ Lp,

and M0 := supt∈Θ ‖gt(ε0, ε′0)‖p < ∞.

Corollary 8. Assume that G satisfies Conditions 4 and 6 with coefficients
as,t. Let αl = sup{as,t : d(s, t) = l} and assume supt∈Θ

∑
s∈Θt

αd(t,s) = ρ0 < 1.
Then we have

sup
t∈Θ

∑
s∈Θt

δ∗t,s ≤ M0/(1− ρ0). (40)

If moreover assume the cardinal number supw∈Θ �{s ∈ Θ| d(s, w) = t} ≤ c1t
d

and αl ≤ c2l
−(d+β) for some constants c1, c2, d > 0 and β > 1, then

δ∗t = O(t−β). (41)

If additionally r := supt∈Θ sups∈Θt
d(s, t) < ∞, then δ∗t = O(φ

t/r
0 ), where φ0 =

supt∈Θ

∑
s∈Θt

at,s < 1.
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3.2. Central limit theorem

Theorem 1 in El Machkouri, Volnỳ and Wu [11] asserts that, if the functional
dependence measure δi,2 for the process (9) is summable, namely

∑
i∈Zd δi,2 <

∞, then for SΓn =
∑

v∈Γn
(Xv −E(Xv)), where Γn ⊂ Z

d satisfies |Γn| → ∞ and

σ2
n = E(S2

Γn
) → ∞, the Levy distance

L
(
SΓn/

√
|Γn|, N (0, σ2

n/|Γn|)
)
→ ∞ as n → ∞.

Notice that the above CLT holds without specifying any other requirement on
Γn. The summability of (δi,2) follows from Theorem 4. If additionally |∂Γn|/|Γn|
goes to zero, then

SΓn/
√

|Γn| L→ N (0, σ2), where σ2 =
∑
v∈Zd

Cov(X0, Xv). (42)

For the process (8), by Proposition 1, if Condition 5 holds with p = 2 and∑
v �=0 av < 1, then

∑
i∈Zd δi,2 < ∞ and the above CLT holds.

3.3. Quenched central limit theorem

In certain applications such as MCMC, the process starts at values that do not
follow the stationary distribution. This leads to the idea of quenched CLT; see
Volnỳ and Woodroofe [32]. For process (1) due to its infinite order, we cannot
generate it directly. However we can generate sequence (X◦

k)k≥1 through

X◦
0 = Gε0(0, 0, ...), X◦

k = Gεk(X
◦
k−1, . . . , X

◦
0 , 0, . . .), k ≥ 1.

Theorem 5 provides a CLT for such sequences.

Theorem 5. For process (1), assume Condition 1 with p ≥ 2 and
∑

k≥1 ak < 1.
Then

1√
n

n∑
i=1

(X◦
i − E(X◦

i )) → N(0, σ2), where σ2 =
∑
v∈Z

Cov(X0, Xv). (43)

Similar assumptions can be applied to the process (16).

Corollary 9. If there exists some p ≥ 2 such that f0(ξ0), fi(ξ
i
1), i ≥ 1 are in

Lp and (19) holds, then for process (16) we have (43).

Proof of Theorem 5. By Theorem 1, there exists a stationary solution in Lp.
Let c0 = max(‖X0‖p, ‖X◦

0‖p). Condition 1 leads to recursive inequality of func-

tional dependence ‖Xn − Xn,n−k‖p ≤
∑k

i=1 ai‖Xn−i − Xn−i,n−k‖p. Similar
recursion holds for X◦

n. Therefore functional dependence ‖X0 − X0,−k‖p and
(‖X◦

n −X◦
n,n−k‖p)n≥0 are all bounded by τk with

τn =
n∑

i=1

aiτn−i, τ0 = 2c0.
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By Theorem 4,
∑

k≥1 τk < ∞. Let Di = Xi −X◦
i − E(Xi) + E(X◦

i ) and dk =
supi≥k ‖Di‖, then for any k ∈ N we have

1√
n

∥∥∥ n∑
i=1

Di

∥∥∥ ≤ 1√
n

∞∑
j=0

∥∥∥ n∑
i=k

Pi−jDi

∥∥∥+
1√
n

∥∥∥ k−1∑
i=1

Di

∥∥∥
≤

∞∑
j=0

min{2τj , dk}+
k√
n
d1. (44)

Since dk → 0, (44) goes to 0 as n → ∞. Thus it remains to show the CLT
for summation of (Xi). From Theorem 4 (i), Condition 1 leads to the summa-
bility of functional dependence measure (‖X0 −X0,−k‖p)k≥0. Then by (42) in
Subsection 3.2, the CLT holds. The proof for Corollary 9 is similar.

