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Abstract: In the context of regressing a response Y on a predictor X, we
consider estimating the local modes of the distribution of Y given X = x
when X is prone to measurement error. We propose two nonparametric es-
timation methods, with one based on estimating the joint density of (X,Y )
in the presence of measurement error, and the other built upon estimating
the conditional density of Y given X = x using error-prone data. We study
the asymptotic properties of each proposed mode estimator, and provide
implementation details including the mean-shift algorithm for mode seek-
ing and bandwidth selection. Numerical studies are presented to compare
the proposed methods with an existing mode estimation method developed
for error-free data naively applied to error-prone data.
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1. Introduction

The majority of statistical literature on regression analysis focuses on inferring
the mean function of the response Y given a predictor X. There are also a large
body of work devoted to making inference for the quantiles of Y given X in the
regression setting (e.g., Koenker, 2005). Recently, researchers started to investi-
gate methods to infer local modes of Y given X (see Yao et al., 2012; Yao and Li,
2014; Chen et al., 2016, among others). These researchers pointed out valuable
information about the association between the response and the predictor that
conditional modes can provide yet the conditional mean/quantiles can miss.
Advantages of modal regression compared to mean or quantile regression have
been well appreciated in analyzing speed-flow data in traffic engineering (Ein-
beck and Tutz, 2006), studying temperature patterns (Hyndman et al., 1996),
investigating galaxy properties conditioning on a given environment (Bamford
et al., 2008), and in economics (Huang et al., 2013) for instance. To address the
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practical issue of error-contaminated covariates, methods accounting for mea-
surement error in mean regression (Carroll et al., 2006) and methods for quantile
regression in the presence of measurement error (He and Liang, 2000; Wei and
Carroll, 2009; Ma and Yin, 2011; Wang et al., 2012) have been developed. In
contrast, there is no existing research on modal regression when X is prone to
measurement error even though this issue often arises in the aforementioned ap-
plications, and ignoring measurement error in modal regression typically results
in misleading inference. We tackle this important problem in our study.

We propose two nonparametric methods for estimating conditional modes of
a response variable Y given an error-prone covariate X. The first method ex-
ploits a kernel density estimator of the joint density of (X,Y ) that accounts for
measurement error in X. The second method is based on a local linear estimator
of the conditional density of Y given X = x. These methods are elaborated in
Section 2. Asymptotic properties of the mode estimators resulting from these
methods are presented in Section 3. We provide a data-driven method for band-
width selection to facilitate the implementation of the proposed methods in Sec-
tion 4. Numerical studies are presented in Section 5, which include simulation
experiments and an application to dietary data. Section 6 provides a discussion
on follow-up open research questions.

2. Nonparametric estimation of local modes

2.1. Data and measurement error model

Suppose one wishes to collect data for a response Y and a covariateX, {(Xj , Yj),
j = 1, . . . , n}, consisting of n independent pairs from a bivariate distribution
specified by the joint probability density function (pdf), p(x, y). However, the
reality is that X = {Xj}nj=1 cannot be observed directly due to error contami-
nation, and W = {Wj}nj=1 are observed instead. More specifically, the observed
covariate W relates to the underlying true covariate X via an additive measure-
ment error model given by

Wj = Xj + Uj , for j = 1, . . . , n, (2.1)

where U = {Uj}nj=1 are nondifferential measurement errors (Carroll et al., 2006,
Section 2.5), meaning that U ⊥ X and U ⊥ Y = {Yj}nj=1. We assume a known
distribution of U specified by its pdf fU(u) in this study. Estimating the distri-
bution of U requires either replicate measures of each underlying Xj or external
validation data. For instance, if replicate measures are available and one as-
sumes fU(u) known up to some parameters, such as the variance parameter,
then one can follow equation (4.3) in Carroll et al. (2006) to estimate the mea-
surement error variance consistently. One may also estimate the characteristic
function of U as proposed in Delaigle et al. (2008), which is all our proposed in-
ference methods need in terms of information regarding the measurement error
distribution.
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The focal point of statistical inference presented in this study lies in local
modes of the conditional pdf of Y given X = x, p(y|x). Denote by X the
support of X and by Y the support of Y . For a generic bivariate function
g(s, t), gs(s1, t) refers to (∂/∂s)g(s, t) evaluated at s = s1, and notations for
higher-order partial derivatives of g(s, t) are similarly defined. Given x ∈ X , a
mode of p(y|x), denoted by yM(x), is a value in Y such that py{yM(x)|x} = 0
and pyy{yM(x)|x} < 0. Equivalently, yM(x) satisfies py{x, yM(x)} = 0 and
pyy{x, yM(x)} < 0. This latter viewpoint motivates our first proposed estima-
tor of yM(x) described next. It is possible that p(y|x) is multimodal at a given
x, producing a mode set M(x) = {y ∈ Y : py(x, y) = 0 and pyy(x, y) < 0}.
Although multi-modality brings in certain challenges in the actual implementa-
tion of mode seeking, it adds little complication in asymptotics analyses of our
proposed mode estimators. To avoid unnecessarily tedious notations, we assume
a unimodal p(y|x) for the methodology development and theoretical analysis in
the main article. We repeat the key part of the preliminary theoretical develop-
ment with the uni-modality assumption relaxed in Appendix I for illustration
purposes. In addition, multimodal p(y|x) is considered when illustrating the
implementation of the proposed methods in Section 5.

Even though the conditional mode set M(x) is formulated above in terms of
the joint pdf p(x, y), we shall point out that, as x moves in X , the resultant
conditional mode curve(s), {M(x), x ∈ X }, characterize the mode structure of
the conditional density of Y given X. Hence, they typically differ from density
ridges (Genovese et al., 2014) and principal curves (Hastie and Stuetzle, 1989;
Ozertem and Erdogmus, 2011), which focus on certain structures of the joint pdf.
Chen et al. (2016, Section 8) provided detailed explanations on the distinction
between conditional mode curves and density ridges, which are also helpful for
one to see how they differ from principal curves.

2.2. Local constant estimator

We first consider an estimator of yM(x), denoted by ŷM0(x), as the solution
to p̂y(x, y) = 0, where p̂y(x, y) is a kernel-based estimator of py(x, y). The
construction of p̂y(x, y) traces back to the kernel density estimator of p(x, y) in
the absence of measurement error considered in Wand and Jones (1993),

p̃(x, y) =
1

nh1h2

n∑
j=1

K1

(
Xj − x

h1

)
K2

(
Yj − y

h2

)
, (2.2)

where h1 and h2 are bandwidths, and K1(t) and K2(t) are kernels. In the pres-
ence of measurement error, with W observed in place of X, we follow the idea of
deconvoluting kernel (Carroll and Hall, 1988; Stefanski and Carroll, 1990) and
propose an estimator of p(x, y) that accounts for measurement error as follows,

p̂(x, y) =
1

nh1h2

n∑
j=1

KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
, (2.3)
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where

KU, 0(t) =
1

2π

∫
e−its φK1

(s)

φU(s/h1)
ds (2.4)

is the deconvoluting kernel, in which i is the imaginary unit, φK1
(·) is the Fourier

transform of K1(·), and φU(·) is the characteristic function of U , i.e., the Fourier
transform of fU(·). In this article, all integrations are over the entire real line
unless otherwise specified. The estimator p̂(x, y) is motivated by the property
of the deconvoluting kernel that E[KU, 0{(W − x)/h1}|X] = K1{(X − x)/h1}.
A direct implication of this property is that E{p̂(x, y)} = E{p̃(x, y)}.

Differentiating (2.3) with respect to (w.r.t.) y yields an estimator of py(x, y)
based on (W,Y),

p̂y(x, y) =
−1

nh1h2
2

n∑
j=1

KU, 0

(
Wj − x

h1

)
K ′

2

(
Yj − y

h2

)
, (2.5)

where K ′
2(t) = (d/dt)K2(t). To facilitate mode seeking, we choose K2(t) to

be a radially symmetric kernel, that is, K2(t) = c2k2(t
2), in which k2(s) is

a nonnegative-valued function, referred to as the profile of K2(t), and c2 is a
positive constant serving as a normalization constant so that K2(t) integrates to
one. Furthermore, we chooseK2(t) such that its profile k2(s) relates to the profile
of another radially symmetric kernel K3(t) = c3k3(t

2) via k3(s) = −k′2(s) =
−(d/ds)k2(s). The Epanechnikov kernel and the normal kernel are examples
where a kernel possesses the above desirable features for K2(t). Using the so-
chosen K2(t), (2.5) can be further elaborated as

p̂y(x, y) =
2c2

nh1h2
2c3

n∑
j=1

KU, 0

(
Wj − x

h1

)
K3

(
Yj − y

h2

)(
Yj − y

h2

)
.

For illustration purposes, throughout the article, we setK2(t)= exp(−t2/2)/
√
2π.

Then, with c2 = 1/(2
√
2π) and k2(s) = 2 exp(−s/2), one has K3(t) = K2(t),

with c3 = 1/
√
2π and k3(s) = exp(−s/2), and the above estimator becomes

p̂y(x, y) =
1

nh1h2
2

n∑
j=1

KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)(
Yj − y

h2

)
. (2.6)

Based on p̂y(x, y) in (2.6), an estimator of yM(x) is the solution to the equa-
tion

n∑
j=1

KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y) = 0.

Rearranging terms in this equation yields a variant of the equation leading to
the following updating formula that one evaluates iteratively until convergence
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in order to find a solution to it,

y(k+1) =

n∑
j=1

KU, 0

(
Wj − x

h1

)
K2

(
Yj − y(k)

h2

)
Yj

n∑
j=1

KU, 0

(
Wj − x

h1

)
K2

(
Yj − y(k)

h2

) , (2.7)

where y(k+1) is the value resulting from the (k + 1)th iteration as an update of
the value from the previous iteration, y(k), in search for ŷM0(x), for k = 0, 1, . . ..
One may view

ω
(k)
j =

KU, 0{(Wj − x)/h1}K2{(Yj − y(k))/h2}∑n
j′=1 KU, 0{(Wj′ − x)/h1}K2{(Yj′ − y(k))/h2}

as a weight associated with the jth data point (Wj , Yj), for j = 1, . . . , n, of which
the magnitude depends on the proximity of this data point to (x, y(k)). Follow-
ing this viewpoint, one can see that the right-hand side of (2.7) is a weighted
average of Y, and one may interpret this updating formula as updating y(k)

to y(k+1) using the weighted mean of the responses surrounding (x, y(k)). In
fact, this algorithm of finding an estimated mode is in line with the mean-shift
algorithm used to search for modes of a distribution (Cheng, 1995; Comaniciu
and Meer, 2002; Einbeck and Tutz, 2006; Chen et al., 2016). Compared to the
existing mean-shift algorithm and its application, the complication caused by

measurement error is that the weight ω
(k)
j can be negative because the deconvo-

luting kernel KU, 0(·) is not guaranteed to be nonnegative (Stefanski and Carroll,
1990). However, with careful choices of the bandwidths and starting values for
the algorithm, as to be elaborated in Sections 4 and 5, our mean-shift algorithm
can converge and produce a mode estimate ŷM0(x).

We call the so-obtained estimator ŷM0(x) a local constant estimator of the
mode because of the construction of p̂(x, y), which in nature is a local constant
estimator of p(x, y). This interpretation of p̂(x, y) is made clearer when compared
to the way we estimate p(y|x) in order to estimate the mode.