3.4. An invariance principle

Section 2 provides sufficient conditions for the existence of stationary distribu-
tions for process (1) and (16). Based on the functional dependence measures in
Section 3.1, we can further derive Gaussian approximation results.

Theorem 6. Let (ak) be either (i) the constants in Condition 1 for process (1)
or (ii) ak = uk+vk defined in (37) for process (16), p > 2. Assume

∑
k≥1 ak < 1

and

∞∑
m=k

am = O(k1−β), where β >

{
2 if 2 < p ≤ 4

1 +
p2−4+(p−2)

√
p2+20p+4

8p if p > 4.

(45)

Then there exists a probability space (Ωc,Ac,Pc) on which we can define a pro-
cess Xc

i with Sc
n =

∑n
i=1(X

c
i − EXc

i ), and a standard Wiener process Wc(.),

such that (Xc
i )i∈Z

D
= (Xi)i∈Z for (1) (resp. (Xc

i )i∈Z

D
= (Yi)i∈Z for process (16))

and
Sc
n − σWc(n) = oa.s.(n

1/p), where σ2 =
∑
i∈Z

cov(X0, Xi). (46)

Proof of Theorem 6. We shall only prove case (i) since (ii) is similar. By The-
orem 1, (1) has an Lp stationary solution (4). Following steps in Section 3, we
can get (36). Since

∑∞
m=k am = O(k1−β), by Theorem 4, we have

∑∞
m=k δm,p =

O(k1−β). Thus (46) follows from Corollary 2.1 in Berkes, Liu and Wu [2].

Aue, Berkes and Horváth [1] obtained an invariance principle for the process

Yt = g(εt−1)Yt−1 + c(εt−1),

which is a special case of our (16) and (17). Assuming that |1/Λ′(Λ−1(x))| ≤ Cxγ

and Λ(σ2
0) ≥ ω hold for some constants C, γ, ω > 0 and Y0 has a finite v >

4(1 + γ) moment, they obtained a strong invariance principle for Sn =
∑n

i=1 Yi
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with rate oa.s.(n
θ), where θ > 5/12. Our Theorem 6 provides a much sharper

rate. Let p = v/(1 + γ). Then

δk,p = ‖Λ−1(Yt)− Λ−1(Y ′
t,t−k)‖p‖ε0‖p

≤ C
∥∥(|Yt|γ + |Yt,t−k|γ)|Yt − Y ′

t,t−k|
∥∥
p
‖ε0‖p

≤ C‖|Yt|γ + |Yt,t−k|γ‖v/γ‖Yt − Y ′
t,t−k‖v‖ε0‖p.

Based on the recursion ‖Yt − Y ′
t,t−k‖v = ρ‖Yt−1 − Y ′

t−1,t−k‖v, where ρ =

‖c(ε0)‖v < 1, we get ‖Yt − Y ′
t,t−k‖v = O(ρk). Therefore Theorem 6 leads to

a Gaussian approximation with error rate oa.s.(n
1/p), which is much sharper

than their rate oa.s.(n
θ) with θ > 5/12 since p > 4. Aue, Berkes and Horváth

[1] applied their invariance principle to a change point detection problem with
weighted CUSUM statistics ([6]). It is expected that our sharper strong invari-
ance principle can lead to an improved convergence rate.

4. Proofs

In this section we shall provide proofs of results stated in the previous sections.

Lemma 1. Under settings in Theorem 4, τn ≤ c+B for any n ∈ N.

Proof. We shall show by induction that τk ≤ c +
∑k

i=1 bi. It trivially holds
when k = 0. Suppose it holds for any k ≤ n. Then for k = n + 1, by (33) and∑

k≥1 ak < 1, we have

τn+1 ≤
n+1∑
k=1

ak

(
c+

n+1−k∑
i=1

bi

)
+ bn+1 ≤ c+

n+1∑
i=1

bi.

Proof of Theorem 1. Recall (15) for X
(t−n)
t . Thus X

(t)
t+m−k ∈ Ft+m−k is inde-

pendent of εt+m for any k ≥ 1. Condition 1 implies(
E
(
|X(t)

t+m −X
(t−1)
t+m |p

∣∣Ft+m−1

))1/p

≤
m∑

k=1

ak|X(t)
t+m−k −X

(t−1)
t+m−k|+ am+1|X(t−1)

t−1 |. (47)

Since X
(t)
t+1 −X

(t)
t = Fεt+1(0, 0, . . .) is in Lp and

∑
k≥1 ak < 1, by induction we

know for any m ≥ 1, X
(t)
t+m −X

(t−1)
t+m is in Lp with

‖X(t)
t+m −X

(t−1)
t+m ‖p ≤

m∑
k=1

ak‖X(t)
t+m−k −X

(t−1)
t+m−k‖p ≤ ‖Fε0(0, 0, . . .)‖p. (48)

Notice for any k ∈ Z and t ≥ m, X
(m)
t −X

(m−1)
t

D
= X

(m+k)
t+k −X

(m+k−1)
t+k . Thus

(48) leads to

‖X(t−m)
t −X

(t−m−1)
t ‖p ≤

m∑
k=1

ak‖X(t−m+k)
t −X

(t−m+k−1)
t ‖p. (49)



Stability and asymptotics for autoregressive processes 3741

Let C = ‖Fε0(0, 0, . . .)‖p(1−
∑

k≥1 ak)
−1. By (49) and Theorem 4 (i),

∞∑
k=0

‖X(t−k)
t −X

(t−k−1)
t ‖p ≤ C < ∞. (50)

Consequently X
(t−m)
t converges to some random variable Zt(say) almost surely

and in Lp. It remains to verify that Zt satisfies (1). If C = 0, then 0 is a
stationary solution. Assume C > 0 from now on. For any ε > 0, there exists
M ∈ N such that

∑
k>M ak < ε/(6C). For this fixed M, there exists N ∈ N

such that for any n ≥ N, and l ≤ M, ‖X(t−n)
t−l − Zt−l‖p ≤ ε/3. By (50), ‖Zt‖p

and ‖X(m)
t ‖p are bounded by C. Consequently for any n ≥ N, observe

‖Zt − Fεt(Zt−1, Zt−2, . . .)‖p ≤ ‖Zt −X
(t−n)
t ‖p

+ ‖X(t−n)
t − Fεt(Zt−1, Zt−2, . . .)‖p

≤ ε/3 +

M∑
k=1

ak‖Zt−k −X
(t−n)
t−k ‖p +

∑
k>M

ak2C ≤ ε,

which proves the existence part. For uniqueness, we shall show by contradic-
tion. If there exists another solution X ′

t satisfying (12), then ‖Xt − X ′
t‖p ≤∑∞

k=1 ak‖Xt−k − X ′
t−k‖p. Since

∑
k≥1 ak < 1, the latter leads to a contradic-

tion.

Proof of Corollary 1. Define sequence X
(t)
t+k as in (15). Apply (13) and since

p < 1 we have

E|X(t−n)
t −X

(t−n−1)
t |p ≤ E

[
E

(
|X(t−n)

t −X
(t−n−1)
t |

∣∣Ft−1

)p]

≤
n∑

k=1

akE|X(t−n)
t−k −X

(t−n−1)
t−k |p.

Similar argument as in Theorem 1 yields that X
(t−n)
t converges as n → ∞ to

some random variable which is the unique adapted Lp stationary solution.

Proof of Corollary 2. For any t ∈ Z, define (X
(t)
k )k≥t as the sequence generated

through

X
(t)
t = 0, X

(t−m)
t = f0(εt−1, εt−2, . . .) +

m∑
k=1

fk(εt−1, ..., εt−k)X
(t−m)
t−k . (51)

Since X
(t)
t −X

(t−1)
t = f0(εt−1, εt−2, . . .) is in Lp and X

(t−m)
t−k is independent of

εt−k+i for any i ≥ 0, by (51) we derive

‖X(t−m)
t −X

(t−m−1)
t ‖p ≤

m∑
k=1

‖fk(ε1, ..., εk)‖p‖X(t−m)
t−k −X

(t−m−1)
t−k ‖p. (52)
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Notice X
(t−n)
t−k −X

(t−n−1)
t−k has the same distribution as X

(t−n+k)
t −X

(t−n+k−1)
t .

By the argument in Theorem 1, X
(t−m)
t converges as m → ∞ almost surely

and in Lp to some random variable which is the unique predictive stationary
distribution.

Proof of Corollary 3. Define sequence X
(t)
t+k recursively as (51). Thus X

(t−n)
t is

independent of εk, k ≥ t. Using the elementary inequality (a+ b)p ≤ ap+ bp, we
have

E|X(t−n)
t −X

(t−n−1)
t |p ≤

n∑
k=1

E|fk(εt−1, ..., εt−k)|pE|X(t−n)
t−k −X

(t−n−1)
t−k |p.