2.3. Local linear estimator

The second estimator of yM(x) we propose, denoted by ŷM1(x), is a solution
to p̂y(y|x) = 0, where p̂y(y|x) is an estimator of py(y|x) obtained as follows.
We start from evoking the local linear estimator of p(y|x) in the absence of
measurement error proposed by Fan et al. (1996) given by

p̃(y|x) = eT

1S
−1
n (x)Tn(x, y), (2.8)

where e1 = (1, 0)T,

Sn(x) =

[
Sn,0(x) Sn,1(x)
Sn,1(x) Sn,2(x)

]
, Tn(x, y) = [Tn,0(x, y), Tn,1(x, y)]

T
,
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in which

Sn,�(x) =
1

nh1

n∑
j=1

(
Xj − x

h1

)�

K1

(
Xj − x

h1

)
, for � = 0, 1, 2, (2.9)

Tn,�(x, y) =
1

nh1h2

n∑
j=1

(
Xj − x

h1

)�

K1

(
Xj − x

h1

)
K2

(
Yj − y

h2

)
, for � = 0, 1.

(2.10)

This estimator is motivated by the property that E[K2{(Y − y)/h2}/h2|X =
x] ≈ p(y|x) as h2 → 0, and hence p(y|x) can be approximately viewed as
the mean function when regressing K2{(Y − y)/h2}/h2 on X. Adopting this
standpoint, one can employ the general strategy of estimating a mean function
via local polynomial estimators (Fan and Gijbels, 1996) to estimate p(y|x), with
{K2{(Yj−y)/h2}/h2}nj=1 being the response data and {Xj}nj=1 as the covariate
data. In particular, the local linear estimator of p(y|x) is as in (2.8).

In the presence of measurement error, we adjust p̃(y|x) to account for mea-
surement error in X and propose the following local linear estimator of p(y|x),

p̂(y|x) = eT

1 Ŝ
−1
n (x)T̂n(x, y), (2.11)

where

Ŝn(x) =

[
Ŝn,0(x) Ŝn,1(x)

Ŝn,1(x) Ŝn,2(x)

]
, T̂n(x, y) =

[
T̂n,0(x, y), T̂n,1(x, y)

]T

,

in which

Ŝn,�(x) =
1

nh1

n∑
j=1

KU,�

(
Wj − x

h1

)
, for � = 0, 1, 2, (2.12)

T̂n,�(x, y) =
1

nh1h2

n∑
j=1

KU,�

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
, for � = 0, 1, (2.13)

and, with φ
(�)
K1

(s) denoting the �-th derivative of φK1
(s),

KU,�(t) = i−� 1

2π

∫
e−its φ

(�)
K1

(s)

φU(s/h1)
ds, for � = 0, 1, 2. (2.14)

The transform of K1(·) in (2.14) is a generalization of the transform in (2.4)
derived in Delaigle et al. (2009). This generalization leads to a generalized decon-
voluting kernel KU,�(t) possessing the property that E[KU,�{(W −x)/h1}|X] =
{(X − x)/h1}�K1{(X − x)/h1}, � = 0, 1, 2, . . .. Thanks to this property, given
(X,Y), (2.12) and (2.13) are unbiased estimators of their counterparts in the
absence of measurement error in (2.9) and (2.10), respectively. Hence, p̂(y|x) is
a sensible counterpart estimator of p̃(y|x) in the presence of measurement error.
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Using (2.11), an estimator of py(y|x) follows immediately by differentiating
p̂(y|x) w.r.t. y. This gives

p̂y(y|x) = eT

1 Ŝ
−1
n (x)T̂′

n(x, y), (2.15)

where T̂′
n(x, y) = [T̂ ′

n,0(x, y), T̂
′
n,1(x, y)]

T, in which, for � = 0, 1,

T̂ ′
n,�(x, y) =

∂

∂y
T̂n,�(x, y) =

1

nh1h2
2

n∑
j=1

KU,�

(
Wj − x

h1

)
K2

(
Yj − y

h2

)(
Yj − y

h2

)
.

Setting p̂y(y|x) = 0 gives an equation to which the solution is the mode estimator
ŷM1(x). Elaborating (2.15) reveals that ŷM1(x) solves

n∑
j=1

{
KU, 0

(
Wj − x

h1

)
Ŝn,2(x)−KU, 1

(
Wj − x

h1

)
Ŝn,1(x)

}
K2

(
Yj − y

h2

)
(Yj − y) = 0.

This suggests the following updating formula one may use iteratively until con-
vergence to find the solution to the equation,

y(k+1) =

n∑
j=1

{
KU, 0

(
Wj − x

h1

)
Ŝn,2(x)−KU, 1

(
Wj − x

h1

)
Ŝn,1(x)

}
K2

(
Yj − y(k)

h2

)
Yj

n∑
j=1

{
KU, 0

(
Wj − x

h1

)
Ŝn,2(x)−KU, 1

(
Wj − x

h1

)
Ŝn,1(x)

}
K2

(
Yj − y(k)

h2

) .

Like the previous updating formula, the right-hand side of this updating formula
can also be viewed as a weighted average of Y, and thus this algorithm of
searching for an estimated mode is also in the spirit of the mean-shift algorithm.

The common theme the above two proposed mode estimation methods fol-
low is to solve an equation of the form ĝy(x, y) = 0, where ĝy(x, y) an esti-
mator of gy(x, y), and g(x, y) is a function such that gy{x, yM(x)} = 0 and
gyy{x, yM(x)} < 0. When g(x, y) = p(x, y), the solution is ŷM0(x); and, when
g(x, y) = p(y|x), solving the equation yields ŷM1(x). Furthermore, this common
theme closely relates to the idea of corrected score (Nakamura, 1990; Novick and
Stefanski, 2002; Carroll et al., 2006). More specifically, since E{p̂(x, y)|(X,Y)}=
p̃(x, y), one has E{p̂y(x, y)|(X,Y)} = p̃y(x, y). Hence, the estimating equation
one solves to obtain ŷM0(x), i.e., p̂y(x, y) = 0, is the corrected score estimat-
ing equation corresponding to p̃y(x, y) = 0, which is the equation one solves to
estimate modes in the absence of measurement error. Although, given (X,Y),
p̂y(y|x) is not an unbiased estimator of p̃y(y|x), the building blocks in the for-

mer are unbiased scores of those in the latter, i.e., E{Ŝn(x)|X} = Sn(x) and

E{T̂n(x, y)|(X,Y)} = Tn(x, y). When the solution to an equation associated
with a method is not unique, the method leads to an estimated mode set, de-
noted by M̂0(x) and M̂1(x) for the first and the second method, respectively. In
what follows, we present asymptotic properties of these mode estimators. For
notational simplicity, we assume M̂0(x) = {ŷM0(x)} and M̂1(x) = {ŷM1(x)} in
the next section. Also, yM is often used in place of yM(x) for brevity in the
sequel, and ŷM is used to refer to a mode estimator generically when we do not
distinguish between ŷM0(x) and ŷM1(x).
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3. Asymptotic properties

3.1. Preliminary

We focus on convergence rates of three forms of error associated with ŷM in
this section, first, the pointwise error defined by Δn(x) = |ŷM(x)− yM(x)|; sec-
ond, the mean integrated squared error (MISE), MISE(ŷM) = E{

∫
X Δ2

n(x)dx};
and third, the uniform error, Δn = supx∈X Δn(x). We show next that the
convergence rate of Δn(x) hinges on the bias and variance of ĝy(x, yM). Given
the pointwise error rate, the convergence rate of MISE(ŷM) follows straightfor-
wardly. Under regularity conditions pointed out along the way, the uniform error
rate can be established using existing results regarding the uniform consistency
of kernel-based estimators (Ginè and Guillou, 2002; Einmahl and Mason, 2005;
Chen et al., 2015).

Because ĝy(x, ŷM) = 0, by the mean-value theorem, one has ĝy(x, yM) =
ĝy(x, yM)− ĝy(x, ŷM) = (yM − ŷM)ĝyy(x, y

∗), where y∗ lies between yM and ŷM .
Thus,

ŷM − yM = − ĝy(x, yM)

ĝyy(x, y∗)
. (3.1)

Provided that ĝyy(x, yM) and gyy(x, yM) are bounded away from zero, one has

|{ĝyy(x, y∗)}−1 − {gyy(x, yM)}−1| = O (‖ĝyy − gyy‖∞) ,

where ‖ĝyy − gyy‖∞ = sup(x,y)∈X ×Y |ĝyy(x, y) − gyy(x, y)|. Then (3.1) implies
that

ŷM − yM = −{gyy(x, yM)}−1ĝy(x, yM) +O (‖ĝyy − gyy‖∞) ĝy(x, yM). (3.2)

It follows that Δn(x) = |{gyy(x, yM)}−1||ĝy(x, yM)|+O(‖ĝyy−gyy‖∞)|ĝy(x, yM)|,
or, equivalently,

Δn(x)

|{gyy(x, yM)}−1||ĝy(x, yM)| = 1 +O(‖ĝyy − gyy‖∞)|gyy(x, yM)|. (3.3)

Under conditions (CK2), (CK5) and (CK9) in Appendix A, by Lemma 10
in Chen et al. (2015), ‖ĝyy − gyy‖∞ converges to zero in probability. There-
fore, under these conditions, (3.3) suggests that Δn(x) can be approximated
by |{gyy(x, yM)}−1||ĝy(x, yM)|, and thus the convergence rate of Δn(x) can be
revealed through studying the convergence rate of |ĝy(x, yM)|.

Once we turn to studying the convergence rate of |ĝy(x, yM)|, the bias and
variance of ĝy(x, yM) become highly relevant. This connection can be explained
by first noting that gy(x, yM) = 0, and thus one has

|ĝy(x, yM)| = |ĝy(x, yM)− gy(x, yM)|
≤ |ĝy(x, yM)− E{ĝy(x, yM)}|+ |E{ĝy(x, yM)} − gy(x, yM)|

= OP

[√
Var{ĝy(x, yM)}

]
+ |Bias{ĝy(x, yM)}|. (3.4)
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The above preliminary asymptotic analysis leads to the road map we follow to
study the error rates associated with ŷM , which is to, first, derive the asymptotic
bias and variance of ĝy(x, yM), which leads to the pointwise error rate by (3.4);
second, establish the convergence rate of MISE(ŷM); third, provide the uniform
error rate. This is also the order in which we present our theoretical findings for
each of the proposed mode estimator in the next two subsections. Supporting
materials of these findings are provided in the appendices. In particular, all
coded conditions referenced henceforth are in Appendix A.

3.2. Convergence rates associated with ŷM0(x)

With g(x, y) = p(x, y), we establish the following asymptotic bias result for
p̂y(x, yM), with the proof given in Appendix C.

Lemma 3.1. Under conditions (CP1) and (CK1)–(CK4),

Bias{p̂y(x, yM)} = 0.5
{
pxxy(x, yM)μ

(1)
2 h2

1 + pyyy(x, yM)h2
2

}
+ o(h2

1 + h2
2),

(3.5)

where pxxy(x, y) = (∂3/∂x2∂y)p(x, y), pyyy(x, y) = (∂3/∂y3)p(x, y), and μ
(1)
2 =∫

t2K1(t)dt.

This bias result coincides with the result in Chacón et al. (2011), where kernel-
based estimators of derivatives of a multivariate joint pdf are considered in the
absence of measurement error. This is expected since E{p̂y(x, y)} = E{p̃y(x, y)},
as pointed out in Section 2.2.

The variance of p̂y(x, yM) depends on the smoothness of the measurement er-
ror distribution. There are two levels of smoothness of fU(u) considered in mea-
surement error literature (Fan, 1991a,b,c), ordinary smooth and super smooth.
Their definitions are given below.

Definition 3.1. The distribution of U is ordinary smooth of order b if

lim
t→+∞

tbφU(t) = c and lim
t→+∞

tb+1φ′
U(t) = −cb

for some positive constants b and c.

Definition 3.2. The distribution of U is super smooth of order b if

d0|t|b0 exp(−|t|b/d2) ≤ |φU(t)| ≤ d1|t|b1 exp(−|t|b/d2) as |t| → ∞

for some positive constants d0, d1, d2, b, b0 and b1.