Then the result follows from the similar argument as in the proof of
Theorem 1.

Lemma 2. For nonnegative sequences (ak)k≥1, (bk)k≥1, assume
∑∞

k=1 ak = 1
and ∫ 2π

0

∣∣∣τ0 +Qb(e
iθ)

1−Qa(eiθ)

∣∣∣2dθ < ∞, where Qa(s) =

∞∑
n=1

ans
n. (53)

Then for (τk)k≥0 generated through

τn =

n∑
k=1

akτn−k + bn, τ0 > 0, (54)

we have the square summability
∑

k≥0 τ
2
k < ∞.

Proof of Lemma 2. By (54), Qτ (s) = τ0 +Qa(s)Qτ (s) +Qb(s). Hence

Qτ (s) = (τ0 +Qb(s))(1−Qa(s))
−1. (55)

Since
∫ 2π

0
|Qτ (e

iθ)|2dθ = 2π
∑

k≥0 τ
2
k , we finish the proof.

Proof of Theorem 2. We shall show that (X
(t−n)
t )n≥0 is a Cauchy sequence.

Write

X
(t−n)
t −X

(t−n−m)
t =

n+m−1∑
k=n

(
X

(t−k)
t − E(X

(t−k−1)
t |Gt−k+1)

)

+
n+m−1∑
k=n

(
E(X

(t−k−1)
t |Gt−k+1)−X

(t−k−1)
t

)
=: I1(m,n) + I2(m,n).

By Condition 2, as n → ∞,

sup
m≥1

‖I1(m,n)‖p ≤
∑
k≥n

‖X(t−k)
t − E(X

(t−k−1)
t |Gt−k+1)‖p → 0.
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For I2(m,n), write Hn(εt, . . . , εt−n+1) = X
(t−n)
t , where Hn(·) is a measurable

function, and let Y
(t−n)
t = Hn(εt, . . . , εt−n+2, ε

′
t−n+1). Then

E(X
(t−k−1)
t |Gt−k+1)−X

(t−k−1)
t = E(Y

(t−k−1)
t −X

(t−k−1)
t |Gt−k).

By Condition 1, since ‖X(t−n)
t−k −Y

(t−n)
t−k ‖p = ‖X(t−n+k)

t −Y
(t−n+k)
t ‖p, for n ≥ 1

we have

‖X(t−n−1)
t − Y

(t−n−1)
t ‖p ≤

n∑
k=1

ak‖X(t−n−1)
t−k − Y

(t−n−1)
t−k ‖p

=

n∑
k=1

ak‖X(t+k−n−1)
t − Y

(t+k−n−1)
t ‖p.

Since ‖X(t−n−1)
t−n − Y

(t−n−1)
t−n ‖p ≤ 2‖Fε0(0, 0, ...)‖p finite and (23) and Lemma 2

yield ∑
k≥1

‖X(t−k)
t − Y

(t−k)
t ‖2p < ∞. (56)

Since Dk = E(X
(t−k−1)
t |Gt−k+1)−X

(t−k−1)
t , k ∈ Z, are martingale differences,

by Burkholder inequality, ‖
∑

k≥n Dk‖2p ≤ (p − 1)
∑

k≥n ‖Dk‖2p. Thus by (56)
and Jensen’s inequality,

lim
n→∞

sup
m

‖I2(m,n)‖2p ≤ lim
n→∞

(p− 1)
∑
k≥n

‖Y (t−k−1)
t −X

(t−k−1)
t ‖2p = 0.

Hence as k → ∞, X
(t−k)
t converges to a limit Zt ∈ Lp (say). Similar argument

as in proof of Theorem 1 shows that Zt satisfies (1).

Proof of Corollary 4. Generate X
(t−n)
t by (26). Decompose

X
(t−n)
t −X

(t−n−m)
t =

n+m−1∑
k=n

(
X

(t−k)
t − E(X

(t−k−1)
t |Gt−k)

)

+

n+m−1∑
k=n

(
E(X

(t−k−1)
t |Gt−k)−X

(t−k−1)
t

)
=: I1(m,n) + I2(m,n).

By (27) in Remark 4, supm>0 ‖I1(m,n)‖p → 0 as n → ∞. For I2(m,n) we have
recursion

‖E(X(t−n)
t |Gt−n+1)−X

(t−n)
t ‖p

≤
n∑

k=1

‖fk(εt−1, ..., εt−k)‖p
∥∥E(X(t−n)

t−k |Gt−n+1)−X
(t−n)
t−k

∥∥
p
+ δn,p.
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By (53), Lemma 2 leads to the square summability∑
k≥1

∥∥E(X(−k)
0 |G−k+1)−X

(−k)
0

∥∥2
p
< ∞. (57)

Based on (57) and apply Burkholder inequality we get

lim
n→∞

sup
m

‖I2(m,n)‖2p ≤ lim
n→∞

(p− 1)
∑
k≥n

∥∥E(X(t−k−1)
t |Gt−k)−X

(t−k−1)
t

∥∥2
p
= 0.

Thus X
(t−n)
t converges to some limit Zt (say). Since

∑
k≥1 δ

2
k,p < ∞, apply

Burkholder inequality and similar argument as in Theorem 1, we can verify
that Zt satisfy (16).

Proof of Theorem 3 and Corollary 5. We only deal with d = 1 since the case

d ≥ 2 can be similarly handled. Define the sequence (X
{k}
t )k≥0 recursively as

X
{0}
t = 0 and X

{k+1}
t = Gεt(. . . , X

{k}
t−2, X

{k}
t−1, X

{k}
t+1, X

{k}
t+2, . . .), k = 0, 1, . . . .

(58)

By Condition 3, denote ρ =
∑

k �=0 ak and C0 = ‖Gε0(0, 0, . . .)‖p, we have

‖X{k+1}
t −X

{k}
t ‖p ≤

∥∥∥ ∑
i1 �=0

ai1 |X
{k}
t+i1

−X
{k−1}
t+i1

|
∥∥∥
p

≤
∥∥∥ ∑

i1 �=0

ai1
∑
i2 �=0

ai2 |X
{k−1}
t+i1+i2

−X
{k−2}
t+i1+i2

|
∥∥∥
p
≤ . . .

≤
(∑

i �=0

ai

)k

sup
t∈Z

‖X{1}
t −X

{0}
t ‖p = ρkC0. (59)

Since ρ < 1, X
{k+1}
t converges almost surely and in Lp to some random variable

denoted as Zt and ‖Zt − X
{k}
t ‖p ≤ ρkC0/(1 − ρ). Clearly Zt satisfies (10) by

letting k → ∞ in

‖Zt −Gεt(. . . , Zt−2, Zt−1, Zt+1, Zt+2 . . .)‖p
≤ ‖Zt −X

{k+1}
t ‖p + ‖Gεt(. . . , X

{k}
t−1, X

{k}
t+1 . . .)−Gεt(. . . , Zt−1, Zt+1, . . .)‖p

≤ ‖Zt −X
{k+1}
t ‖p +

∑
i �=0

ai sup
i∈Z

‖Zi −X
{k}
i ‖p ≤ 2ρkC0/(1− ρ).

To show the uniqueness, if there exists another process Yt ∈ Lp also satisfies
(10), then

‖X0 − Y0‖p ≤
∑
i �=0

ai‖Xi − Yi‖p = ρ‖X0 − Y0‖p.

Since ρ < 1, Xt = Yt almost surely. The non-stationary case can be similarly
dealt with.
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Proof of Theorem 4(i). For any N ∈ N, by (33), we get

N∑
n=0

τn = τ0 +

N∑
n=1

n∑
k=1

ukτn−k +

N∑
n=0

vn ≤ (c+B) + (

N∑
k=1

uk)(

N∑
n=0

τn).

Thus
∑N

k=0 τk ≤ (c+B)/δ and therefore T :=
∑∞

k=0 τk is finite. Applying (33)
again and letting N → ∞, we have T = τ0 +B +AT , implying T = (c+B)/δ.

Proof of (ii). Let Δ = 1− (1 + δ/4)−1/θ. Write

τn =


Δn�∑
k=1

ukτn−k +

n−
Δn�−1∑
k=
Δn�+1

ukτn−k +

⎛
⎝ n∑

k=n−
Δn�
ukτn−k + vn

⎞
⎠=:An+Bn+Cn.