In Appendix D, we derive the asymptotic variance of p̂y(x, yM) and the results
are given in the next lemma.

Lemma 3.2. Assume conditions required for Lemma 3.1 hold. When U is ordi-
nary smooth of order b, under conditions (CU2) and (CK5)–(CK7), if
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nh1+2b
1 h3

2 → ∞, then

Var{p̂y(x, yM)} =
η0fW,Y (x, yM)

4
√
πc2nh1+2b

1 h3
2

+ o

(
1

nh1+2b
1 h3

2

)
, (3.6)

where η0 =
∫
|t|2b|φK1

(t)|2dt/(2π), and fW,Y (·, ·) is the joint pdf of (W,Y ).

When U is super smooth of order b, under conditions (CK5) and (CK8), if
nh1−2b2

1 h3
2 exp(−2h−b

1 /d2) → ∞, then

Var{p̂y(x, yM)} ≤
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h3

2

CfW,Y (x, yM) + o

{
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h3

2

}
, (3.7)

where C is some finite positive constant and b2 = b0I(b0 < 0.5).

Putting results in Lemmas 3.1 and 3.2 together, one has the convergence
rate of |p̂y(x, yM)|, which leads to the pointwise error rates summarized in the
following theorem.

Theorem 3.1. Under the conditions in Lemma 3.1, Lemma 3.2, and (CK9),
when U is ordinary smooth,

Δn(x) =
|pxxy(x, yM)μ

(1)
2 h2

1 + pyyy(x, yM)h2
2|

−2pyy(x, yM)
+OP

(√
1

nh1+2b
1 h3

2

)
+o(h2

1+h2
2);

(3.8)
and, when U is super smooth,

Δn(x) =
|pxxy(x, yM)μ

(1)
2 h2

1 + pyyy(x, yM)h2
2|

−2pyy(x, yM)
+OP

⎧⎨⎩ exp(h−b
1 /d2)√

nh1−2b2
1 h3

2

⎫⎬⎭+o(h2
1+h2

2).

(3.9)

Chen et al. (2016) estimated local modes based on p̃(x, y) in (2.2) with h1 =
h2 = h, and they showed that the pointwise error rate of the resultant mode
estimator is of order O(h2) + OP{

√
1/(nh4)}. Comparing this with (3.8) and

(3.9), one can see that the pointwise error tends to zero much slower with the
added complication of measurement error, especially when it is super smooth.
Hence, mode estimation in the presence of measurement error is substantially
more challenging, as one would expect with noisier data.

The convergence rate of MISE(ŷM0) can also be deduced from Lemmas 3.1 and
3.2. To see this more clearly, first note that, assuming interchangeability of ex-
pectation and integration, one has MISE(ŷM) =

∫
X

{
Bias2(ŷM) + Var(ŷM)

}
dx.

As elaborated in Appendix E, the dominating terms in the integrated squared
bias of ŷM0,

∫
X Bias2(ŷM0)dx, can be easily derived based on Bias{p̂y(x, yM)};

and the dominating terms in the integrated variance of ŷM0,
∫

X Var(ŷM0)dx,
can be deduced from Var{p̂y(x, yM)}. Combining these dominating terms, we
reach the following conclusion regarding MISE(ŷM0).
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Theorem 3.2. Under conditions in Theorem 3.1, and assume that pxxy(x, yM)
and pyyy(x, yM) are square integrable, then, when U is ordinary smooth,

MISE(ŷM0) = O{(h2
1 + h2

2)
2}+O

(
1

nh1+2b
1 h3

2

)
;

when U is super smooth,

MISE(ŷM0) = O{(h2
1 + h2

2)
2}+O

{
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h3

2

}
.

Moving to the uniform error, Δn, it is helpful to note that, by (3.3), (3.4),
and Lemma 3.1, one has

Δn(x) = |{pyy(x, yM)}−1|
[
|p̂y(x, yM)− E{p̂y(x, yM)}|+O(h2

1 + h2
2)
]
+ oP (1).

Thus

Δn = sup
x∈X

|{pyy(x, yM)}−1||p̂y(x, yM)− E{p̂y(x, yM)}|+O(h2
1 + h2

2) + oP (1).

Following similar methods in Ginè and Guillou (2002) and Einmahl and Mason
(2005), one can establish the following result regarding Δn.

Theorem 3.3. Under conditions in Theorem 3.1 and (CP2), for ordinary
smooth U ,

Δn = O(h2
1 + h2

2) +OP

(√
logn

nh1+2b
1 h3

2

)
;

and, for super smooth U ,

Δn = O(h2
1 + h2

2) +OP

(√
exp(h−b

1 /d2) logn

nh1−2b2
1 h3

2

)
.

The uniform error rate associated with the mode estimator with h1 = h2 =
h considered in Chen et al. (2016) in the absence of measurement error is
O(h2) +OP{

√
log n/(nh4)}. Compared with their result, Theorem 3.3 suggests

the inevitable compromise in convergence rate due to measurement error.

3.3. Convergence rates associated with ŷM1(x)

With g(x, y) = p(y|x), we present in Appendix F the bias analysis and in Ap-
pendix G the variance analysis of p̂y(yM |x). Results from these analyses are
summarized in the following two lemmas.

Lemma 3.3. When U is ordinary smooth, assume (CK4), (CK5), (CX1), and
(nh1+2b

1 h3
2)

−1/2 = O(h4
1h

−1
2 + h3

2); when U is super smooth, assume (CK4),
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(CK6), (CX1), (CP1), and exp(h−b
1 /d2)(nh

1−2b2
1 h3

2)
−1/2 = O(h4

1h
−1
2 +h3

2), then
one has

Bias{p̂y(yM |x)} = f−1
X (x)

[
{0.5pxxy(x, yM)− f ′

X(x)pxy(yM |x)}μ(1)
2 h2

1

+ 0.5pyyy(x, yM)h2
2

]
+O(h4

1h
−1
2 + h3

2), (3.10)

where fX(x) is the pdf of X and f ′
X(x) = (d/dx)fX(x).

Lemma 3.4. Under the conditions in Lemma 3.3, when U is ordinary smooth,
if nh1+2b

1 h3
2 → ∞, then

Var {p̂y(yM |x)} =
η0fW,Y (x, yM)

4
√
πc2nh1+2b

1 h3
2f

2
X(x)

+ o

(
1

nh1+2b
1 h3

2

)
; (3.11)

and, when U is super smooth, if nh1−2b2
1 h2 exp(−2h1/d2) → ∞, then

Var {p̂y(yM |x)} ≤
C exp

(
2h−b

1 /d2
)

nh1−2b2
1 h3

2f
2
X(x)

+O

{
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h2

}
, (3.12)

where C is some finite positive constant.

Although the order of Bias{p̂y(yM |x)} in (3.10) and that of Bias{p̂y(x, yM)}
in (3.5) are both O(h2

1+h2
2), the dependence of the dominating term on f−1

X (x)
shown in (3.10) indicates that estimating p̂y(yM |x) at the (diminishing) tail of
the X-distribution can be challenging. The residual term in (3.10) suggests that
we need h4

1h
−1
2 → 0 in order for p̂y(yM |x), and thus for ŷM1, to be consistent.

A sufficient condition for h4
1h

−1
2 → 0 is to have h1 → 0 faster than h2 → 0 as

n → ∞. This may indicate that a sensible bandwidth selection procedure tends
to choose h1 < h2, which is indeed observed in our simulation study when we
apply the data-driven bandwidth selection method described in Section 4.

Comparing (3.11) with (3.6), one can see that the dominating variance of
p̂y(yM |x) can be higher than that of p̂y(x, yM), and the former can be large at the
(diminishing) tail of fX(x). This suggests that estimating py(yM |x) via p̂y(yM |x),
and thus estimating yM(x) via ŷM1(x), will be subject to high uncertainty if data
surrounding x are scarce.

Based on these bias and variance results, we establish the following theorem
regarding the pointwise error rate of ŷM1(x).

Theorem 3.4. Under conditions in Lemma 3.3, Lemma 3.4, (CK2) and (CK9),
when U is ordinary smooth,

Δn(x) =
| {pxxy(x, yM)− 2f ′

X(x)pxy(yM |x)}μ(1)
2 h2

1 + pyyy(x, yM)h2
2|

−2fX(x)pyy(yM |x)

+OP

(√
1

nh1+2b
1 h3

2

)
+O(h4

1h
−1
2 + h3

2); (3.13)
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and, when U is super smooth,

Δn(x) =
| {pxxy(x, yM)− 2f ′

X(x)pxy(yM |x)}μ(1)
2 h2

1 + pyyy(x, yM)h2
2|

−2fX(x)pyy(yM |x)

+OP

⎧⎨⎩ exp(h−b
1 /d2)√

nh1−2b2
1 h3

2

⎫⎬⎭+O(h4
1h

−1
2 + h3

2). (3.14)

Following the same line of arguments as those leading to MISE(ŷM0) in Sec-
tion 3.2, we show the same convergence rate for MISE(ŷM1) as those stated in
Theorem 3.2 under slightly different conditions. Now we need to assume all con-
ditions stated in Lemmas 3.3 and 3.4, (CP2), and that pxxy(x, yM), pyyy(x, yM),
and pxy(yM |x) are square integrable.

Finally, for the uniform error Δn associated with ŷM1, using the elaboration
of p̂y(yM |x) in Appendix F (Section F.1 to be specific), one can see that the
dominating term of p̂y(yM |x) is simply p̂y(x, yM) divided by fX(x). Hence, the
convergence rate of Δn associated with ŷM1 is the same as that of Δn associated
with ŷM0 stated in Theorem 3.3 under the same set of conditions, in addition
to the assumption that fX(x) is bounded away from zero over the range of x of
interest, [xL, xU ].

3.4. Asymptotic optimal bandwidths

With the asymptotic error rates of the proposed mode estimators provided in
Sections 3.2 and 3.3, the asymptotic optimal (in some sense) bandwidths are
readily available. In particular, taking MISE as the metric to optimize w.r.t.
h = (h1, h2)

T, we show that, for both proposed mode estimators, the optimal
rate of MISE(ŷM) is of order O(h4

1) for both ordinary smooth U and super
smooth U . The orders of the asymptotic optimal h1 and h2 (as n → ∞) are
given in a corollary next, where “
” refers to “tending to zero or infinity at the
same rate.” Note that explicit expressions of the asymptotic optimal h are not
available except for ŷM0 when U is ordinary smooth.

Corollary 3.1. Under conditions in Theorem 3.2, when U is ordinary smooth
of order b, the asymptotic optimal bandwidths for ŷM0 satisfy h1 = r1h2 and
h2 = r2n

−1/(2b+8), where

r1 =

{
(b− 1)I1 +

√
(b− 1)2I21 + 3(2b+ 1)I2I3

3μ
(1)
2 I2

}1/2

,

r2 =

{
3η0I4

4
√
πc2r2b+1

1 (r21μ
(1)
2 I1 + I3)

}1/(2b+8)

,

in which
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I1 =

∫
X

p−2
yy (x, yM)pxxy(x, yM)pyyy(x, yM)dx,

I2 =

∫
X

p−2
yy (x, yM)p2xxy(x, yM)dx,

I3 =

∫
X

p−2
yy (x, yM)p2yyy(x, yM)dx,

I4 =

∫
X

p−2
yy (x, yM)fW, Y (x, yM)dx.

When U is super smooth of order b, the asymptotic optimal bandwidths for

ŷM0 satisfy h1 
 h
2/(b+2)
2 and exp(2h−b

1 /d2)/h
3b/2−2b2+6
1 
 n. The rates of the

asymptotic optimal h1 and h2 for ŷM1 are the same as those for ŷM0 under each
type of U . The corresponding optimal rate of MISE(ŷM) is of order O(h4

1) under
each type of U for both ŷM0 and ŷM1.

These rates of the asymptotic optimal bandwidths for mode estimators are
also the rates of the asymptotic optimal bandwidths for the corresponding den-
sity derivative estimators. This is not surprising considering the connection be-
tween the proposed mode estimators and density derivative estimators pointed
out in Section 3.1. For instance, when U follows a Laplace distribution, which
is ordinary smooth of order b = 2, the asymptotic optimal h1 and h2 are of
order O(n−1/12) for p̂y(x, y), and the corresponding optimal MISE of p̂y(x, y)
is of order O(h4

1) = O(n−1/3). In the absence of measurement error, Chacón et
al. (2011, Theorem 3) showed that the asymptotic optimal bandwidths for the
kernel-based estimator of py(x, y) is of order O(n−1/4), and the corresponding
optimal MISE of the density derivative estimator is of order O(h2

1) = O(n−1/2).
This comparison highlights that measurement error inflate the optimal MISE
rate of density derivative estimators, and also lead to much larger optimal band-
widths.

4. Bandwidth selection

The choice of bandwidths can noticeably affect finite sample performance of
almost all kernel-based estimators. The explicit expression of the asymptotic
optimal h for ŷM0 in Corollary 3.1 is not ready to use for choosing bandwidths
given a finite sample until reliable estimators of unknown quantities, such as I1,
I2, and I3, are available. In this section we present a strategy of choosing h that
mostly follows the idea of incorporating cross validation (CV) and simulation
extrapolation (SIMEX, Cook and Stefanski, 1994) proposed by Delaigle and
Hall (2008). This strategy is based on the CV method of choosing bandwidth
for estimating conditional density in the absence of measurement error developed
by Fan and Yim (2004) and Hall et al. (2004). These authors constructed a CV
criterion based on the weighted integrated squared error (ISE) associated with
a kernel-based estimator of p(y|x), p̃(y|x), defined by
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ISE =

∫
Y

∫
X

{p̃(y|x)− p(y|x)}2fX(x)ω(x)dxdy

=

∫
Y

∫
X

p̃(y|x)2fX(x)ω(x)dxdy − 2

∫
Y

∫
X

p̃(y|x)p(y|x)fX(x)ω(x)dxdy

+

∫
Y

∫
X

p(y|x)2fX(x)ω(x)dxdy,

where ω(·) is a nonnegative weight function used to avoid estimating p(y|x) at an
x around which data are scarce. Given the observed data X, a reasonable choice
of ω(·) is simply ω(x) = I(x ∈ [xL, xU ]), where xL and xU are the 2.5th and
97.5th percentile of X, respectively, and I(·) is the indicator function. Noting
that the third term in the above elaboration of ISE does not depend on h and
thus can be ignored when minimizing ISE with respect to h, they proposed the
following estimator of the first two terms as a CV criterion,

CV(p̃,h,X,Y, ω) =
1

n

n∑
j=1

ω(Xj)

∫
Y

p̃−j(y|Xj)
2dy − 2

n

n∑
j=1

ω(Xj)p̃−j(Yj |Xj),

(4.1)
where p̃−j(y|Xj) is the estimate of p(y|Xj) based on data (X,Y) excluding
(Xj , Yj), for j = 1, . . . , n. It is worth pointing out that, if one uses the kernel
density estimator of p(y|x) with the kernel associated with y, i.e., K2(·), being
the standard normal pdf, then the integral in (4.1) can be derived explicitly.

Clearly, the components in (4.1) that involve Xj cannot be evaluated in the
presence of measurement error. To account for measurement error in X (but not

in Y), we first set h2 at ĥ2 = 1.06sY n
−1/5 according to the normal reference

rule (Silverman, 1986), where sY is the sample standard deviation of Y; then
we adopt the CV-SIMEX method to find an approximation of

h1 = argminh1>0CV(p̂,h,X,Y, ω), (4.2)

where p̂ denotes the estimate of p(y|x) based on (W,Y). Implementation of the
CV-SIMEX method involves the following steps.

Step 1: Generate B sets of further contaminated data according to W∗
b =

W +U∗
b , where U∗

b = {U∗
b,j}nj=1 are i.i.d. from fU(u), for b = 1, . . . , B.

Step 2: Viewing W as the unobserved true covariate values, and W∗
b as the

error-contaminated surrogate of W, find

h∗
1 = argminh1>0

1

B

B∑
b=1

CV(p̂∗b ,h,W,Y, ω̃), (4.3)

where p̂∗b is the estimate of p(y|x) based on (W∗
b ,Y), and ω̃(w) = I(w ∈

[wL, wU ]), with wL and wU being the 2.5th and 97.5th percentile of W,
respectively.

Step 3: Generate another B sets of further contaminated data, W∗∗
b = W∗

b +
U∗∗

b , where U∗∗
b = {U∗∗

b,j}nj=1 are i.i.d. from fU(u), for b = 1, . . . , B.
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Step 4: Viewing W∗
b as the unobserved true covariate values, and W∗∗

b as the
the error-contaminated surrogate of W∗

b , find

h∗∗
1 = argminh1>0

1

B

B∑
b=1

CV(p̂∗∗b ,h,W∗
b ,Y, ω̃b), (4.4)

where p̂∗∗b is the estimate of p(y|x) based on (W∗∗
b ,Y), and ω̃b(w) = I(w ∈

[w∗
Lb, w

∗
Ub]), with w∗

Lb and w∗
Ub being the 2.5th and 97.5th percentile of W∗

b ,
respectively.

Step 5: Set ĥ1 = h∗2
1 /h∗∗

1 as the final choice of h1 for estimating p(y|x) based
on (W,Y).

The rationale behind the CV-SIMEX method is that the way h∗
1 in (4.3)

relates to h1 in (4.2) is similar to the way h∗∗
1 (4.4) relates to h∗

1. In particular,
Delaigle and Hall (2008) showed that, as Var(U) → 0, log(h1) − log(h∗

1) ≈
log(h∗

1)− log(h∗∗
1 ), and thus h1 ≈ h∗2

1 /h∗∗
1 , which suggests Step 5. We then set

h1 at ĥ1 when estimating local modes using (W,Y). For the local constant

mode estimator ŷM0(x), p̂(y|x) in (4.2) is p̂(x, y)/f̂X(x), where p̂(x, y) is given in

(2.3) and f̂X(x) is the deconvoluting density estimator of fX(x) as in Stefanski
and Carroll (1990). When considering the local linear mode estimator ŷM1(x),
p̂(y|x) in (4.2) is given by (2.11).

5. Empirical evidence

In this section we first present simulation studies to demonstrate the perfor-
mance of the two proposed mode estimators, and compare them with the mode
estimator resulting from naively applying the method in Chen et al. (2016)
to error-contaminated data. Then we apply these methods to a real data ex-
ample. In Chen et al. (2016), it is assumed that h1 = h2. We do not impose
this constraint when implementing their method for a fair comparison with our
methods.

5.1. Simulation design

In the simulation experiment, we consider the following two true model config-
urations:

(C1) [Y |X = x] ∼ 0.5N
(
m(x)− 2σ(x), 2.52σ2(x)

)
+ 0.5N

(
m(x), 0.52σ2(x)

)
,

where m(x) = x + x2, σ(x) = 0.5 + e−x2

, X ∼ Uniform(−2, 2), U ∼
Laplace(0, σu/

√
2). In this case, p(y|x) is unimodal with M(x) ≈ {m(x)},

∀x ∈ [−2, 2].
(C2) [Y |X = x] ∼ 0.5N

(
m1(x), 0.5

2
)
+0.5N

(
m2(x), 0.5

2
)
, where m1(x) = x+

x2, m2(x) = m1(x)−6, X ∼ Uniform(−2, 2), and U ∼ Laplace(0, σu/
√
2).

In this case, p(y|x) is bimodal with M(x) ≈ {m1(x), m2(x)}, ∀x ∈ [−2, 2].
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Under each true model configuration, we vary Var(U) = σ2
u to achieve the re-

liability ratio λ = Var(X)/{Var(X) + σ2
u} equal to 0.75, 0.85, and 0.95. Given

each of the six simulation settings, we generate 500 Monte Carlo (MC) replicates,
each of sample size n = 500, from the true model of (W,Y ). When implement-
ing our proposed methods, we choose K1(·) of which the Fourier transform is
φK1(t) = (1−t2)3I(t ∈ [−1, 1]), and chooseK2(·) to be the standard normal pdf.
For the method in Chen et al. (2016), both K1(·) and K2(·) are the standard
normal pdfs.

To focus on comparing different mode estimators without being distracted by
data-driven bandwidth selection, we first use approximated theoretical optimal
bandwidths for each method to mitigate the confounding effect of data-driven
bandwidth selection on the estimation quality. Denote by M̂(x) a mode set
estimator generically. Given a candidate h, we obtain M̂(x) for a sequence of
grid points in [xL, xU ], {xk = xL +kΔ}Mk=1, where Δ is the partition resolution,
and M is the largest integer no larger than (xU−xL)/Δ. Then the approximated
theoretical optimal h associated with M̂(x) is obtained by minimizing with

respect to h the empirical ISE, ISE =
∑M

k=0{Haus(M̂(xk), M(xk))}2Δ, where
Haus(S1, S2) denotes the Hausdorff distance between sets S1 and S2, which
is defined by Haus(S1, S2) = inf{r : S1 ⊂ S2 ⊕ r, S2 ⊂ S1 ⊕ r}, in which
S� ⊕ r = {x : (infy∈S�

|x− y|) ≤ r}, for � = 1, 2. Simply put, M̂(x) and M(x)
are close according to the Hausdorff distance if and only if every point in either
set is close to some point in the other set, where the closeness of two points is
assessed by the Euclidean distance.

For any given finite sample, besides the choice of h, the starting values one
uses in the mean-shift algorithm also influence Haus(M̂(x), M(x)). A starting
mode too far from the majority of the data cloud around x can cause numerical
trouble in this iterative algorithm, and thus we suggest exercising great care in
choosing starting values. One way that works well in our simulation study to
set starting values is as follows. Given x at which M(x) is of interest, define an
index set Ix = {j : |Wj−x| < e}, where e is a positive small value chosen so that
the number of elements in Ix is relatively large, say, 30. Then the starting values
for estimating M(x) via the mean-shift algorithm are set to be the percentiles
of {Yj : j ∈ Ix} equally spaced between the 10th and 90th percentiles. For
example, if one chooses to start with three initial values for an x, then one may
set the starting values to be the 10th, 50th, and 90th percentiles of {Yj : j ∈ Ix}.
To avoid missing a mode, the number of starting values, denoted by N , can be
slightly bigger than one’s visual impression of the number of clusters of the
observed data cloud.