(60)
where �x� means biggest integer that is no larger than x. Let C0 = supn≥1(un+

vn)n
θ. Take N0 big enough such that C02

θ(θ − 1)−1(N0Δ)−(θ−1) ≤ δ/4 and let
M = max{4C0(c + B)/δ2, (c + B)Nθ

0 , 4C0/δ}. Next we shall apply induction
and show that

τn ≤ Mn−θ holds for all n ∈ N. (61)

By Lemma 1 we have τn ≤ c+B, and thus τk ≤ Mk−θ for any k ≤ N0. Suppose
for any k ≤ n − 1, τk satisfies (61). Then for k = n we have by the induction
hypothesis that

An ≤ M(n− �Δn�)−θ


Δn�∑
k=1

uk ≤ Mn−θ(1−Δ)−θ(1− δ).

For the second part, applying Jensen’s inequality we derive

Bn ≤ C0M

n−
Δn�−1∑
k=
Δn�+1

k−θ(n− k)−θ = C0Mn−θ

n−
Δn�−1∑
k=
Δn�+1

(
1/k + 1/(n− k)

)θ

≤ C0Mn−θ2θ
∞∑

k=
Δn�+1

k−θ ≤ Mn−θC02
θ(θ − 1)−1�Δn�−(θ−1).

For the last part, according to part(i),
∑∞

k=0 τk = (c+B)/δ we get

Cn ≤ C0(n− �Δn�)−θ


Δn�∑
k=0

τk + Cn−θ ≤ Mn−θC0

( c+B

(1−Δ)θδM
+

1

M

)
.

Then the induction step is completed in view of

An + Bn + Cn ≤ Mn−θ[(1− δ)(1 + δ/4) + δ/4 + δ/4(1 + δ/4) + δ/4] ≤ Mn−θ.

Proof of (iii). By (ii), the upper bound follows. By (33), we get τn ≥ unτ0+vn ≥
min{1, c}(un + vn), implying the lower bound.
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Proof of (iv). Let c0 = max{(B+ c)/(1−A), 1} and Γn =
∑∞

k=n τk. By (33) we
have

Γn =

∞∑
k=n

k∑
i=1

uiτk−i +

∞∑
k=n

vk

=

n∑
i=1

ui

( ∞∑
k=n

τk−i

)
+
∑
i>n

ui

( ∞∑
k=0

τk

)
+

∞∑
k=n

vk

≤
n∑

i=1

uiΓn−i + c0

∞∑
i=n

(ui + vi).

Choose Δ > 0 such that (1−Δ)−(θ−1) = 1+ δ/4. Let C1 = supn≥1

∑
k≥n(uk +

vk)n
θ−1. Take N0 big enough such that C1Δ

−2(θ−1)N
−(θ−1)
0 ≤ δ/4 and let

M = max{c0N (θ−1)
0 , 4c0(1−Δ)−(θ−1)/δ, 4C1c0/δ}. Similarly as in the proof of

(ii) we show by induction that for any n ∈ N, Γn ≤ Mn−(θ−1). By part(i) we
have Γn ≤ c0, and thus Γk ≤ Mk−(θ−1) for any k ≤ N0. If for any k ≤ n − 1,
Γk satisfies Γk ≤ Mk−(θ−1). Then for k = n we have


Δn�∑
i=1

uiΓn−i +

n−
Δn�−1∑
i=
Δn�+1

uiΓn−i +

n∑
i=n−
Δn�

uiΓn−i + c0
∑
i≥n

(ui + vi)

≤(1− δ)M(1−Δ)−(θ−1)n−(θ−1) +MCΔ−2(θ−1)n−2(θ−1)

+ (1−Δ)−(θ−1)n−(θ−1)Cc0 + Cc0n
−(θ−1)

≤Mn−(θ−1)[(1− δ)(1 + δ/4) + δ/4 + δ/4 + δ/4] ≤ Mn−(θ−1),

completing the induction step.

Proof of (v). Let U = lim supn→∞ τnn
θ and L = lim infn→∞ τnn

θ. Without loss
of generality set c = 1. In I) and II) below, we shall show that, respectively
U ≤ C/δ2 and L ≥ C/δ2. Hence U = L = C/δ2 and τn ∼ (C/δ2)n−θ.

I). We shall show U ≤ C/δ2 by contradiction. If not, set η = U − C/δ2 > 0
and Δ0 = min{1, ηδ/10}. Part (ii) leads to τn = O(n−θ), thus U is finite.
Consequently for Δa = min{1,Δ0C/(Uδ)}, there exists N0 ∈ N, s.t. for all
n ≥ N0, τnn

θ ≤ U +Δ0 and unn
θ ≤ C +Δa.