5.2. Simulation results

Table 1 shows the MC average of ISE of each mode (set) estimate across 500
MC replicates and the associated standard error under each simulation setting,
with [xL, xU ] = [−2, 2] and N = 4. In terms of both ISE and variability, our
mode estimates, M̂0(x) and M̂1(x), outperform the naive mode estimate, de-
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Table 1

Averages of ISE across 500 MC replicates using approximated theoretical optimal
bandwidths. Numbers in parentheses are (10× standard errors) associated with the averages

(C1) (C2)
λ 0.75 0.85 0.95 0.75 0.85 0.95

M̂N (x) 1.50 (0.21) 1.05 (0.15) 0.64 (0.10) 1.52 (0.29) 0.81 (0.12) 0.34 (0.05)

M̂0(x) 1.15 (0.17) 0.88 (0.13) 0.62 (0.10) 0.91 (0.16) 0.57 (0.09) 0.30 (0.04)

M̂1(x) 0.43 (0.10) 0.32 (0.07) 0.22 (0.05) 0.93 (0.31) 0.51 (0.13) 0.21 (0.04)

Table 2

Averages of ISE across 500 MC replicates using h chosen by the CV-SIMEX method.
Numbers in parentheses are (10× standard errors) associated with the averages

(C1) (C2)
λ 0.75 0.85 0.95 0.75 0.85 0.95

M̂N (x) 0.83 (0.19) 0.51 (0.12) 0.25 (0.06) 1.20 (0.51) 0.51 (0.11) 0.21 (0.03)

M̂0(x) 0.61 (0.15) 0.42 (0.11) 0.24 (0.05) 0.68 (0.37) 0.44 (0.39) 0.33 (0.40)

M̂1(x) 0.44 (0.12) 0.29 (0.08) 0.18 (0.07) 1.07 (0.54) 0.53 (0.29) 0.35 (0.60)

noted by M̂N(x), in all six settings. And the improvement of our estimates over
the naive estimate is more substantial when the error contamination is more
severe (i.e., for smaller λ). In addition, the local linear estimate M̂1(x) performs
much better than the local constant estimate M̂0(x) under (C1), while the ad-
vantage of the former is less obvious under (C2). In fact, M̂1(x) deteriorates,
although still outperforms M̂N(x), faster than M̂0(x) does as λ decreases. The
boxplots of ISEs and several estimated mode curves from each method are given
in Appendix H, which clearly show that there are more outliers for M̂1(x) com-
pared to M̂0(x). This comparison between the two proposed mode estimators
indicates that the local linear estimator may be more suitable when p(y|x) is
unimodal, and can be subject to more numerical instability when applying to
data from a multimodal distribution. This is reminiscent of a remark in Einbeck
and Tutz (2006), who recommended use the local linear mode estimator (in the
absence of measurement error in their study) “only for the case of functional
dependence, i.e. where the mode is unique.”

Acknowledging the fact that the approximated theoretical optimal h is not
available in practice, we carry out a second round of simulation under the same
six settings, with h2 fixed at ĥ2 for all three methods, h1 used in our estimators
chosen via the CV-SIMEX method with B = 15, and h1 for the naive method
chosen via naive CV as if W were X in (4.2). Table 2 shows the MC averages
of ISE of the three considered estimates across 500 MC replicates, along with
the corresponding standard errors, with [xL, xU ] = [−1.8, 1.8]. One can see that,
under (C1), the proposed estimates still outperform the naive estimate. How-
ever, this is not as clear-cut under (C2). It appears that the number of modes
in an estimated mode set (for any of these methods) can be sensitive to h2, and
a smaller h2 tends to give a bigger estimated mode set, creating more estimated
local modes that can be far away from the true modes. As pictorial demonstra-
tion of these results, boxplots of these ISEs and several estimated mode curves
from each method are provided in Appendix H.
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Fig 1. Estimated mode curves using one data set generated from each of (C1) (panel (a))
and (C2) (panel (b)), incorporating the data-driven bandwidth selection and data-dependent

starting values (in turquoise). Each panel contains the truth M(x) (black lines), M̂N (x) (blue

lines), M̂0(x) (green lines), and M̂1(x) (red lines).

Besides the choice of h2, as pointed out in Section 5.1, the starting values
for the mean-shift algorithm also affect finite sample performance of these es-
timators. We use the data-dependent starting values described in Section 5.1
in the first round of simulations where the approximated theoretical optimal h
is used. With the data-driven h used in the estimates as in the second round
of simulations, the quality of an estimate is even more sensitive to the choice
of starting values. Figure 1 depicts the estimated mode curves from the three
methods based on one simulated data set under each of (C1) and (C2), with the
data-dependent starting values highlighted in turquoise. From there one can see
that, if one starts at a starting mode value far away from the truth, the mean-
shift algorithm can fail to converge or/and result in an inferior mode estimate.
To avoid the interaction effects between the data-driven bandwidth selection
and the data-dependent starting values, allowing us to focus on assessing the
performance of the data-driven bandwidth selection, we set the starting values
to be {m(x)±0.5} under (C1), and {m1(x)±0.5, m2(x)±0.5} under (C2) when
estimating M(x) in the second round of simulations that produce Table 2.

5.3. Dietary data

For illustration purposes, we consider estimating local modes of the food fre-
quency questionnaire (FFQ) intake given one’s long-term usual intake using
dietary data. The data set to be analyzed contains the FFQ intake, measured
as percent calories from fat (Y ), and six 24-hour food recalls from 271 sub-
jects in the Women’s Interview Survey of Health. The covariate of interest, the
long-term usual intake (X), cannot be observed directly. A common practice
in epidemiology studies is to use data from 24-hour food recalls to construct a
surrogate (W ) of the true covariate. For instance, Liang and Wang (2005) used
the average of two 24-hour food recalls from a subject as W and studied the
mean FFQ intake conditioning on X and other error-free covariates; Wang et al.
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Fig 2. The dietary data (black circles) and three estimated mode curves: the naive estimate

M̂N (x) (blue line), and our proposed estimates accounting for measurement error, M̂0(x)

(green line) and M̂1(x) (red line). Turquoise points are the data-dependent starting values
for the mean-shift algorithm.

(2012) used the average of six 24-hour food recalls as W and estimated condi-
tional quantiles of the FFQ intake. All intake values are on the log scale in these
studies. We followed the construction of W in Wang et al. (2012), associated
with which the estimated reliability ratio is 0.737.

Figure 2 presents the naive estimated mode curve and the two non-naive
estimated mode curves from the two proposed methods. Both visual inspection
of the scatter plot and the mean-shift algorithm seem to suggest a unimodal
p(y|x). Empirical evidence from simulation experiments suggest that this is the
scenario where the local linear mode estimator M̂1(x) can substantially improve
over the naive estimator M̂N(x), and the local constant mode estimator M̂0(x)
can also correct M̂N(x) to some extent. The discrepancy between the three
estimated mode curves at the lower segments in Figure 2 can be due to bias
correction from the two non-naive estimates, with the correction from M̂1(x)
more noticeable than that from M̂0(x).

6. Discussion

The study presented in this article fills in an important gap in the measurement
error literature by providing mode estimation in the presence of measurement
error. We rigorously study the asymptotic properties of the proposed mode
estimators and develop a data-driven bandwidth selection method. This line of
research leads us to more interesting open questions that we have started to
investigate upon the completion of this project.

An immediate extension of this research is to allow the response prone to
measurement error, with or without measurement error in covariates. An easy
revision of the current estimator of the conditional (or joint) density is to replace
K2(·) with the corresponding deconvoluting kernel. The complication then, at
least from the implementation standpoint, is that one will lose the mean-shift
algorithm updating formula because the deconvoluting kernel for Y is no longer
radially symmetric, the key feature of K2(·) that leads to the updating for-
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mula in all existing mean-shift algorithm applications. A different mode seeking
algorithm is needed in this case.

An even more involved problem arises from our development of data-driven
bandwidth selection methods. In this study, we employed the CV-SIMEXmethod
to select the bandwidth in the x-direction, h1, with the bandwidth in the y-
direction, h2, fixed at the normal reference that only depends on the response
data. We conjecture that a more sensible way to choose these two bandwidths is
to choose them jointly according to some CV criterion tailored for mode estima-
tion, as opposed to choosing them in two separate steps using two different CV
criteria that are designed for density estimation. It is unclear at this point how
to implement such joint selection while bearing in mind that h1 and h2 play very
different roles, with one relating to an error-prone predictor and the other corre-
sponding to an error-free response. Chen et al. (2016) assumed h1 = h2 = h and
then chose h to minimize the volume of the estimated prediction set, a statistic
constructed to strive for a balance between the number of estimated local modes
and the distance between the estimated mode and Y. Following their idea, one
may incorporate in the CV-SIMEX method the following CV criterion defined
by (in the absence of measurement error)

CV(M̃,h,X,Y, ω) =
1

n

n∑
j=1

d
(
Yj , M̃−j(Xj)

)
Ñ−j(Xj)ω(Xj),

where d(x, S) = infy∈S |x− y| for a set S, M̃(x) represents the estimated mode

set at x based on (X,Y), Ñ(x) is the number of distinct elements in M̃(x),
and ω(·) is some weight function. However, theoretical justification of this CV
criterion has not been established, and we did not see improvement from this
bandwidth selection method over our current version of CV-SIMEX method in
the simulation study (not shown here).

Besides the need for a new CV criterion for the purpose of mode estimation,
we also believe that mode estimation, with or without measurement error, can
benefit from using bandwidths that depend on x. We gain this intuition from
simulation study with multimodal p(y|x), where we encountered more difficulty
in estimating modes when multiple true mode curves are steeper and close to
each other. This difficulty is expected and can be illustrated by Figure 3, where
two pairs of curves are shown, with the left pair flat and the right pair steep
(as functions of x). Fixing at an x, the separation (in y-direction) between two
curves within each pair is the same in this figure, and the variability of Y around
each mode curve is also the same. But, within a given window (of a fixed width)
in the x-direction, the data points (in red in Figure 3) surrounding the two steep
curves are much harder to be separated into two clusters compared to the (red)
data points around the two flat mode curves. And indeed in our simulation
experiments (not shown here), the h that works well for identifying the flat
pair of mode curves does poorly in revealing the steep pair of the mode curves,
and vice versa. Hence, if the multiple mode curves associated with p(y|x) show
different steepness and different amount of separation along the y-direction over
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Fig 3. Illustration of two pairs of mode curves, one pair being steeper than the other pair
as functions of x. The red data points fall within a window of width 0.1 in the x-direction
centering at x = −0.5 for the left pair of curves and x = 0.5 for the right pair of curves.

different regions along the x-direction, it seems more sensible to apply different
bandwidths along X .

In light of the need for variable bandwidths, the asymptotic optimal global
bandwidths provided in Corollary 3.1 may seem irrelevant for the purpose of
bandwidth selection, although they are theoretically valuable because they lead
to optimal rates of MISE of the proposed mode estimators. Whether or not these
optimal rates reach the minimax rate (given a well-defined class of mode estima-
tors and a class of distributions or mode functions) remains an open problem.
We conjecture that the key to solving this problem lies in the minimax conver-
gence rate of MISE associated with nonparametric density derivative estimators
in the presence of measurement error, which itself is an open problem that we
will tackle next.

Appendix A: Technical conditions

Here we provide technical conditions that are needed at different parts of the
theoretical development for different estimators considered in the main article.

(I) Conditions on the joint probability density p(x, y)

(CP1) The joint density p(x, y) is four times continuously differentiable with all
partial derivatives bounded in absolute value by a finite positive constant
Cp.

(CP2) For (x, y) ∈ X × Y where py(x, y) = 0, there exists a finite positive
constant λ2 such that |pyy(x, y)| > λ2.

Condition (CP1) is an ordinary smoothness condition. Condition (CP2) is a
sharpness condition imposed on all critical points and implies no saddle points
for p(x, y).
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(II) Conditions on kernels K1(t) and K2(t)

(CK1) K�(−t) is an even function and
∫
K�(t)dt = 1, for � = 1, 2.

(CK2) K2(t) is four times continuous differentiable with all derivatives bounded

in absolute value, and
∫
{K(k)

2 (t)}2dt < ∞,
∫
t2K

(k)
2 (t)dt < ∞, for k =

0, 1, 2.

(CK3) supt |φK1(t)/φU(t/h1)| < ∞ and
∫
|φ(k)

K1(t)
/φU(t/h1)|dt < ∞, for k =

0, 1, 2.
(CK4) |φK1

(t)|∞ < ∞, |φ′
K1

(t)|∞ < ∞.

(CK5)
∫
(|t|b + |t|b−1){|φK1

(t)|+ |φ′
K1

(t)|}dt < ∞, and
∫
|t|4|φK1

(t)|dt < ∞.
(CK6) |φK1

(t)| is supported on [−1, 1].
(CK7) φK1

(t) is even and real.