Choose Δ > 0 such that (1−Δ)−θ = min{1+Δ0/(1+U), 1+ δΔ0/(1+C)}.
Let N1 ∈ N be such that N

−(θ−1)
1 ≤ Δ0(θ − 1)2−θ(U + 1)−1(C + 1)−1. Write

τnn
θ =

⎛
⎝
Δn�∑

k=1

+

n−
Δn�−1∑
k=
Δn�+1

+

n∑
k=n−
Δn�

⎞
⎠ukτn−kn

θ =: An + Bn + Cn.

Set N = max{�N0/Δ�, �N1/Δ�}. When n ≥ N, τkn
θ = τkk

θ(n/k)θ ≤ (U +
Δ0)(1−Δ)−θ for any k ≥ (1−Δ)n,

An ≤
( 
Δn�∑

k=1

uk

)
(U+Δ0)(1−Δ)−θ ≤ (1−δ)(U+Δ0)(1−Δ)−θ ≤ (1−δ)U+2Δ0.
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For the second part, using uk ≤ (C +Δa)k
−θ and τk ≤ (U +Δ0)k

−θ, we derive

Bn ≤ (U +Δ0)(C +Δa)

n−
Δn�−1∑
k=
Δn�+1

k−θ(n− k)−θnθ

= (U +Δ0)(C +Δa)

n−
Δn�−1∑
k=
Δn�+1

(1/k + 1/(n− k))θ ≤ Δ0.

For the last part, by part(i) that
∑∞

k=1 τk = 1/δ and ukn
θ = ukk

θ(n/k)θ ≤
(C +Δa)(1−Δ)−θ for any k > n− �Δn�, we get

Cn ≤ (C +Δa)(1−Δ)−θ


Δn�∑
k=0

τk ≤ (C +Δa)(1−Δ)−θ/δ ≤ (C +Δa)/δ +Δ0.

Recall that η = U − C/δ2. Hence

Cn ≤ (C +Δa)δC
−1(U − η) + Δ0 ≤ Uδ − ηδ + 2Δ0.

Since ηδ ≥ 10Δ0, combining above results together we conclude

τnn
θ = An + Bn + Cn ≤ (1− δ)U + Uδ − ηδ + 5Δ0 ≤ U − ηδ/2.

Since this holds for all n ≥ N, U = lim supn→∞ τnn
θ ≤ U − ηδ/2 < U. The

latter leads to a contradiction.
II) Similarly, we need to prove L ≥ C/δ2. If not, let η = C/δ2 − L > 0. Take

Δ0 = δη/8 and Δa = Δ0δ. Since τnn
θ ≥ ann

θτ0 ∼ Cτ0 > 0, thus L is strictly
larger than 0.

Since L = lim infn→∞ τnn
θ and un ∼ Cn−θ, there exists N0 ∈ N, s.t. for

all n ≥ N0, τnn
θ ≥ L − Δ0 and ann

θ ≥ C − Δa. Since
∑

k≥0 ak = 1 − δ and∑
k≥0 τk = 1/δ < ∞, there exists N1 ∈ N, such that

∑n
k=0 uk ≥ 1 − δ −Δ0/L

and
∑n

k=0 τk > 1/δ − Δ0/C for all n ≥ N1. Take some 0 < Δ < 0.5(say
Δ = 0.1) and decompose τnn

θ as in case I). Let N = max{�N0/Δ�, �N1/Δ�}.
Since τkn

θ = τkk
θ(n/k)θ ≥ L−Δ0 when k ≥ (1−Δ)n, for any n ≥ N we have

An ≥
( 
Δn�∑

k=1

uk

)
(L−Δ0) ≥ (1− δ)L− 2Δ0,

For the second part, notice that every term is nonnegative, therefore we have
Bn ≥ 0.

For the last part, since ukn
θ = ukk

θ(n/k)θ ≥ C −Δa, for k ≥ (1−Δ)n, we
know

Cn ≥ (C −Δa)


Δn�∑
k=0

τk ≥ (C −Δa)(1/δ −Δ0/C) ≥ δ(L+ η)− 2Δ0.
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Together we have

An + Bn + Cn ≥ (1− δ)L+ δ(L+ η)− 4Δ0 ≥ L+ δη/2 > L.

Since this holds for all n ≥ N, L = lim infn→∞ τnn
θ ≥ L + δη/2 > L. Contra-

diction.

Lemma 3. Let δ = 1−
∑

v∈Zd av and a0 = 0. Recall that τ
{k}
v is defined in (38).

Under conditions in Proposition 1, we have

S{k} =
∑
v∈Zd

τ{k}v ≤ 1/δ. (62)

If we further assume av = O(|v|−β−d+1) for some β > 1, then

max
k∈N

τ{k}v = O(|v|−β). (63)

Proof of Lemma 3. Summing (38) over t ∈ Z
d, we have (62) by induction in

view of

S{k+1} ≤ 1 +
∑
v∈Zd

∑
s �=0

asτ
{k}
v+s ≤ 1 +

∑
s �=0

asS
{k} = 1 + (1− δ)S{k} (64)

and S{0} = 0. To show (63), choose ε such that (1 − ε)−β = 1 + δ/4. Let

C = supv av(1∨ |v|)β and M = max{2C/δ2, Cβ
0 /δ}, where C0 = (4C1/δ)

1/(β−1)

and

C1 =
C22β−1(1− ε)d−1πd/2d

εβ+d−2Γ(d/2 + 1)(β − 1)
.

We will show by induction with respect to k that

τ
{k}
t ≤ M |t|−β , for any t ∈ Z

d. (65)

When k = 0, (65) trivially holds since τ
{0}
t = 0. Suppose it holds for any k ≤ m,

m ∈ N. By induction it suffices to verify it for k = m + 1. Note that for any

|t| ≤ C0 and any k ∈ N, τ
{k}
t ≤ M |t|−β , since τ

{k}
t ≤ S{k} ≤ 1/δ. We now deal

with t with |t| > C0. By (38), we have

τ
{m+1}
t =

⎛
⎝ ∑

|t+v|≥(1−ε)|t|
+

∑
|t+v|≤ε|t|

+
∑

ε|t|<|t+v|<(1−ε)|t|

⎞
⎠ avτ

{m}
t+v =: I + II + III.

Since
∑

v av = 1− δ, we have

I ≤ M((1− ε)|t|)−β
∑

|t+v|≥ε|t|
av ≤ (1− ε)−β(1− δ)M |t|−β .

In part II we have |v| ≥ (1− ε)|t|. Hence

II ≤ C((1− ε)|t|)−β
∑

|t+v|≤ε|t|
τ
{m}
t+v ≤ C(1− ε)−β |t|−β1/δ.
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Since β > 1, using ((x+ y)/2)β ≤ (xβ + yβ)/2, we have

III ≤ MC
∑

ε|t|≤|t+v|≤(1−ε)|t|
|v|−d+1−β |t+ v|−β

≤ MC
∑

ε|t|≤|t+v|≤(1−ε)|t|
(ε|t|)−(d−1)|t|−β

( 1

|t+ v| +
1

(|t| − |t+ v|)
)β

≤ MC2β
ε1−d

|t|d−1+β

∑
ε|t|≤|t+v|≤(1−ε)|t|

|t+ v|−β ≤ MC1

|t|2β−1

Combining all three parts, we derive for |t| ≥ C0 that

τ
{m+1}
t ≤ ((1− δ)(1 + δ/4) + (1 + δ/4)δ/2 + δ/4)M |t|−β ≤ M |t|−β ,

which completes the proof.

Proof of Proposition 1. Note that τ
{k}
t ≥ δ

{k}
t . Hence by Lemma 3,

maxk∈N δ
{k}
t = O(|t|−β). Since limk→∞ ‖X{k}

t − X
{k}
t,0 ‖p = ‖Xt − Xt,0‖p, we

have δt ≤ lim supk→∞ δ
{k}
t , implying that δt = O(|t|−β).

Proof of Corollary 8. Let X
{0}
t = 0 for all t ∈ Θ and generate the processes

(X
{k}
t )t∈Θ by

X
{k+1}
t = G(t)(X

{k}
v , v ∈ Θt; εt), k = 0, 1, . . . .

Then for any v ∈ Θ we have δ
∗{0}
t,v = 0 and

δ
∗{k+1}
t,v ≤

{∑
s∈Θt

αd(t,s)δ
∗{k}
s,v t �= v

M0 +
∑

s∈Θt
αd(t,s)δ

∗{k}
s,v t = v.

Since
∑

s∈Θt
αd(t,s) ≤ ρ0 < 1, similarly as (64) we have by induction that∑

t∈Θ δ
∗{k}
t,v ≤ M0/(1 − ρ0), for any k ∈ N, v ∈ Θ. Thus (40) follows. Similar

argument as in the proof of Theorem 3 implies that for any k ∈ N, δ
∗{k}
t,v ≤

Md(t, v)−β , where M does not depend on t, v, which proves (41). The last
statement can be derived similarly as Remark 11.
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