(CK8) φ
(k)
K1

(t) is not identically 0, for k = 0, 1, 2.
(CK9) The class of functions defined by

K4 = ∪4
k=0{v �→ KU, 0{(v1−x)/h1}K(k)

2 {(v2−y)/h2} : v = (v1, v2)
T ∈ R

2}

is a VC-type class (van der Varrt and Wellner, 1996), that is, there exist
A, v > 0, and a constant envelop τ such that supQ N(K4,L 2(Q), τε) ≤
(A/ε)v, where N(T, dT , ε) is the ε-covering number for a semi-metric space
(T, d) and Q is any probability measure.

Define μ
(�)
k =

∫
tkK�(t)dt for k = 0, 1, . . .. Then (CK1) implies that μ

(�)
k = 0 for

all odd k and μ
(�)
0 = 1, for � = 1, 2. Condition (CK2) and (CK5) are needed

to derive the uniform error rates of the proposed mode estimator. With k = 0,
(CK3) gives equation (1.2) in Stefanski and Carroll (1990), the assumption
necessary for a well-behaved deconvoluting kernel KU, 0(t). Condition (CK3)
with k = 1, 2 and (CK8) are needed to derive the mean and variance of p̂y(y|x).
Conditions (CK4) and (the first half of) (CK5) are needed in Lemma B.4 in
Delaigle et al. (2009), which we use to derive Var{ĝy(x, y)} when U is ordinary
smooth. Conditions (CK4) and (CK6) are needed in Lemma B.9 in Delaigle
et al. (2009), which we evoke to derive Var{ĝy(x, y)} when U is super smooth.
Condition (CK7), along with (CU1) given later, are imposed so that KU, 0(t) is
real. Finally, (CK9) is needed to obtain the uniform consistency of the kernel-
based estimators involved in the study.

(III) Conditions on measurement error U

(CU1) φU(t) �= 0, ∀t, and it is an even function.
(CU2) |φ′

U(t)|∞ < ∞.

Condition (CU1) is needed for a well-defined real-valuedKU, �(t), for � = 0, 1, . . .,
and (CU2) is imposed in Lemma B.4 in Delaigle et al. (2009).
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(IV) Conditions on the density of X, fX(x):

(CX1) fX(x) > 0, ∀x ∈ X ; fX(x) is twice differentiable and f
(k)
X (x) is bounded

in absolute value by a finite positive constant Cf , for k = 0, 1, 2.

This condition is needed for deriving the mean and variance of p̂y(y|x).

Appendix B: Relevant existing lemmas

In deriving Var{ĝy(x, y)} we evoke Lemma B.4, Lemma B.6 (for ordinary smooth
U) and Lemma B.9 (for super smooth U) in Delaigle et al. (2009). For com-
pleteness, these lemmas are restated next.

Lemma B.4: Assume that, for � = �1, �2, ‖φ(�)
K ‖∞ < ∞, ‖φ(�+1)

K ‖∞ < ∞,

‖φ′
U‖∞ < ∞,

∫
(|t|b + |t|b−1){|φ(�)

K |+ |φ(�+1)
K |}dt < ∞, and

∫
|t|b|φ(�)

K |dt <
∞, then, for a bounded function g,

lim
n→∞

h2b

∫
KU,�1(v)KU,�2(v)g(x− hv)dv

= i−�1−�2(−1)−�2
g(x)

c2
1

2π

∫
|t|2bφ(�1)

K (t)φ
(�2)
K (t)dt.

Lemma B.9: Suppose that φK(t) is supported on [−1, 1], and, for � = �1 and �2,

‖φ(�)
K (t)‖∞ < ∞. Then |

∫∞
−∞ KU,�1(v)KU,�2(v)dv| ≤ Ch2b2 exp(2h−b/d2),

where b2 = b0I(b0 < 1/2).

Appendix C: Asymptotic bias of p̂y(x, y)

Assuming (CK3), it is shown that E[KU, 0{(W − x)/h1}|X] = K1{(X − x)/h1}
(Carroll and Hall, 1988; Stefanski and Carroll, 1990). Hence, E{p̂y(x, y)} =
E{p̃y(x, y)}, thus Bias{p̂y(x, y)} = Bias{p̃y(x, y)}. We next focus on deriving
E{p̃y(x, y)}.

Recall that

p̃y(x, y) =
1

nh1h3
2

n∑
j=1

K1

(
Xj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y).

It follows that

E{p̃y(x, y)} =

∫ ∫
1

h1h2
2

K1

(
u− x

h1

)
K2

(
v − y

h2

)(
v − y

h2

)
p(u, v)dudv

= h−1
2

∫ ∫
tK1(s)K2(t)p(x+ h1s, y + h2t)dsdt. (C.1)

Under (CP1), p(x + h1s, y + h2t) has the third-order Taylor expansion around
(x, y) as follows,
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p(x, y)+px(x, y)h1s+py(x, y)h2t

+
1

2

{
pxx(x, y)h

2
1s

2+2pxy(x, y)h1h2st+pyy(x, y)h
2
2t

2
}

+
1

3!

{
pxxx(x, y)h

3
1s

3+
3!

2
pxxy(x, y)h

2
1h2s

2t+
3!

2
pxyy(x, y)h1h

2
2st

2+pyyy(x, y)h
3
2t

3

}
+r1h

3
1s

3+r2h
2
1h2s

2t+r3h1h
2
2st

2+r4h
3
2t

3, (C.2)

where r1, r2, r3, and r4 approach zero as h1, h2 → 0, pxx(x, y) = (∂2/∂x2)p(x, y),
pxxy(x, y) = (∂3/∂x2∂y)p(x, y), and other partial derivatives are similarly de-
noted. Given (CK1), using this third-order Taylor expansion in (C.1) leads to

E{p̃y(x, y)} = μ
(2)
2 py(x, y) +

1

2
pxxyμ

(1)
2 μ

(2)
2 h2

1 +
1

3!
pyyy(x, y)μ

(2)
4 h2

2

+ r2μ
(1)
2 μ

(2)
2 h2

1 + r4μ
(2)
4 h2

2,

which is equal to

py(x, y) + 0.5{pxxy(x, y)μ(1)
2 h2

1 + pyyy(x, y)h
2
2}+ r2μ

(1)
2 h2

1 + 3r4h
2
2

when K2(t) is the standard normal density, the choice we make in the main
article. Hence,

Bias{p̂y(x, y)} = 0.5{pxxy(x, y)μ(1)
2 h2

1 + pyyy(x, y)h
2
2}+ o(h2

1 + h2
2). (C.3)

Setting y = yM gives Lemma 3.1 in the main article.

Appendix D: Asymptotic variance of p̂y(x, y)

Recall that

p̂y(x, y) =
1

nh1h3
2

n∑
j=1

KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y).

It follows that

Var{p̂y(x, y)} =
1

nh2
1h

6
2

Var

{
KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y)

}
=

1

nh2
1h

6
2

E

{
K2

U, 0

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)
(Yj − y)2

}
− 1

nh2
1h

6
2

[
E

{
KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y)

}]2
.

(D.1)

From the bias analysis in Appendix C, we have
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E

{
KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y)

}
= h1h

3
2[py(x, y) + 0.5{pxxy(x, y)μ(1)

2 h2
1 + pyyy(x, y)h

2
2}+ o(h2

1 + h2
2)],

thus[
E

{
KU, 0

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(Yj − y)

}]2
= h2

1h
6
2

[
p2y(x, y) + py(x, y)

{
pxxy(x, y)μ

(1)
2 h2

1 + pyyy(x, y)h
2
2

}
+ o(h2

1 + h2
2)
]
.

(D.2)

This suggests that the second term in (D.1) is of order O(n−1) if py(x, y) �= 0,
and it is of order o{n−1(h2

1 + h2
2)} if py(x, y) = 0. We next look into the first

term in (D.1).
With nondifferential measurement error, the joint pdf of (W,Y ) is

fW,Y (w, y) =

∫
p(x, y)fU(w − x)dx. (D.3)

It follows that

E

{
K2

U, 0

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)
(Yj − y)2

}
= h2

2

∫ ∫
K2

U, 0

(
u− x

h1

)
K2

2

(
v − y

h2

)(
v − y

h2

)2

fW,Y (u, v)dudv

= h1h
3
2

∫ ∫
K2

U, 0(s)K
2
2 (t)t

2fW, Y (x+ h1s, y + h2t)dsdt

= h1h
3
2

∫ ∫
K2

U, 0(s)K
2
2 (t)t

2

∫
p(r, y + h2t)fU(x+ h1s− r)drdsdt

= h1h
3
2

∫
K2

U, 0(s)

∫
fU(x+ h1s− r)

∫
K2

2 (t)t
2p(r, y + h2t)dtdrds. (D.4)

Using the first-order Taylor expansion of p(r, y+h2t) around (r, y) in the inner-
most integral in (D.4) gives∫

K2
2 (t)t

2p(r, y + h2t)dt =

∫
K2

2 (t)t
2{p(r, y) + py(r, y)h2t+O(h2

2)}dt

= p(r, y)ν
(2)
2 + py(r, y)ν

(2)
3 h2 +O(h2

2),

where ν
(2)
k =

∫
tkK2

2 (t)dt, for k = 2, 3. Putting this elaboration of the innermost
integral in (D.4) and using the first-order Taylor expansion of fU(x + h1s − r)
around x− r in (D.4) gives

E

{
K2

U, 0

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)
(Yj − y)2

}



Modal regression in the presence of measurement error 3605

= h1h
3
2

∫
K2

U, 0(s)

∫
{fU(x− r) + f ′

U(x− r)h1s+O(h2
1)}

× {p(r, y)ν(2)2 + py(r, y)ν
(2)
3 h2 +O(h2

2)}drds.

This reveals the dominating term of the expectation above as

h1h
3
2ν

(2)
2

∫
K2

U, 0(s)

∫
fU(x− r)p(r, y)drds = h1h

3
2ν

(2)
2 fW,Y (x, y)

∫
K2

U, 0(s)ds.

(D.5)

When U is ordinary smooth of order b, by Lemma B.4 in Delaigle et al.
(2009), which is repeated under Appendix B above, (D.5) indicates that

E

{
K2

U, 0

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)
(Yj − y)2

}
= h1−2b

1 h3
2c

−2η0ν
(2)
2 fW, Y (x, y) + o(h1−2b

1 h3
2), (D.6)

where η0 = (2π)−1
∫
|t|2b|φK1

(t)|2dt. Because (D.6) tends to zero slower than

O(h2
1h

6
2), (D.1) is dominated by the first term there. Hence, assuming nh1+2b

1 h3
2→

∞, we have

Var{p̂y(x, y)} =
η0ν

(2)
2 fW, Y (x, y)

nh1+2b
1 h3

2c
2

+ o

(
1

nh1+2b
1 h3

2

)
.

Setting y = yM gives the first half of Lemma 3.2 in the main article, where ν
(2)
2

is replaced by 1/(4
√
π) because K2(·) is the standard normal pdf in the main

article.

When U is super smooth of order b, by Lemma B.9 in Delaigle et al. (2009),
repeated in Appendix B above, (D.5) suggests that

E

{
K2

U, 0

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)
(Yj − y)2

}
≤ h1+2b2

1 exp(2h−b
1 /d2)h

3
2Cν

(2)
2 fW, Y (x, y), (D.7)

where C is a finite positive constant. Hence, if nh1−2b2
1 h3

2 exp(−2h−b
1 /d2) → ∞,

(D.1) suggests

Var{p̂y(x, y)} ≤ 1

nh2
1h

6
2

E

{
K2

U, 0

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)
(Yj − y)2

}
≤

exp
(
2h−b

1 /d2
)

nh1−2b2
1 h3

2

Cν
(2)
2 fW,Y (x, y) + o

{
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h3

2

}
.

Setting y = yM and absorbing ν
(2)
2 = 1/(4

√
π) in C gives the second half of

Lemma 3.2 in the main article.
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Appendix E: Convergence rate of MISE(ŷM0)

Assuming interchangeability of integrations, the mean integrated squared error
(MISE) of ŷM0(x) can be decomposed into the sum of two parts,

MISE(ŷM) =

∫
X

Bias2(ŷM0)dx+

∫
X

Var(ŷM)dx.

By equation (17) in the main article, one has

Bias(ŷM0) = −{pyy(x, yM)}−1E {p̂y(x, yM)}+ E {O (‖p̂yy − pyy‖∞) p̂y(x, yM)} ,
(E.1)

Var(ŷM0) = {pyy(x, yM)}2Var {p̂y(x, yM)}+ o(1). (E.2)

To derive the integrated squared bias, using (C.3) in (E.1), one has that,
provided that ‖p̂yy − pyy‖∞ tends to zero,

Bias2(ŷM) = 0.25p−2
yy (x, yM)

{(
μ
(1)
2

)2

h4
1p

2
xxy(x, yM) + h4

2p
2
yyy(x, yM)

+ 2μ
(1)
2 h2

1h
2
2pxxy(x, yM)pyyy(x, yM)

}
+ o

{(
h2
1 + h2

2

)2}
.

Under (CP2), and assuming pxxy(x, yM) and pyyy(x, yM) square integrable, one
has ∫

X

Bias2(ŷM0)dx = O
{(

h2
1 + h2

2

)2}
.

To derive the integrated variance, using the variance analysis Appendix D in
(E.2), one has that, when U is ordinary smooth,∫

x∈X

Var(ŷM0)dx = O

(
1

nh1+2b
1 h3

2

)
;

and, when U is super smooth,∫
x∈X

Var(ŷM)dx = O

{
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h3

2

}
.

Putting the above integrated squared bias of ŷM0(x) and integrated variance
of ŷM0(x) together gives Theorem 3.2 in the main article.

Appendix F: Asymptotic bias of p̂y(yM |x)

F.1. Outline of deriving E{p̂y(yM |x)}

Recall that p̂y(y|x) = eT
1 Ŝ

−1
n (x)T̂′

n(x, y). Denote by [Ŝ0,0
n (x), Ŝ0,1

n (x)] the first

row of Ŝ−1
n (x), then one has
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p̂y(y|x) =
1∑

�=0

Ŝ0,�
n (x)T̂ ′

n,�(x, y). (F.1)

The derivations of the dominating bias of p̂y(y|x) involve two tasks. First, reveal-
ing the dominating terms in Ŝ0,�

n (x). Under (CX1), (CU1), and (CK1), (CK3)–
(CK5), (CK8), Delaigle et al. (2009) showed that

Ŝ−1 = S−1f−1
X (x)− h1S

−1S̃S−1f ′
X(x)f

−2
X (x) +OP (h

2
1),

where

S =

[
μ
(1)
0 μ

(1)
1

μ
(1)
1 μ

(1)
2

]
=

[
1 0

0 μ
(1)
2

]
, S̃ =

[
μ
(1)
1 μ

(1)
2

μ
(1)
2 μ

(1)
3

]
=

[
0 μ

(1)
2

μ
(1)
2 0

]
.

Elaborating the above result yields

Ŝ0,0
n (x) = f−1

X (x) +OP (h
2
1), Ŝ0,1

n (x) = −h1f
′
X(x)f

−2
X (x) +OP (h

2
1). (F.2)

This completes the first task.
The second task is to reveal the dominating terms in T̂ ′

n,�(x, y) according to
the following decomposition,

T̂ ′
n,�(x, y) = E

{
T̂ ′
n,�(x, y)

}
+OP

[√
Var

{
T̂ ′
n,�(x, y)

}]
. (F.3)

Next, we first look into E{T̂ ′
n,�(x, y)}, then we study Var{T̂ ′

n,�(x, y)}, and show
that the former dominates that latter under certain conditions.

F.2. Deriving E{T̂ ′
n,�(x, y)}

Because

T̂ ′
n,�(x, y) =

1

nh1h2
2

n∑
j=1

KU,�

(
Wj − x

h1

)
K2

(
Yj − y

h2

)(
Yj − y

h2

)
, (F.4)

and

E

{
KU,�

(
Wj − x

h1

)∣∣∣∣Xj

}
=

(
Xj − x

h1

)�

K1

(
Xj − x

h1

)
,

we have

E{T̂ ′
n,�(x, y)}

=
1

h1h2
2

E

{
KU, �

(
Wj − x

h1

)
K2

(
Yj − y

h2

)(
Yj − y

h2

)}
(F.5)

=
1

h1h2
2

E

{(
Xj − x

h1

)�

K1

(
Xj − x

h1

)
K2

(
Yj − y

h2

)(
Yj − y

h2

)}
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=
1

h1h2
2

∫ ∫ (
u− x

h1

)�

K1

(
u− x

h1

)
K2

(
v − y

h2

)(
v − y

h2

)
p(u, v)dudv

= h−1
2

∫ ∫
s�tK1(s)K2(t)p(x+ h1s, y + h2t)dsdt.

Inserting (C.2) in the above integrand leads to

E{T̂ ′
n,�(x, y)}

= h−1
2

∫ ∫
s�tK1(s)K2(t)

[
p(x, y) + px(x, y)h1s+ py(x, y)h2t

+
1

2

{
pxx(x, y)h

2
1s

2 + 2pxy(x, y)h1h2st+ pyy(x, y)h
2
2t

2
}

+
1

3!

{
pxxx(x, y)h

3
1s

3 +
3!

2
pxxy(x, y)h

2
1h2s

2t

+
3!

2
pxyy(x, y)h1h

2
2st

2 + pyyy(x, y)h
3
2t

3
}

+O {r4(h)}
]
dsdt, (F.6)

where r4(h) =
∑r1+r2=4

r1,r2=0,...,4 h
r1
1 hr2

2 , in which h = (h1, h2)
T.

Focusing on the case with y = yM , noting that py(x, yM) = 0 and μ
(�)
k = 0

when k is odd, for � = 1, 2, (F.6) reduces to{
E{T̂ ′

n,0(x, yM)} = 0.5
{
pxxy(x, yM)μ

(1)
2 h2

1 + pyyy(x, yM)h2
2

}
+O

{
h−1
2 r4(h)

}
,

E{T̂ ′
n,1(x, yM)} = pxy(x, yM)μ

(1)
2 h1 +O

{
h−1
2 r4(h)

}
.

(F.7)

F.3. Deriving Var{T̂ ′
n,�(x, y)}

By (F.4), we have

Var{T̂ ′
n,�(x, y)}

=
1

nh2
1h

4
2

Var

{
KU,�

(
Wj − x

h1

)
K2

(
Yj − y

h2

)(
Yj − y

h2

)}
≤ 1

nh2
1h

4
2

E

{
K2

U,�

(
Wj − x

h1

)
K2

2

(
Yj − y

h2

)(
Yj − y

h2

)2
}

(F.8)

=
1

nh2
1h

4
2

∫ ∫
K2

U,�

(
w − x

h1

)
K2

2

(
v − y

h2

)(
v − y

h2

)2

fW,Y (w, v)dwdv

=
1

nh2
1h

4
2

∫ ∫ ∫
K2

U,�

(
w − x

h1

)
K2

2

(
v − y

h2

)(
v − y

h2

)2

fU(w − u)p(u, v)dudwdv

=
1

nh1h3
2

∫ ∫ ∫
K2

U,�(s)K
2
2 (t)t

2fU(x+ h1s− u)p(u, y + h2t)dudsdt
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=
1

nh1h3
2

∫ {∫
K2

U,�(s)fU(x+ h1s− u)ds

}{∫
t2K2

2 (t)p(u, y + h2t)dt

}
du.

(F.9)

Next, we elaborate the two inner integrals, one w.r.t. s and the other w.r.t. t,
in (F.9).

For the inner integral w.r.t. t, using the second-order Taylor expansion of
p(u, y + h2t) around (u, y), one has∫

K2
2 (t)t

2p(u, y + h2t)dt

=

∫
K2

2 (t)t
2
{
p(u, y) + py(u, y)h2t+ 0.5pyy(u, y)h

2
2t

2 +O(h3
2)
}
dt.

Setting y = yM , the above gives∫
K2

2 (t)t
2p(u, yM + h2t)dt (F.10)

=

∫
K2

2 (t)t
2
{
p(u, yM) + 0.5pyy(u, yM)h2

2t
2 +O(h3

2)
}
dt

= p(u, yM)ν
(2)
2 + 0.5pyy(u, yM)ν

(2)
4 h2

2 +O(h3
2). (F.11)

When it comes to the inner integral w.r.t s in (F.9), one shall distinguish
between ordinary smooth U and super smooth U . If U is ordinary smooth of
order b, under conditions (CK4) and (CK5), Lemma B.4 in Delaigle et al. (2009)
implies that,∫

K2
U,�(s)fU(x+ h1s− u)ds = h−2b

1 c−2η�fU(x− u) + o(h−2b
1 ), (F.12)

where η� = (2π)−1
∫
|t|2b{φ(�)

K1
(t)}2dt, for � = 0, 1. By (F.11) and (F.12), (F.9)

is equal to

η�
nh1h3

2c
2

∫ {
h−2b
1 fU(x− u) + o(h−2b

1 )
}

× {p(u, yM)ν
(2)
2 + 0.5pyy(u, yM)ν

(2)
4 h2

2 +O(h3)}du

=
η�

nh1h3
2c

2

[
{p(·, yM) ∗ fU} (x)ν(2)2 h−2b

1 + 0.5 {pyy(·, yM) ∗ fU} (x)ν(2)4 h−2b
1 h2

2

+ o(h−2b
1 )

]
, (F.13)

where “∗” is the convolution operator, that is, {g(·, y) ∗ fU}(x) =
∫
fU(x −

u)g(u, y)du. Because the dominating term within the square brackets in (F.13)
is

{p(·, yM) ∗ fU} (x)ν(2)2 h−2b
1 ,

which is equal to fW, Y (x, yM)ν
(2)
2 h−2b

1 by (D.3), (F.9) indicates that, for � = 0, 1,

Var{T̂ ′
n,�(x, yM)} ≤ fW,Y (x, yM)ν

(2)
2 η�

nh1+2b
1 h3

2c
2

+ o

(
1

nh1+2b
1 h3

2

)
. (F.14)
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It follows that, when U is ordinary smooth, the first term in (F.3) dominates
the second term there if (nh1+2b

1 h3
2)

−1/2 = O{h−1
2 r4(h)}.

If U is super smooth of order b, by Lemma B.9 in Delaigle et al. (2009), under
conditions (CK4) and (CK6), one has∫

K2
U,�(t)dt ≤ Ch2b2

1 exp(2h−b
1 /d2),

where b2 = b0I(b0 < 0.5), and C is some positive finite constant. Hence,

Var{T̂ ′
n,�(x, yM)}

≤ 1

nh1h3
2

∫
K2

U,�(s)

∫
fU(x+ sh1 − u)

{
p(u, yM)ν

(2)
2 + 0.5pyy(u, yM)ν

(2)
4 h2

2

+O(h3
2)
}
duds

≤ 1

nh1h3
2

∫
K2

U,�(s)

∫
fU(x+ sh1 − u){Cpν

(2)
2 +O(h2

2)}duds, by (CP1),

≤ exp(2h−b
1 /d2)

nh1−2b2
1 h3

2

{CCpν
(2)
2 +O(h2

2)}

=
exp(2h−b

1 /d2)CCpν
(2)
2

nh1−2b2
1 h3

2

+O

{
exp(2h−b

1 /d2)

nh1−2b2
1 h2

}
. (F.15)

Hence, when U is super smooth, the first term in (F.3) dominates the second
term there if {exp(2h−b

1 /d2)/(nh
1−2b2
1 h3

2)}1/2 = O{h−1
2 r4(h)}.

F.4. Concluding Lemma 3.3

Based on the mean and variance analysis of T̂ ′
n,�(x, yM) in Sections F.2 and

F.3, we now reach the conclusion that, if (nh1+2b
1 h3

2)
−1/2 = O{h−1

2 r4(h)} when

U ordinary smooth, or if exp(h−b
1 /d2)/

√
nh1−2b2

1 h3
2 = O{h−1

2 r4(h)} when U is

super smooth, then{
T̂ ′
n,0(x, yM) = 0.5

{
pxxy(x, yM)μ

(1)
2 h2

1 + pyyy(x, yM)h2
2

}
+OP

{
h−1
2 r4(h)

}
,

T̂ ′
n,1(x, yM) = pxy(x, yM)μ

(1)
2 h1 +OP

{
h−1
2 r4(h)

}
.

(F.16)
This completes the second task stated in Section F.1 in order to derive
E{p̂y(yM |x)}.

Using (F.2) and (F.16) in (F.1), we have

p̂y(yM |x) = Ŝ0,0
n (x)T̂ ′

n,0(x, yM) + Ŝ0,1
n (x)T̂ ′

n,1(x, yM)

= f−1
X (x)

[
0.5

{
pxxy(x, yM)μ

(1)
2 h2

1 + pyyy(x, yM)h2
2

}
−f−1

X (x)f ′
X(x)pxy(x, yM)μ

(1)
2 h2

1

]
+OP

{
h−1
2 r4(h)

}
. (F.17)
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Because the dominating term in (F.17) is a non-random quantity, this dominat-
ing term is also the dominating bias of p̂y(yM |x). This proves Lemma 3.3 in the
main article.

Appendix G: Asymptotic variance of p̂y(yM |x)

By (F.2),

p̂y(yM |x)

=

1∑
�=0

Ŝ0,�
n (x)T̂ ′

n,�(x, yM)

=
{
f−1
X (x)+OP (h

2
1)
}
T̂ ′
n,0(x, yM)+

{
−h1f

′
X(x)f

−2
X (x)+OP (h

2
1)
}
T̂ ′
n,1(x, yM)

=
1

nh1h2
2

n∑
j=1

[{
f−1
X (x)+OP (h

2
1)
}
KU,0

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)

+
{
−h1f

′
X(x)f

−2
X (x)+OP (h

2
1)
}
KU,1

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)]
.

Extracting the dominating terms in the above expression reveals that, to find
the dominating variance of p̂y(yM |x), it suffices to look into the variance of

1

nh1h2
2

n∑
j=1

{
f−1
X (x)KU,0

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)

−h1f
′
X(x)f

−2
X (x)KU,1

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
. (G.1)

This leads us to study the following variance and covariance,

Var

{
KU,�

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
, for � = 0, 1, (G.2)

Cov

{
KU,0

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)
,

KU,1

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
. (G.3)

G.1. Deriving the variance in (G.2)

For � = 0, 1,

Var

{
KU,�

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
= E

{
K2

U,�

(
Wj − x

h1

)
K2

2

(
Yj − yM

h2

)(
Yj − yM

h2

)2
}

(G.4)
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−
[
E

{
KU,�

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}]2
. (G.5)

The expectation in (G.4) is considered in Section F.3 (see (F.8)). From there,
we have shown that, if U is ordinary smooth of order b, then (relating to (F.14))

E

{
K2

U,�

(
Wj − x

h1

)
K2

2

(
Yj − yM

h2

)(
Yj − yM

h2

)2
}

= h1−2b
1 h2c

−2ν
(2)
2 η�fW,Y (x, yM) + o

(
h1−2b
1 h2

)
; (G.6)

and, if U is super smooth of order b, then (relating to (F.15))

E

{
K2

U,�

(
Wj − x

h1

)
K2

2

(
Yj − yM

h2

)(
Yj − yM

h2

)2
}

≤ h1+2b2
1 h2 exp

(
2h−b

1 /d2
)
CCpν

(2)
2 +O

{
h1−2b2
1 h3

2 exp
(
2h−b

1 /d2
)}

. (G.7)

The expectation in (G.5) is considered in Section F.2 (see (F.5)). By (F.7), this
expectation is of order O{h1h

2
2(h

2
1+h2

2)} when � = 0, and it is of order O(h2
1h

2
2)

when � = 1. Hence, for both � = 0, 1, (G.5) tends to zero faster than (G.6) and
(G.7).

It follows that that, for ordinary smooth U ,

Var

{
KU,�

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
= h1−2b

1 h2ν
(2)
2 c−2η�fW,Y (x, yM) + o

(
h1−2b
1 h2

)
; (G.8)

and, for super smooth U ,

Var

{
KU,�

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
≤ h1+2b2

1 h2 exp
(
2h−b

1 /d2
)
CCpν

(2)
2 +O

{
h1−2b2
1 h3

2 exp
(
2h−b

1 /d2
)}

. (G.9)

G.2. Deriving the covariance in (G.3)

The covariance in (G.3) is equal to

E

{
KU,0

(
Wj − x

h1

)
KU,1

(
Wj − x

h1

)
K2

2

(
Yj − yM

h2

)(
Yj − yM

h2

)2
}

(G.10)

− E

{
KU,0

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
× E

{
KU,1

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
. (G.11)
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In Section F.2, we have shown that the product in (G.11) is of order O(h3
1h

4
2),

which tends to zero faster than (G.10), as to be revealed next.
When U is ordinary smooth, by Lemma B.4 in Delaigle et al. (2009),

E

{
KU,0

(
Wj − x

h1

)
KU,1

(
Wj − x

h1

)
K2

2

(
Yj − yM

h2

)(
Yj − yM

h2

)2
}

= h1−2b
1 h2ν

(2)
2 c−2η01fW,Y (x, yM) + o

(
h1−2b
1 h2

)
,

where η01 =
∫
|t|2bφK1

(t)φ′
K1

(t)dt. When U is super smooth, by Lemma B.9 in
Delaigle et al. (2009),

E

{
KU,0

(
Wj − x

h1

)
KU,1

(
Wj − x

h1

)
K2

2

(
Yj − yM

h2

)(
Yj − yM

h2

)2
}

≤ h1+2b2
1 h2 exp

(
2h−b

1 /d2
)
CCpν

(2)
2 +O

{
h1+2b2
1 h3

2 exp
(
2h−b

1 /d2
)}

.

Hence, the covariance in (G.3) and variances in (G.2) are of the same order.

G.3. Concluding Lemma 3.4

Since (G.2) and (G.3) are of the same order, the variance of (G.1) with y = yM

is dominated by

1

nh2
1h

4
2

Var

{
KU,0

(
Wj − x

h1

)
K2

(
Yj − yM

h2

)(
Yj − yM

h2

)}
.

Hence, for ordinary smooth U , by (G.8) with � = 0,

Var {p̂y(yM |x)} =
η0ν

(2)
2 fW, Y (x, yM)

nh1+2b
1 h3

2c
2f2

X(x)
+ o

(
1

nh1+2b
1 h3

2

)
;

and, for super smooth U , by (G.9),

Var {p̂y(yM |x)} ≤
exp

(
2h−b

1 /d2
)
CCpν

(2)
2

nh1−2b2
1 h3

2f
2
X(x)

+O

{
exp

(
2h−b

1 /d2
)

nh1−2b2
1 h2

}
.

This proves Lemma 3.4 in the main article.
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Appendix H: Pictorial demonstrations of simulation results

Fig H.1. Results under (C1) using approximated theoretical optimal bandwidths. Panels (a),

(c), and (e): boxplots of ISEs versus λ for M̂N (x), M̂0(x), and M̂1(x), respectively. Panels (b),

(d), and (f): estimated mode curves, M̂N (x), M̂0(x), and M̂1(x), respectively, when λ = 0.85.
In each panel with estimated mode curves associated with an estimator, the black line depicts
the true mode curve, the red, green, and blue lines are three estimated mode curves from the
same method that yield ISE being the first, second, and third quantiles among the 500 ISEs
for that method from the simulation, respectively.
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Fig H.2. Results under (C2) using approximated theoretical optimal bandwidths. Panels (a),

(c), and (e): boxplots of ISEs versus λ for M̂N (x), M̂0(x), and M̂1(x), respectively. Panels (b),

(d), and (f): estimated mode curves, M̂N (x), M̂0(x), and M̂1(x), respectively, when λ = 0.85.
In each panel with estimated mode curves associated with an estimator, the black lines depict
the true mode curves, the red, green, and blue lines are three estimated mode curves from the
same method that yield ISE being the first, second, and third quantiles among the 500 ISEs
for that method from the simulation, respectively.
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Fig H.3. Results under (C1) using the CV-SIMEX bandwidth selection. Panels (a), (c), and

(e): boxplots of ISEs versus λ for M̂N (x), M̂0(x), and M̂1(x), respectively. Panels (b), (d),

and (f): estimated mode curves, M̂N (x), M̂0(x), and M̂1(x), respectively, when λ = 0.85. In
each panel with estimated mode curves associated with an estimator, the black line depicts
the true mode curve, the red, green, and blue lines are three estimated mode curves from the
same method that yield ISE being the first, second, and third quantiles among the 500 ISEs
for that method from the simulation, respectively.
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Fig H.4. Results under (C2) using the CV-SIMEX bandwidth selection. Panels (a), (c), and

(e): boxplots of ISEs versus λ for M̂N (x), M̂0(x), and M̂1(x), respectively. Panels (b), (d),

and (f): estimated mode curves, M̂N (x), M̂0(x), and M̂1(x), respectively, when λ = 0.85. In
each panel with estimated mode curves associated with an estimator, the black lines depict
the true mode curves, the red, green, and blue lines are three estimated mode curves from the
same method that yield ISE being the first, second, and third quantiles among the 500 ISEs
for that method from the simulation, respectively.
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Appendix I: A sketch of the arguments in Section 3.1 with
uni-modality assumption relaxed

Suppose p(y|x) hasK modes, with the mode setM(x)= {yM, 1(x), . . . , yM,K(x)},
and the estimated mode set M̂(x) = {ŷM, 1(x), . . . , ŷM, K(x)}. Then the pointwise
error is Δn(x) = max1≤k≤K |ŷM, k(x) − yM, k(x)|. By the mean-value theorem,
for each k = 1, . . . ,K, one has

ŷM, k(x)−yM, k(x) = −{gyy(x, yM, k}−1ĝy(x, yM, k)+O(‖ĝyy −gyy‖∞)ĝy(x, yM, k),

as in (3.2). It follows that

Δn(x) = max
1≤k≤K

|{gyy(x, yM, k)}−1ĝy(x, yM, k)|

+O(‖ĝyy − gyy‖∞) max
1≤k≤K

|ĝy(x, yM, k)|,

and thus

Δn(x)

max1≤k≤K |{gyy(x, yM, k)}−1ĝy(x, yM, k)|

= 1 +O(‖ĝyy − gyy‖∞)
max1≤k≤K |ĝy(x, yM, k)|

max1≤k≤K |{gyy(x, yM, k)}−1ĝy(x, yM, k)|
= 1 +O(‖ĝyy − gyy‖∞),

where the last equality results from assumption (CP2).
Hence, under the same conditions that supporting (3.3), Δn(x) can be ap-

proximated by max1≤k≤K |{gyy(x, yM, k)}−1ĝy(x, yM, k)|, and thus the conver-
gence rate of Δn(x) is the same as that of max1≤k≤K |ĝy(x, yM, k)|. From this
point on, all arguments in Section 3 regarding ĝy(x, yM), which is p̂y(x, yM) in
Section 3.2 and is p̂y(yM |x) in Section 3.3, carry over to ĝy(x, yM, k) for each k =
1, . . . ,K. And as long asK is finite, the convergence rate of max1≤k≤K |ĝy(x, yM, k)|
is the same as that of |ĝy(x, yM, k)| for a k ∈ {1, . . . ,K}.
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